Amendments of the Rules

Part 15

Corrigenda 2 to Jan 2021 of Part 15

2022. 1. 06.

Hull Rule Development Team

		Amendment			Note
•	General princi				
	Rule Principles				
	sign method				
5.3 Load-ca	apacity based re	equirements Table 1: Load scenarios and corresponding rule r	requirements		Sloshing loads for scantling(refer to Ch 6, Sec 4 [2.7.2] below) contains static pressure and impact pressure itself, acceptance criteria is modified t
	Operation	Load type	Design load scenario	Acceptance criteria	be correct as <u>AC-SD</u> . The proposal of this corrigenda is to avoid unit
		Seagoing operations	tentional and too conservative consequence effec for the current designs.		
		Static and dynamic loads in heavy weather	S+D	AC-SD	
	Transit	Impact loads in heavy weather	Impact (I)	AC-I	
	Transit	Internal sloshing loads	Sloshing (SL)	AC-SD	
		Cyclic wave loads	Fatigue (F)	-	
	[omitted]	[omitted]	[omitted]	[omitted]	
Section 4 - 2. Special r 2.7 Plating 2.7.2 By slo	requirements in cargo tank b oshing pressure		be less than:		Refer to Ch 1, Sec 2, [5.3] Table 1 above.
	$0.0158 \alpha_p b \sqrt{\frac{P_{slh}}{C_{a-}}}$				
. 0					

 β : Coefficient of AC-SD as defined in Table 1.

 α : Coefficient of AC-SD as defined in **Table 1**.

 $C_{a-\max}$: Maximum permissible bending stress coefficient of AC-SD as defined in Table 1.

Amendment	Note
Section 5 - Stiffener	
2. Special requirements	
2.1 Section modulus of stiffener attached on cargo tank boundary	Refer to Ch 1, Sec 2, [5.3] Table 1 above.
2.7.2 By sloshing pressure in cargo tanks	
The net section modulus Z in cm ³ , of stiffeners subject to sloshing pressure is not to be taken less than:	
$Z = \frac{\left P_{slh} + P_{ls} \right s \ell_{bdg}^2}{f_{bdg} C_{s-slh} R_{eH}}$	
[omitted]	
β_s : Coefficient of AC-SD as defined in Table 2 .	
α_s : Coefficient of AC-SD as defined in Table 2 .	
$C_{s-\max}$: Maximum permissible bending stress coefficient of AC-SD as defined in Table 2 .	
 Chapter 3 Structural Design Principles Section 7 - Structural Idealisation 1. Strucutral idealisation of stiffeners and primary support members 	Current rule text regarding the effective breadth is found different from other KR Rules and CSR. It need to be in line with other Classification Societies' Rule including CSR.
1.3 Effective breadth	
1.3.1 Stiffeners	
The effective breadth, b_{eff} , in mm, of the attached plating to be considered in the actual net section modulus for the yielding check of stiffeners is to be obtained from the following formulae:	
a) Where the plating extends on both sides of the stiffener:	
$b_{eff} = 100\ell \underline{b}_{eff} = 200\ell$, or	
$b_{eff} = 30\ell + 0.42s b_{eff} = s$	
whichever is lesser.	
b) Where the plating extends on one side of the stiffener (i.e. stiffeners bounding openings):	
$b_{eff} = 50\ell \underline{b}_{eff} = 100\ell$, or	
$b_{eff} = 0.15\ell + 0.21s$ $b_{eff} = 0.5s$	

Amendment	Note
whichever is lesser.	
[omitted]	