RULES FOR CLASSIFICATION(STEEL SHIPS)

(Part 2 Materials and Welding)

- For external opinion inquiries -

2020.09.

Machinery Rule Development Team

- Main Amendments -

(1) Enter into force on 1 January 2021 (the date of application for certification of material & welding or the contract date for ship construction)

 Circular

• To reflect IACS UR W31(Rev.2 Dec 2019 CR)

Present	Amendment	reason
CHAPTER 1 MATERIALS	CHAPTER 1 MATERIALS	
Section 1 \sim Section 2 <omitted> Section 3 Rolled Steels</omitted>	Section 1 \sim Section 2 <same as="" present="" rules="" the=""> Section 3 Rolled Steels</same>	* Request for Establishment/Revision of Classification Technical Rules
301. Rolled steels for hull structural	301. Rolled steels for hull structural	(MRD4800-71-2020)
1. Application	1. Application	
$(1) \sim (5) $ <0 mitted> (6) <new></new>	 (1) ~ (5) <same as="" present="" rules="" the=""></same> (6) Brittle crack arrest steels are to be met the additional brittle crack arrest requirements and properties defined in 312 	- To reflect IACS UR W31(Rev.2 CR)
(6) <omitted></omitted>	$(\underline{7})$ <same as="" present="" rules="" the=""></same>	
2. ~ 13. <omitted> 302. ~ 310. <omitted></omitted></omitted>	2. \sim 13. <same as="" present="" rules="" the=""></same>	
311. YP47 Steel Plates	302. \sim 310. <same as="" present="" rules="" the=""> 311. YP47 Steels</same>	
1. Application		
 (1) This requirements applies to the application of steel plates with thickness of over 50mm and not greater than 100mm and specified yield point of 460 N/mm² to longitudinal structural members in the upper deck region of container carriers (such as hatch side coaming, hatch coaming top and the attached longitudinals). (2) For steel plates outside of this thickness range, special consideration is to be given by the Society. 	 thickness of over 50mm and not greater than 100mm and specified yield point of 460 N/mm² to longitudinal structural members in the upper deck region of container carriers (such as hatch side coaming, hatch coaming top and the attached longitudinals). (2) For YP47 steels outside scope of the said thickness range, special consideration is to be given by the Society. And special consideration is to be given to the application of YP47 steels for other hull structures. (2021) 	
 (3) The requirements other than those specified in 311. are applicable to the requirements in 301. (4) The requirements including brittle crack arrest properties other than those specified in this instruction are to be in accordance with the Guidance relating to the Rules specified by the Society. (2017) 	 plicable to the requirements in 301. (4) <u>Brittle crack arrest steels are to be met the additional brittle crack arrest requirements and properties defined in 312.</u> 	
2. Kinds	2. Kinds	
The <u>steel plates</u> are classified as specified in Table 2.1.42 .	The steels are classified as specified in Table 2.1.42 .	
3. Heat treatment	3. Heat treatment	
The Heat treatment of <u>steel plates</u> is classified as specified in Table 2.1.42 .	The Heat treatment of steels is classified as specified in Table $2.1.4\overline{2}^2$	

Present				Amendment									reason						
5. Chemical composition			<u>4.</u> Chemical composition									- To reflect							
The Chemical composition of in Table 2.1.43 .	steel plates is clas	ssified as specified	d The Chemical composition of <u>steels</u> is classified as specified in Table 2.1.42								1.42 .	IACS UR W31(Rev.2							
			Table 2.1.42 Grade and Chemical compositions (2021)								CR)								
Table 2.1.43 Chemical comp	ositions for YP47	steel plates		Deo				<u>c</u>	Chemi	cal c	ompo	ositio	$n(\%)^{(1)}$	1)(2)					
Chemical composition	$C_{eq}^{(1)}$	$\underline{P_{cm}}^{(2)}$	<u>Grade</u>						A.7.	a		16	(3)		r r (4)	 (5)	$\alpha^{(6)}$	D ⁽⁷⁾	
As approved by the Society	$\leq 0.49\%$	$\leq 0.22\%$		pract ice	$\underline{C} \underline{Si}$		$\underline{n} \underline{P}$	$\left \frac{S}{S}\right $	<u>Ni</u>	<u>Cr</u>	$\left \frac{Cu}{Cu}\right $	<u>Mo</u>	<u>A1</u> (0)	$\frac{Nb^{\circ}}{2}$	<u></u>	$\underline{\underline{1}}_{i}^{(0)}$	$\underline{C_{eq}^{(6)}}$	$\underline{P_{cm}^{(i)}}$	
Note (1) The carbon equivalent C_{eq} dle analysis using the follow $\underline{C_{eq}} = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Cr}{5}$ (2) Cold cracking susceptibility lowing formula. $P_{cm} = C + \frac{Si}{30} + \frac{Mn}{20} + \frac{Cu}{20} + \frac{Ni}{60} + \frac{Cu}{50}$	$\frac{Ni+Cu}{15}$ (%) P_{cm} is to be calcul	ated using the fol-	$ \begin{array}{c} I \\ I \\ $	Kille d and Fine grain	subject t a certific as in the y. 1 alumir cases the 1 is to c either s specific ion, the 2. 1 niobium pon equ wing for $+\frac{Mn}{6}+$ acking s	of ap o ap ate. o spectrum contain $singlyd$ minimized to the second d minimized to the second seco	$\begin{array}{c c} \hline x.\\ x.\\ \hline x.\\ \hline x.\\ x.\\ \hline x.\\ x.\\ \hline x.\\ x.\\ \hline x.\\ x.\\ x.\\ x.\\ x.\\ x.\\ x.\\ x.\\ x.\\ x.\\$	$ \underline{x} $ her el by th themia tinium inium any cont minium inium any cont value $\underline{V} + -$ Pcm	$\frac{ }{ $	<u>x.</u> <u>t hav</u> <u>ciety</u> , <u>pompor</u> <u>determ</u> <u>ent is</u> <u>bium</u> , <u>cont</u> <u>ium c</u> <u>to be</u> <u>Cu</u> ((x. x_e be the sition minedd sto yana on. We graa ent conter calc $\%$) to be to be to be to be to be to to be	x. en may conter may inste be no adium /hen nt is ulated e cale	inde a nt is be a be a ead o t less or o used efining fine not to d fror	5 as part to be d usin	0 rt of indi acid su acid 0.02 suital y the ment. ning eed (≥ lad	the cated bject solu 20%. ole gr steel . Wh elem 0.12% le ana	on pr to app ble co ain re: is to en uso ent is alysis	aking voduct voduct proval ntent. fining con- ed in s not using	

Present			Amendment								reason
4. Mechanical properties		<u>5.</u> Me	echanic	al prop	oerties						
The Mechanical properties of steel plates are classified in Table 2.1.42 .	ified as speci-		The Mechanical properties of <u>steels</u> are classified as specified in Table 2.1.42 .					- To reflect IACS UR W31(Rev.2 CR)			
Table 2.1.42 Conditions of supply, grade and properties for YP47 steel plates	mechanical	Table 2	2.1.42	Condi	tions of	supp	ly and n	nechani	cal prop	<u>perties</u>	
Mechanical Properties Impact test			Mechai	nical Pro	perties		Impa	ict test		_	
Average Impa	C	Grade		Tensile Strengt	Elongat	Test	Average		Energy(J)	Supply conditi	
Grade Strengt Strengt tion Temp L	$\frac{1}{5 < t^{(1)}}$ (11)		h (N/mm ²)	h	ion (%)	Temp. (℃)	$50 < t^{(1)} \le 70$	L $70 < t^{(1)} \le 85$	$85 < t^{(1)} \le 100$	on	
	$\frac{\leq 100}{75} \qquad \frac{\text{TMCP}^{(1)}}{20}$	ЕН47- Н	460 min.	570~72 0	17 <u>min.</u>	-40	53 <u>min.</u>	64 <u>min.</u>		TMCP ⁽ 2)	
 Note t : thickness (mm) Other conditions of supply are to be agreed by the 6. Selection of test samples One test sample is to be taken from every-treated plate as rolled directly from one slab or The requirements specified in 301. 6 (4) are to the selection of the test samples. 7. Selection of test specimens Tensile test specimens are to comply with the shown in (a) to (c) below: Tensile test specified in 301. 7 (2). Normally flat tensile test specimens are to be taken actor requirements specified in 301. 7 (2). Normally flat tensile test specimens are to be taken actor such a manner as to maintain the rolling sc one side. When instead a machined round tensile test used then the axis must be located at a por a distance of t/4 from the surface or as not to this position. 	similarly heat ingot. to be applied e requirements cording to the be prepared in cale at least at st specimen is sition lying at car as possible	<u>(2)</u> <u>6</u> . ~	t : thick Other con 7. <[nditions	of supply	7 are to	be agree	d by the	Society.		

Present	Amendment	reason
8. Surface inspection and verification of dimensions (1) Surface inspection and verification of dimensions are to be in accordance with requirements specified in 301. 8.	<u>8. ~ 10. <deleted></deleted></u>	- To reflect IACS UR W31(Rev.2 CR)
 (2) If required by the Society the manufacturer is to perform ultrasonic examinations in accordance with an approved standard. (3) If required by the Society, through thickness tensile tests are to be performed in accordance with requirements specified in 310. 		WOT(Rev.2 CR)
9. Retest procedures		
 (1) Where the tensile test from the first test specimen selected fails to meet the requirements, additional tests may be con- ducted according to the requirements given in 109. 1. (2) Regarding the impact tests, additional tests are to be carried out according to the requirements given in 109. 2. 		
10. Marking		
Steels which have satisfactorily complied with the required tests are to be marked with the identification mark in accordance with the requirements in 110. For steels having brittle crack arrest properties to which the requirements given in 1. (4) have been applied, the "brittle crack arrest <i>BCA</i> " is to be suffixed to the marking. (e.g. <i>EH47-H BCA</i>) (2017)		

Present	Amendment	reason
<u>312. <new></new></u>	312. Brittle crack arrest steels (2021)	- To reflect IACS UR
	1. Application	W31(Rev.2 CR)
	(1) This requirements applies to the application of brittle crack arrest steels(EH36-BCA, EH40-BCA and EH47-H-BCA)	
	with brittle crack arrest properties. (2) This requirements applies to the application of steels with thickness of over 50mm and not greater than 100mm	
	to longitudinal structural members in the upper deck region of container carriers (such as hatch side coaming, upper deck, etc.) specified in Pt 7 , Annex 7-8 of the Guidance.	
	2. Definition	
	Brittle crack arrest steels are defined as steel plate with the specified brittle crack arrest properties measured by ei- ther the brittle crack arrest toughness K_{α} or Crack Arrest Temperature (CAT).	
	3. Chemical composition	
	The Chemical composition of steels is classified as specified in Table 2.1.44.	

resent							Am	nend	mer	nt								reason
	Table 2.1.44 Gra	de and Che	mical o	compo	sitions													
	Deoxidati Chemical composition $(\%)^{(1)(2)}$											- To reflect IACS UR						
	<u>Grade</u>	on prac- tice	<u>_</u>	Si	<u>Mn</u>	<u>P</u>	<u>S</u>	Ni	Cr	Cu	<u>Mo</u>	$A1^{(4)(5)}$	$\underline{N}^{(5)(6)}$	$V^{(5)(6)}$	$Ti^{(6)}$	$\underline{C_{eq}^{(7)}}$	$\underline{P^{(8)}_{cm}}$	W31(Rev.2 CR)
	<u>EH36-BCA</u>	- <u>K i l l e d</u>	<u>0.18</u> max.		$\frac{0.90}{2.00} \sim$		<u>0.020</u> max.	<u>2.0</u> <u>max</u>	<u>0.25</u> max.	<u>0.50</u> <u>max</u>	<u>0.08</u> max.		$\frac{0.02}{0.05} \sim$	$\frac{0.05 \sim}{0.10}$	<u>0.02</u> <u>max</u>	$\frac{0.47}{\text{max}}$ $\frac{1}{2}$ 0.49	<u> </u>	
	<u>EH40-BCA</u>	$\frac{and Fine}{g r a i n}$ - treated			2.00			÷	man	÷	<u>IIIuxi</u>	<u></u>	<u></u>	0.10	÷	<u>max</u>		
	<u>EH47-H-BCA</u>	<u>incurcu</u>	<u>0.18</u> <u>max.</u>		$\frac{\underline{0.90} \sim}{\underline{2.00}}$	<u>0.020</u> <u>max.</u>	<u>0.020</u> <u>max.</u>	<u>2.0</u> <u>max</u>	<u>0.50</u> <u>max.</u>	<u>0.50</u> <u>max</u>	<u>0.08</u> <u>max.</u>	$\frac{0.015}{\text{min.}}$	$\frac{0.02 \sim}{0.05}$	$\frac{0.05 \sim}{0.10}$		<u>0.55</u> <u>max</u>	$\frac{0.24}{\text{max.}}$	
	in the spec aluminium of ot less than is to cont n. When us mbination, t	content 0.020% ain alu sed sin he spe	may the may the main the main the main the main manual mathematical mathematical mathematical material	n, niobiu n, niobiu e steel is minimum itanium c	ined in im, van s to co content	nadium ontain the	of the or ot he spe fine g to exc	acid so her su ecified raining eed 0.	oluble uitable minir g elem 12%.	conten grain num c ent is	<u>tt. In suc</u> refining ontent o	ch cases t elements f the gra icable.	he total s, either in refinii	singly	v or ii	n any		

Present			Amendment		reason						
	 <u>4. Brittle crack arrest properties</u> In addition to the required mechanical properties of 301. and 311., brittle crack arrest steels are to comply with the requirements specified in Table 2.1.45. (2) The brittle crack arrest properties specified in Table 2.1.45 are to be evaluated for the products in accordance with the procedure approved by the Society. Test specimens are to be taken from each piece (means "the rolled product from a single slab or ingot if this is rolled directly into plates"), unless otherwise agreed by the Society. Table 2.1.45 Requirement of brittle crack arrest properties for brittle crack arrest steels 										
	Suffix to the steel grade ⁽¹⁾	<u>Thickness range</u> (mm)	Brittle crack arrest prope Brittle crack arrest toughness K_{ca} at $-10 \degree C (N/mm^{3/2})^{(3)}$								
	<u>BCA1</u>	$50 < t \le 100$	<u>6,000 min.</u>	-10 or below							
	BCA280 < t ≤ 100										
			perties to which the requirements given he marking. (e.g. <i>EH</i> 47- <i>H-BCA1</i>)	ven in 4. have been a	applied, the "brittle						

 Section 3 Welding Work and Inspection 301. ~ 302. <omitted></omitted> 303. Application of welding consumables Welding consumables used for welded joints of hull structure are to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. 	CHAPTER 2 WELDING Section 1 ~ Section 2 <same as="" present="" rules="" the=""> Section 3 Welding Work and Inspection ~ 302. <same as="" present="" rules="" the=""> Application of welding consumables Welding consumables used for welded joints of hull structure are to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. (2) ~ (4) <same as="" present="" rules="" the=""></same></same></same>	
 Section 3 Welding Work and Inspection 301. ~ 302. <omitted></omitted> 303. Application of welding consumables Welding consumables used for welded joints of hull structure are to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. 	 Section 3 Welding Work and Inspection 302. <same as="" present="" rules="" the=""></same> Application of welding consumables Welding consumables used for welded joints of hull structure are to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. 	
 303. Application of welding consumables Welding consumables used for welded joints of hull structure are to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. 	 Application of welding consumables Welding consumables used for welded joints of hull structure are to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. 	
 Welding consumables used for welded joints of hull structure are to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. 	 Welding consumables used for welded joints of hull structure are to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. 	
 to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. 	 to be of the grades as specified in the relevant Articles of Sec 6 according to the following requirements: (1) Application of welding consumables for welded joints of various grades of steel is to be as specified in Table 2.2.3. 	

12

			Present				Amendment	reason	
	e 2.2.3 7) (201		welding consumables(rolled steel plates)			8 Selection of (9) <u>(2021)</u>	welding consumables(rolled steel plates)) - To reflect IACS UR	
Kin	d and gi be	rade of steel to welded	Grade of applicable welding consumables ⁽¹⁾	Kin	id and g be	rade of steel to welded	Grade of applicable welding consumables ⁽¹⁾	W31(Rev.2 CR)	
	Mild steel	A B, D E	<omitted></omitted>		Mild steel	A B, D E	<same as="" present="" rules="" the=""></same>		
Rol led stee ls	ed Higher - s strengt -	<i>AH</i> 32, <i>AH</i> 36 <i>DH</i> 32, <i>DH</i> 36 <i>EH</i> 32, <i>EH</i> 36 <i>FH</i> 32, <i>FH</i> 36	, <i>DH</i> 36 , <i>EH</i> 36	Rol led stee ls for	Higher		<same as="" present="" rules="" the=""></same>		
for hull	low alloy	AH40, DH40	2Y40, 3Y40, 4Y40, 5Y40, 3Y42, 4Y42, 5Y42, 2Y46, 3Y46, 4Y46, 5Y46		h low	AH40, DH40	2Y40, 3Y40, 4Y40, 5Y40, 3Y42, 4Y42, 5Y42, 2Y46, 3Y46, 4Y46, 5Y46		
	steel	<i>EH</i> 40	3Y40, 4Y40, 5Y40, 3Y42, 4Y42, 5Y42, 3Y46, 4Y46, 5Y46		alloy steel	EH40	3Y40, 4Y40, 5Y40, 3Y42, 4Y42, 5Y42, 3Y46, 4Y46, 5Y46		
		<i>FH</i> 40	4Y40, 5Y40, 4Y42, 5Y42, 4Y46, 5Y46			<i>FH</i> 40	4Y40, 5Y40, 4Y42, 5Y42, 4Y46, 5Y46		
	olled					<u>EH47-H</u>	<u>3Y47, 4Y46⁽⁶⁾, 5Y46⁽⁶⁾</u>		
steels for low temper- ature serv- ices High strength steels for welded structures ⁽⁵⁾			<omitted></omitted>		colled els for temper- re serv- ices High rength steels welded	- <same as="" present="" rules="" the=""></same>			
	TES : () ~ (5)	<omitted></omitted>		NOT	5) It car specif	<same as="" the<br="">on be used in acc lied by the Societ 0 -</same>	ordance with the Guidance relating to the Rules		

Present	Amendment	reason
304. ~ 310. <omitted></omitted>	304. \sim 310. <same as="" present="" rules="" the=""></same>	
311. Welding works for YP47 Steel Plates	311. Welding works for YP47 Steels (2021)	- To reflect IACS UR
The welding works for YP47 Steel Plates are to be in accordance with the Guidance in relating to Rules. [See Guidance]	Short bead length for tack and repairs of welds by welding are not to be less than 50mm. In the case where P_{cm} is less than or equal to 0.19, 25mm of short bead length may be adopted with approval of the Society.	W31(Rev.2 CR)
	 2. Preheating Preheating is to be 50°C or over when air temperature is 5°C or below. In the case where P_{cm} is less than or equal to 0.19 and the air temperature is below 5°C but above 0°C, alternative preheating requirements may be adopted with approval of the Society. 3. Others 	
	 (1) Special care is to be paid to the final welding so that harm-ful defects do not remain. (2) Jig mountings are to be completely removed with no defects in general, otherwise the treatment of the mounting is to be accepted by the Society. 312. Welding works for Brittle crack arrest steels (2021) 	
	Welding work (such as relevant welder's qualification, short bead, preheating, selection of welding consumable, etc.) for brit- tle crack arrest steels is to be in accordance with the relevant requirements for each steel grade excluding suffix "BCA1" or "BCA2".	

Present	Amendment	reason
Section 4 Welding Procedure Qualification Tests	Section 4 Welding Procedure Qualification Tests	
401. ~ 402. <omitted></omitted>	401. \sim 402. <same as="" present="" rules="" the=""></same>	- To reflect IACS UR
403. Welding procedure qualification tests(WPQT)	403. Welding procedure qualification tests(WPQT)	W31(Rev.2 CR)
1. ~ 7. <omitted></omitted>	1. \sim 7. <same as="" present="" rules="" the=""></same>	
8. <new></new>	8. Where Welding Procedure Specification (WPS) for the non-BCA	
	steels has been approved by the Society, the said WPS is appli-	
	cable to the same welding procedure applied to the same grade	
	with suffix "BCA1" or "BCA2" except high heat input processes	
	over 50kJ/cm. The requirements for welding procedure qual-	
	ification test for brittle crack arrest steels is to be in accordance with the relevant requirements for each steel grade excluding	
	suffix "BCA1" or "BCA2", except for hardness specified in 404.	
	9 and 405. 6 . (2021)	
404. Tests for butt welded joints	104 Tests for but welded isints	
1. \sim 8. <omitted></omitted>	404. Tests for butt welded joints	
(1) Hardness distribution at positions shown in Fig 2.2.9 is to	1. \sim 8. <same as="" present="" rules="" the=""></same>	
be measured.	 Hardness distribution at positions shown in Fig 2.2.9 is to be measured. 	
Zmm max Lines of measurement t Zmm max t Lines of t Zmm max t t Zmm max t t Zmm max t t Zmm max t t t Zmm max t t t t t t t t t t t t t	2mm max Lines of measurement 2mm max 2mm max 2mm max 2mm max 2mm max 2mm max 2mm max 2mm max 2mm max	
Base metal HAZ narrow HAZ wide	Base metal HAZ narrow HAZ wide	
Note	Note	
1. Measuring load is to be 10 kg vickers and meas-	1. Measuring load is to be 10 kg vickers and	
uring intervals are to be 1 mm.	measuring intervals are to be 1 mm.	
2. For <i>EH</i> 47- <i>H</i> , measurement points are to include mid-thickness position in addition.	2. For <i>EH47-H</i> and brittle crack arrest(BCA)	
ind-unckiess position in addition.	steels, measurement points are to include mid-thickness position in addition. (2021)	
Fig 2.2.9 Hardness Test for butt welded joint	ind-unexiess position in addition. (2021)	
(Units : mm)	Fig 2.2.9 Hardness Test for butt welded joint - 12 - (Units : mm)	

Present		Amendment	reason				
(2) The results from the hardness test are to be in with Table 2.2.10 . (2019)	accordance	(2) The results from the hardness test are to be in accordance with Table 2.2.10 . (2019)					
Table 2.2.10 Hardness Test Requirements for Butt Welded (2019)	l Joint	Table 2.2.10 Hardness Test Requirements for Butt Welded Joint (2019) (2021)	- To reflect IACS UR				
Grades and material symbols of test specimens	Hardness (Hv10)	Grades and material symbols of test specimens (Hv10)	W31(Rev.2 CR)				
DH 40, EH 40, FH 40	350 max. 380 max.	Rolled steels for hull structural $AH 36$, $DH 36$, $EH 36$, $FH 36$, $AH 40$, $DH 40$, $EH 40$, $FH 40$, $EH 47$ -H350 max.					
	20 max.	StructuralEH47-H-BCA1/2380 max.Weldable high strength steel420 max.					
Rolled steels & Steel pipes for low <omitted> temperature service</omitted>		Rolled steels & Steel pipes for low <same as="" present="" rules="" the=""> temperature service</same>					
Rolled steel plates for boiler & pressure vessel 32 The pipes for ordinary piping 32 The pipes used for high temperature and high pressure 32 Note : (1) For non-heat treated, hardness may be accepted by 380 max.	20 max. ⁽¹⁾	Rolled steel plates for boiler & pressure vessel320 max. ⁽¹⁾ The pipes for ordinary piping320 max. ⁽¹⁾ The pipes used for high temperature and high pressure320 max. ⁽¹⁾ Note :(1) For non-heat treated, hardness may be accepted by 380 max.					
10. <omitted> 405. ~ 406. <omitted></omitted></omitted>		10. <same as="" present="" rules="" the=""> 405. \sim 406. <same as="" present="" rules="" the=""></same></same>					
407. Validity of qualified welding procedure specific	cation	407. Validity of qualified welding procedure specification					
1. <omitted></omitted>		1. <same as="" present="" rules="" the=""></same>					

Present	Amendment	reason
2. Validity of variables for qualified WPS is as follows. However, it may be considered as equivalent for the requirements of the standard internationally recognized(<i>AWS</i> , <i>ASME</i> etc.) are applied.	2. Validity of variables for qualified WPS is as follows. However, it may be considered as equivalent for the requirements of the standard internationally recognized(<i>AWS</i> , <i>ASME</i> etc.) are applied.	
(1) Base metal Kind of base metal and their validity are as follows. Other materials not specified herein is to be in ac- cordance with the requirements of the standard internationally recognized as deemed appropriate by the Society. [See Guidance]		- To reflect IACS UR
(a) Normal and higher strength hull structural steels	(a) Normal and higher strength hull structural steels	
 1 Normal strength steel(A, B, D and E) or equivalent structural steels with tensile strength 400 ~ 520 N/mm². 2 Higher strength steels and <u>YP47 steel plates(AH 32, DH 32, EH 32, FH 32, AH 36, DH 36, EH 36, FH 36, AH 40, DH 40, EH 40, FH 40 and EH47-H) or equivalent structural steels with minimum specified yield strength 315 ~ 460 N/mm². (2018)</u> (i) ~ (iv) <omitted></omitted> (v) <new></new> 	 40, FH 40, EH47-H, EH 36-BCA1, EH 40-BCA1/2 and EH 47-H-BCA1/2) or equivalent structural steels with minimum specified yield strength 315 ~ 460 N/mm². (2018) (2021) (i) ~ (iv) <same as="" present="" rules="" the=""></same> (v) Where Welding Procedure Specification (WPS) for the non-BCA steels has been approved by the Society, the said WPS is applicable to the same welding procedure applied to the same grade with suffix "BCA1" or "BCA2" except high heat input processes over 50 kJ/cm. (2021) 	
(b) ~ (i) $\langle \text{Omitted} \rangle$	(b) \sim (i) <same as="" present="" rules="" the=""></same>	
$(2) \sim (9) \langle \text{Omitted} \rangle$	(2) \sim (9) <same as="" present="" rules="" the=""></same>	
3. <omitted></omitted>	3. <same as="" present="" rules="" the=""></same>	

	Present			Amendment		reason
Section	Section 5 <omitted> n 6 Welding Consu</omitted>		Sec Sec			
	strength steels and s	for normal strength	602. Electrodes	as the present Rules> s for manual arc welding fo gher strength steels and ste service		- To reflect IACS UR W31(Rev.2 CR)
1. <omitted></omitted>			1. <same as<="" th=""><th>s the present Rules></th><th></th><th></th></same>	s the present Rules>		
2. Grades and m	arks of electrode		2. Grades and	d marks of electrode		
(1) Electrodes at	re classified as specified in	Table 2.2.25.	(1) Electrod	es are classified as specified in T	Table 2.2.25.	
Table 2.2.25 Grades	s and Marks <i>(2017)</i>		Table 2.2.25 Gr	rades and Marks <i>(2017) (2021)</i>		
For normal strength steel	For higher strength steel	For steel for low temperature service	For normal strength steel	For higher strength steel	For steel for low temperature service	
1, 2, 3	2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> , 5 <i>Y</i> , 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40	L 1, L 2, L 3, L 91	1, 2, 3	2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> , 5 <i>Y</i> , 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40, 3 <i>Y</i> 47	L 1, L 2, L 3, L 91	
	itted> to be used in preparation zen in Table 2.2.28 accor		3. General pr (1) ~ (4) < (5) Steel pl to be as electrode	as the present Rules> rovisions for tests <same as="" present="" rules="" the=""> ates to be used in preparation o s given in Table 2.2.28 according. <same as="" present="" rules="" the=""></same></same>		

 Present	
le of Steels used for Test Assembly (2017)	Table 2.2.28 Grad
Grade of steels used for test assembly ⁽¹⁾⁽²⁾	Grade of electrode
A	1
A, B or D	2
A, B, D or E	3
AH 32, AH 36, DH 32 or DH 36	2 <i>Y</i>
AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	3 <i>Y</i>
AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	4 <i>Y</i>
AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	5 <i>Y</i>
AH 40 or DH 40	2 <i>Y</i> 40
AH 40, DH 40 or EH 40	3 <i>Y</i> 40
AH 40, DH 40, EH 40 or FH 40	4 <i>Y</i> 40
AH 40, DH 40, EH 40 or FH 40	5 <i>Y</i> 40
E or RL 24A	L 1
E, RL 235A, RL 235B, RL 325A or RL 325B	L 2
RL 325A, RL 325B or RL 360	L 3
RL 9N490	L 91
ength of higher strength steels AH 32, DH 32 EH used in butt weld test assemblies is to be great-	or higher stre test assembly. be appropriatel (2) The tensile str

	Amendment	reason
Fable 2.2.28 Grad <i>(20.</i>	de of Steels used for Test Assembly <i>(2017)</i> 21)	- To reflect IACS UR W31(Rev.2 CR)
Grade of electrode	Grade of steels used for test assembly ⁽¹⁾⁽²⁾	
1	A	
2	A, B or D	
3	A, B, D or E	
2Y	AH 32, AH 36, DH 32 or DH 36	
3 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	
4 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	
5 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	
2 <i>Y</i> 40	AH 40 or DH 40	
3 <i>Y</i> 40	AH 40, DH 40 or EH 40	
4 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	
5 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	
<u>3Y47</u>	<u>EH 47-H</u>	
<i>L</i> 1	E or RL 24A	
L 2	E, RL 235A, RL 235B, RL 325A or RL 325B	
L 3	RL 325A, RL 325B or RL 360	
L 91	RL 9N490	
NOTES: (1) Notwithstandi or higher stre test assembly. be appropriate (2) The tensile st 32, and <i>FH</i> 32 er than 490 N		

	Present							Ameno	dment			reason
4. Depo	sited meta	l test				4. Deposi	ted metal t	est				
(1) ~ $(3) D$ (a) (c)	 (2) <omit eposited="" li="" men<=""> ~ (b) <o< li="">) The tensile test specir in Table strength is to the app of the oth sults and the sults are supported as a substant substant</o<></omit>	ted> tal tensile t mitted> e strength, nen are to 2.2.29, s exceeded, proval of the ner mechani the chemica and impace	yield streng comply w where the special co the electrode ical proper al composit	ith the require upper lim onsideration to taking into ties shown in ion of deposi puirements fo	r Deposited	(1) ~ (2 (3) Dep (a) ~ (c) ~ (c) ~ (c) ~	 2) <same a="" li="" metal="" metal<="" osited=""> (b) <sam< li=""> (b) <sam< li=""> (c) <sam< li=""> (c) <sam< li=""> (c) (c) <</sam<></sam<></sam<></sam<></same>	- To reflect IACS UR W31(Rev.2 CR)				
	Tensile	Yield	Elongatio	Impa	ct test		Tensile	Yield	Elongatio	Impa	ct test	
Grade of electrode	strength (N/mm ²)	strength (N/mm ²)	n (%)	Test temp. (°C)	Average absorbed energy(J)	Grade of electrode	strength (N/mm ²)	strength (N/mm ²)	n (%)	Test temp. (°C)	Average absorbed energy(J)	
1	-	-20	1				20					
2	400 ~ 560			2	$400 \sim 560$	305 min.	22 min.	0				
3				_	3				-20			
2 <i>Y</i>	-			0		2 <i>Y</i>	_			0		
3Y 4Y	490 ~ 660	375 min.	22 min.	-20	. <u> </u>	3 <i>Y</i>	490 ~ 660	375 min.	22 min.	-20	47 min.	
41 5Y	-			-40	47 min.	4 <i>Y</i>	_			-40		
2 <i>Y</i> 40				0		5Y				-60		
3 <i>Y</i> 40	-			-20		2 <i>Y</i> 40 3 <i>Y</i> 40	-			-20		
4 <i>Y</i> 40	510 ~ 690	400 min.	22 min.	-40		<u>3740</u> 4Y40	510 ~ 690	400 min.	22 min.	-20		
5Y40	-			-60		5 <i>Y</i> 40	-					
<i>L</i> 1	400 ~ 560	305 min.	22 min.	-40		3740 3Y47	570 ~ 720	460 min.	19 min.	-20	64 min.	
L 2	440 ~ 610	345 min.	22 min.	-60	34 min.	<u> </u>	$\frac{370}{400} \sim 560$	305 min.	22 min.	-40	<u></u>	
L 3	490 ~ 660	375 min.	21 min.	-60		L 1 L 2	$440 \sim 610$	345 min.	22 min.	-60	34 min.	
L 91	590 min.	375 min. ⁽¹⁾	25 min.	-196	27 min.	L 3	490 ~ 660	375 min.	21 min.	-60		
NOTE: (1) 0.2	% Yield stre	ngth				L 91	590 min.	375 min. ⁽¹⁾	25 min.	-196	27 min.	
(1) 0.2		0				NOTE: (1) 0.2	% Yield stre	ngth				

			Presen	t					reason					
(4)	<omittee< th=""><th>}></th><th></th><th></th><th></th><th>(4) <san< th=""><th></th></san<></th></omittee<>	} >				(4) <san< th=""><th></th></san<>								
5. Bu	itt weld te	est				5. Butt weld								
	 (1) <omitted></omitted> (2) Butt weld tensile tests (a) ~ (b) <omitted></omitted> (c) The tensile strength of test specimen is to comply with the requirements given in Table 2.2.30. Table 2.2.30 Tensile and impact Test Requirements for butt weld (2017) 						 (1) <same as="" present="" rules="" the=""></same> (2) Butt weld tensile tests (a) ~ (b) <same as="" present="" rules="" the=""></same> (c) The tensile strength of test specimen is to comply with the requirements given in Table 2.2.30. Table 2.2.30 Tensile and impact Test Requirements for butt weld (2017) (2021) 							
				Impact tes	st				Impact te	st				
	Grade	Tensile	Test	Average abso	rbed energy (J)	Grade	Tensile	Test	Average abso	orbed energy (J)				
	of electrode	strength (N/mm ²)	temp. (°C)	Flat, Horizontal, Overhead	Vertical upward Vertical downward	of electrode	strength (N/mm ²)	temp. (°C)	Flat, Horizontal, Overhead	Vertical upward Vertical downward				
	1		20			1		20						
	2	400 min.	0	-		2	400 min.	0	_					
	3		-20			3		-20						
	2 <i>Y</i>		0		34 min.	2 <i>Y</i>		0		34 min.	34 min.			
	3 <i>Y</i>	490 min.	-20			3 <i>Y</i>	490 min.	-20						
	4 <i>Y</i>	490 11111.	-40	47 min.		4 <i>Y</i>	490 11111.	-40	47 min.	47 min.				
	5 <i>Y</i>		-60			5 <i>Y</i>		-60						
	2 <i>Y</i> 40		0			2 <i>Y</i> 40		0						
	3 <i>Y</i> 40	510 min.	-20	_	39 min.	3 <i>Y</i> 40	510 min.	-20		39 min.				
	4 <i>Y</i> 40	510 mm.	-40		<i>57</i> mm.	4 <i>Y</i> 40	510 mm.	-40		<i>37</i> mm.				
	5 <i>Y</i> 40		-60			5 <i>Y</i> 40		-60						
	L 1	400 min.	-40			<u>3Y47</u>	<u>570 min.</u>	<u>-20</u>	<u>64 min.</u>	<u>64 min.</u>				
	L 2	440 min.	-60	27 min.	27 min.	L 1	400 min.	-40						
	L 3	490 min.	-60	<i>21</i> IIIII.	27 IIIII.	L 2	440 min.	-60	27 min.	27 min.				
	L 91	630 min.	-196			<i>L</i> 3	490 min.	-60	<u> </u>	27 11111.				
						L 91	630 min.	-196						

	Present			Amendment		reason
 without of other of other <i>grees</i> over thickness former for of the sp (4) <omitted></omitted> 6. ~ 9. <omitted< li=""> 603. Automatic we steels, higher perature servion 1. <omitted></omitted> 2. Grades and matic </omitted<>	Omitted> specimens are to be ca crack exceeding 3 mm long defects, being bent throug er a former having a rad of test specimen. The rad or <i>L</i> 91, however, are to b ecimen and 180 <i>degrees</i> re elding consumables for strength steels and s ce arks tic welding consumables a e 2.2.35.	g on the outer surface h an angle of 120 <i>de</i> - dius of 1.5 times the dius and angle of the e 2 <i>times</i> the thickness spectively.	 (c) The t withou of oth grees for 3Y angle the respec (4) <same a<="" li=""> 6. ~ 9. <sam< li=""> 603. Automatic steels, high perature se 1. <same as<="" li=""> 2. Grades and (1) The auto fied in Ta </same></sam<></same>	Same as the present Rules> test specimens are to be capa at crack exceeding 3 mm long er defects, being bent through over a former having a radius (47) the thickness of test speci of the former for <i>L</i> 91, howev thickness of the specimer tively. Is the present Rules> me as the present Rules> welding consumables for her strength steels and starvice the present Rules>	on the outer surface an angle of 120 <i>de</i> - of 1.5 times(<u>2 times</u> men. The radius and ver, are to be 2 <i>times</i> n and 180 <i>degrees</i>	
For normal strength steel	For higher strength steel	For steel for low temperature service	For normal strength steel	For higher strength steel	For steel for low temperature service	
1, 2, 3	1 <i>Y</i> , 2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> , 5 <i>Y</i> 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40	L 1, L 2, L 3, L 91	1, 2, 3	1 <i>Y</i> , 2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> , 5 <i>Y</i> 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40 <u>, 3<i>Y</i>47</u>	L 1, L 2, L 3, L 91	
	ions for tests to be used for test assemi 2.2.38, appropriate to umables.		3. General pro (1) Steel plat en in Ta welding co	Same as the present Rules> visions for tests es to be used for test assemble ble 2.2.38, appropriate to the onsumables. Same as the present Rules>		

	Present		Amendment	reason
	es of Steel used for Test Assembly (2017)	Table 2.2.38 Grad <i>(202</i>	es of Steel used for Test Assembly <i>(2017)</i> 1)	
Grade of welding consumable	Grade of steel used for test $assembly^{(1)(2)}$	Grade of welding		- To reflect IACS UR W31(Rev.2 CR))
1	Α	consumable	Grade of steel used for test assembly ⁽¹⁾⁽²⁾	W31(Rev.2 CR))
2	A, B or D	1	A	
3	A, B, D or E	2	A, B or D	
1 <i>Y</i>	AH 32 or AH 36	3	A, B, D or E	
2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36	1 <i>Y</i>	AH 32 or AH 36	
3 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32 or	2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36	
4 <i>Y</i>	EH 36 AH 32, AH 36, DH 32, DH 36, EH 32, EH	3 <i>Y</i>	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32 or <i>EH</i> 36	
57	36, FH 32 or FH 36 AH 32, AH 36, DH 32, DH 36, EH 32, EH	4 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH	
2 <i>Y</i> 40	36, FH 32 or FH 36 AH 40 or DH 40	5 <i>Y</i>	36, FH 32 or FH 36 AH 32, AH 36, DH 32, DH 36, EH 32, EH	
3 <i>Y</i> 40	AH 40 OF DH 40 AH 40, DH 40 or EH 40	2¥40	36, FH 32 or FH 36 AH 40 or DH 40	
4740	AH 40, DH 40, EH 40 or FH 40	3¥40		
5740	AH 40, DH 40, EH 40 or FH 40		<i>AH</i> 40, <i>DH</i> 40 or <i>EH</i> 40	
L 1	<i>E or RL 235A</i>	4Y40	<i>AH</i> 40, <i>DH</i> 40, <i>EH</i> 40 or <i>FH</i> 40	
		5Y40	AH 40, DH 40, EH 40 or FH 40	
L 2	<i>E</i> , <i>RL</i> 235 <i>A</i> , <i>RL</i> 235 <i>B</i> , <i>RL</i> 325 <i>A</i> or <i>RL</i> 325 <i>B</i>	<u>3Y47</u>	<u>EH 47-H</u>	
<i>L</i> 3	<i>RL</i> 325 <i>A</i> , <i>RL</i> 325 <i>B</i> or <i>RL</i> 360	L 1	E or RL 235A	
L 91 NOTES:	<i>RL</i> 9 <i>N</i> 490	L 2	E, RL 235A, RL 235B, RL 325A or RL 325B	
(1) Notwithstanding	the requirements in this Table, normal strength	L 3	RL 325A, RL 325B or RL 360	
e	strength steels may be used for deposited metal this case, test assemblies of grade L 91 are to	L 91	<i>RL</i> 9 <i>N</i> 490	
be appropriately		NOTES:		
	ngth of higher strength steels AH 32, DH 32, EH		g the requirements in this Table, normal strength	
	sed in butt weld test assemblies is to be greater		strength steels may be used for deposited metal	
than 490 N/mm ²	2		n this case, test assemblies of grade $L91$ are to	
		be appropriately		
			ength of higher strength steels AH 32, DH 32, EH used in butt weld test assemblies is to be greater	
		than 490 N/mm	2	

		Pres	ent					Amen	dment			reason
4. Deposi	ited metal t	est with m	ulti-run te	chnique		4. Depos	sited metal					
(3) <i>Dep</i> (a) (b)	test specimer in Table 2.2 is exceeded, approval of other mechan the chemical 40 Tensile	tensile test strength, yi n are to co 2.40, where special co the electrod nical proper composition	ation of each rements given ensile strength given to the eration of the st results and	(3) <i>De</i> (a) (b)	 (2) <same eposited="" li="" meta<=""> <same as<="" li=""> The tensile test specimies in Table 2 is exceeded approval of other mech the chemica 40 Tensile a Deposite </same></same>	en ch ne ne						
Grade of	Tensile	Yield	Elongatio	Imp	act test	Grade of	Tensile	Yield	Elongatio	Imp	oact test	
welding material	strength (N/mm ²)	strength (N/mm ²)	n (%)	Test temp. (°C)	Average absorbed energy (J)	welding material	strength (N/mm ²)	strength (N/mm ²)	n (%)	Test temp. (°C)	Average absorbed energy (J)	
1				20		1				20		
2	$400 \sim 560$	305 min.	22 min.	0		2	400 ~ 560	305 min.	22 min.	0	_	
3				-20	-	3				-20	_	
1 <i>Y</i>	_			20	34 min.	1 <i>Y</i>	-			20	34 min.	
2 <i>Y</i>	400 ((0	275		0	2 <i>Y</i>	400 - ((0	275		0	_		
3Y	$490 \sim 660$	375 min.	22 min.	-20	_	<u>3</u> <i>Y</i>	490 ~ 660	375 min.	22 min.	-20	_	
4Y 5Y				-40		4Y 5Y				-40	-	
2 <i>Y</i> 40				0		2 <i>Y</i> 40				0		- To reflect IACS UR
3 <i>Y</i> 40				-20	-	3Y40	-			-20	_	W31(Rev.2 CR)
4 <i>Y</i> 40	$510 \sim 690$	400 min.	22 min.	-40	39 min.	4 <i>Y</i> 40	510 ~ 690	400 min.	22 min.	-40	- 39 min.	W01(Rev.2 CR)
5 <i>Y</i> 40				-60		5Y40	-			-60	-	
<i>L</i> 1	$400 \sim 560$	305 min.	22 min.	-40		<u>3Y47</u>	$570 \sim 720$	<u>460 min.</u>	<u>19 min.</u>	-20	<u>64 min.</u>	
L 2	440 ~ 610	345 min.	22 min.	-60	27	<i>L</i> 1	$400 \sim 560$	305 min.	22 min.	-40		
L 3	490 ~ 660	375 min.	21 min.	-60	27 min.	L 2	440 ~ 610	345 min.	22 min.	-60	27 min	
L 91	590 min.	375 min. ⁽¹⁾	25 min.	-196		L 3	490 ~ 660	375 min.	21 min.	-60	27 min.	
NOTE: (1) 0.2 9	% yield stress					L 91	590 min.	375 min. ⁽¹⁾	25 min.	-196		
()	,					NOTE: (1) 0.2 9	% yield stress					

	Pres	ent			Ameno	dment		reason
(c) <o (4) <omitt< td=""><td></td><td></td><td></td><td>(c) <sa (4) <same< td=""><td></td></same<></sa </td></omitt<></o 				(c) <sa (4) <same< td=""><td></td></same<></sa 				
5. Butt weld	test with multi-ru	in technique		5. Butt weld	test with multi-ru	un technique		
(a) ~ (b (c) The the r	dd tensile test with) <omitted> tensile strength of requirements given</omitted>	test specime in Table 2.2.	n is to comply with 41 .	 (1) <same< li=""> (2) Butt we (a) ~ (b (c) The the the set </same<>				
Table 2.2.41	Tensile and Impac weld test with mu			Table 2.2.41	Tensile and Impac weld test with mu		ique <i>(2017) (2021)</i>	
Grade of	Tensile	Iı	npact test	Grade of	Tensile	I	mpact test	
welding material	strength(N/mm ²)	Test temp. (°C)	Average absorbed energy (J)	welding material	strength(N/mm ²)	Test temp. (°C)	Average absorbed energy (J)	
1		20		1		20		
2	400 min.	0		2	400 min.	0		
3		- 20		3		- 20		
1 <i>Y</i>		20	34 min.	1 <i>Y</i>		20	34 min.	
2 <i>Y</i>		0	54 mm.	2 <i>Y</i>	490 min.	0		
3 <i>Y</i>	490 min.	- 20		3 <i>Y</i>		- 20		
4 <i>Y</i>		- 40		4 <i>Y</i>		- 40		
5 <i>Y</i>		- 60		5 <i>Y</i>		- 60		- To reflect IACS UR
2 <i>Y</i> 40		0		2 <i>Y</i> 40		0		W31(Rev.2 CR)
3 <i>Y</i> 40	510 min.	- 20	39 min.	3 <i>Y</i> 40	510 min.	- 20	39 min.	
4 <i>Y</i> 40	510 mm.	- 40	39 mm.	4 <i>Y</i> 40	510 mm.	- 40	59 mm.	
5 <i>Y</i> 40		- 60		5 <i>Y</i> 40		- 60		
L 1	400 min.	- 40		<u>3 Y47</u>	<u>570 min.</u>	<u>-20</u>	<u>64 min.</u>	
L 2	440 min.	- 60	27 min.	L 1	400 min.	- 40		
L 3	490 min.	- 60	27 mm.	L 2	440 min.	- 60	27 min.	
L 91	630 min.	- 196		L 3	490 min.	- 60	2 / 111111.	
				L 91	630 min.	- 196		

Present	Amendment	reason
 (3) Butt weld bend test with multi-run technique (a) <omitted></omitted> (b) The test specimens are to be capable of withstanding, without crack exceeding 3 mm long on the outer surface of other defects, being bent through an angle of 120 degrees over a former having a radius of 1.5 times the thickness of test specimen. The radius and angle of the former for L 91, however, are to be 2 times the thickness of the specimen and 180 degrees respectively. (2017) (4) <omitted></omitted> (4) <omitted></omitted> 	 (3) Butt weld bend test with multi-run technique (a) <same as="" present="" rules="" the=""></same> (b) The test specimens are to be capable of withstanding, without crack exceeding 3 mm long on the outer surface of other defects, being bent through an angle of 120 degrees over a former having a radius of 1.5 times(2 times for 3Y47) the thickness of test specimen. The radius and angle of the former for L 91, however, are to be 2 times the thickness of the specimen and 180 degrees respectively. (2017) (2021) (4) <same as="" present="" rules="" the=""></same> 	- To reflect IACS UI W31(Rev.2 CR)
. Annual inspections	8. Annual inspections	
 (1) <omitted></omitted> (2) The kinds of test, etc. involved in the annual inspections are to be as given in Table 2.2.42. (3) <omitted></omitted> (3) <omitted></omitted> 	 (1) <same as="" present="" rules="" the=""></same> (2) The kinds of test, etc. involved in the annual inspections are to be as given in Table 2.2.42. (3) <same as="" present="" rules="" the=""></same> 9. <same as="" present="" rules="" the=""></same> 	

			Pr	esei	nt							Ame	ndm	nent			reason
Table 2.2.42 Kinds of Test for Annual Inspection (2017) Grade Test assembly Kinds and no.						Table 2.2.42 Kinds of Test for Annual Inspection <i>(2017, (2021)</i>									- To reflect IACS UR W31(Rev.2 CR)		
of	Weldi	V	ind of				of test	Grade Weldi				T	Test assem		Kinds and no.		
welding consum ables	ng techni que ⁽¹⁾		test	Nu mbe r	Dime nsions	Thick ness (mm)	specimens taken from test assembly	we cor	of Iding Isum	ng techni que ⁽¹⁾	K	ind of test	Nu mbe r	Dime nsions	Thick ness (mm)	of test specimens taken from test	
	Multi- run techni que		posited tal test	1	Fig 2.2.27	20	Tensile test specimen: 1 Impact test specimen: 3		oles	Multi- run techni que		posited etal test	1	Fig 2.2.27	20	assembly Tensile test specimen: 1 Impact test specimen: 3	
1, 2, 3 1Y, 2Y, 3Y, 4Y, 5Y 2Y40, 3Y40, 4Y40, 5Y40	Two-r un	But t wel	Subm erged arc weldi ng	1	Fig	20	Tensile test specimen: 1 Longitudinal tensile test specimen: 1 Face bend test specimen: 1 Root bend test specimen: 1 Impact test specimen: 3		2Y, 4Y, 4Y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Two-r	Bu	Subm erged arc weldi ng	1		20	Tensile test specimen: 1 Longitudinal tensile test specimen: 1 Face bend test specimen: 1 Root bend test specimen: 1 Impact test specimen: 3	
L1, L2, L3, L91	que	d test	Gas shield ed and self shield ed arc weldi ng	1	2.2.29	20~2 5	Tensile test specimen: 1 Longitudinal tensile test specimen: 1 Face bend test specimen: 1 Root bend test specimen: 1 Impact test specimen: 3	<u>3 Y</u> 2	1 <u>7</u> L2,	un techni que	we d test	Gas	1	Fig 2.2.29	20~2 5	Tensile test specimen: 1 Longitudinal tensile test specimen: 1 Face bend test specimen: 1 Root bend test specimen: 1 Impact test	
du Ho	cted for	r m	ulti-run	and	two ru	ın wel	ue are to be con- ding respectively. technique are not		du Ho	cted fo	r m	ulti-run	and	two ru	ın wel	specimen: 3 ue are to be con- ding respectively. technique are not	

	Present			Amendment		reason
strength ste	matic welding consuma eels, higher strength stee ature service		strength	utomatic welding consuma steels, higher strength stee perature service	bles for normal Is and steels for	- To reflect IACS UR W31(Rev.2 CR)
1. <omitted></omitted>			1. <same a<="" th=""><th>as the present Rules></th><th></th><th></th></same>	as the present Rules>		
2. Grades and	marks		2. Grades a	nd marks		
	i-automatic welding consumabl n Table 2.2.43 .	es are classified as		semi-automatic welding consumabled in Table 2.2.43 .	es are classified as	
Table 2.2.43 Gra	des and Marks <i>(2017)</i>		Table 2.2.43	Grades and Marks <i>(2017) (2021)</i>		
For normal strength steel	For higher strength steel	For steel for low temperature service	For normal strength steel	For higher strength steel	For steel for low temperature service	
1, 2, 3	1 <i>Y</i> , 2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> 5 <i>Y</i> 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40	L1, L2, L3, L91	1, 2, 3	1 <i>Y</i> , 2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> 5 <i>Y</i> 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40 <u>, 3<i>Y</i>47</u>	L1, L2, L3, L91	
(1) ~ (2) <c (3) Steel plate en in Tal</c 	visions for tests Omitted> es to be used for test assembli ole 2.2.45, appropriate to the ling consumables.		3. General p (1) ~ (2) (3) Steel p en in matic v	Same as the present Rules> orovisions for tests Same as the present Rules> olates to be used for test assemblis Table 2.2.45, appropriate to the welding consumables. Same as the present Rules>		

	Present		Amendment	reason
Table 2.2.45	Grades of Steel for Test Assembly (2017)	Table 2.2.45	arades of Steel for Test Assembly (2017) (2021)	- To reflect IACS UR
Grade of welding consumables	Grade of steel for test assembly ⁽¹⁾⁽²⁾	Grade of welding consumables	Grade of steel for test assembly ⁽¹⁾⁽²⁾	W31(Rev.2 CR)
15	A	18	A	
28	A, B or D	28	A, B or D	
35	A, B, D or E	38	A, B, D or E	
1 <i>Y</i> S	AH 32 or AH 36	1 <i>Y</i> S	AH 32 or AH 36	
2YS	AH 32, AH 36, DH 32 or DH 36	2YS	AH 32, AH 36, DH 32 or DH 36	
3YS	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	3YS	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	
4YS	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	4 <i>Y</i> S	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	
5YS	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	5 <i>Y</i> S	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	
2 <i>Y</i> 40S	AH 40 or DH 40	2 <i>Y</i> 40S	AH 40 or DH 40	
3 <i>Y</i> 40S	AH 40, DH 40 or EH 40	3 <i>Y</i> 40S	AH 40, DH 40 or EH 40	
4 <i>Y</i> 40S	AH 40, DH 40, EH 40 or FH 40	4 <i>Y</i> 40S	AH 40, DH 40, EH 40 or FH 40	
5 <i>Y</i> 40S	AH 40, DH 40, EH 40 or FH 40	5 <i>Y</i> 40S	AH 40, DH 40, EH 40 or FH 40	
L 1S	E or RL 235A	<u>3Y478</u>	<u>EH 47-H</u>	
L 28	E, RL 235A, RL 235B, RL 325A or RL 325B	L 1S	E or RL 235A	
L 38	RL 325A, RL 325B or RL 360	L 28	E, RL 235A, RL 235B, RL 325A or RL 325B	
L 91S	<i>RL</i> 9 <i>N</i> 490	L 38	RL 325A, RL 325B or RL 360	
NOTES;		L 91S	<i>RL</i> 9 <i>N</i> 490	
strength s this case, buttered. (2) The tens	tanding the requirements in this Table, normal or higher teels may be used for deposited metal test assembly. In test assemblies of grade L 91 are to be appropriately ille strength of higher strength steels <i>AH</i> 32, <i>DH</i> 32, <i>EH</i> 32 2 used in butt weld test assemblies is to be greater than n^2 .	strength st this case, buttered. (2) The tensi	anding the requirements in this Table, normal or higher teels may be used for deposited metal test assembly. In test assemblies of grade L 91 are to be appropriately le strength of higher strength steels <i>AH</i> 32, <i>DH</i> 32, <i>EH</i> 32 2 used in butt weld test assemblies is to be greater than n^2 .	

Present	Amendment	reason
Deposited metal test	4. Deposited metal test	
 Deposited metal test (1) ~ (2) <omitted></omitted> (3) Deposited metal tensile test (a) ~ (b) <omitted></omitted> (c) The tensile strength, yield strength and elongation of each test specimen are to comply with the requirements given in Table 2.2.46, where the upper limit of tensile strength is exceeded, special consideration will be given to the approval of the electrode, taking into consideration of the other mechanical properties shown in the test results and the chemical composition of deposited metal. (4) <omitted></omitted> 	 4. Deposited metal test ~ (2) <same as="" present="" rules="" the=""></same> Deposited metal tensile test ~ (b) <same as="" present="" rules="" the=""></same> (c) The tensile strength, yield strength and elongation of each test specimen are to comply with the requirements given in Table 2.2.46, where the upper limit of tensile strength is exceeded, special consideration will be given to the approval of the electrode, taking into consideration of the other mechanical properties shown in the test results and the chemical composition of deposited metal. (4) <same as="" present="" rules="" the=""></same> 	

		Prese	nt					Amendr	nent			reason
Table 2.2.4		and Impac ted Metal t		quirement	s for	Table 2.2.		e and Impac ited Metal t			s for	
Grade of	Tensile	Yield		Imp	act test	Grade of	Tensile	Yield		Imp	act test	
welding consumab les	strength (N/mm ²)	strength (N/mm ²)	Elongatio n (%)	Test temp. (℃)	Average absorbed energy (J)	welding consumab les	strength (N/mm ²)	strength (N/mm^2)	Elongatio n (%)	Test temp. (℃)	Average absorbed energy (J)	
1 <i>S</i>				20		1S				20		
2 <i>S</i>	$400 \sim 560$	305 min.	22 min.	0		25	$400 \sim 560$	305 min.	22 min.	0		
35				- 20		35				- 20		
1 <i>YS</i>				20		1 <i>YS</i>				20		
2YS				0		2 <i>YS</i>				0		
3 <i>YS</i>	$\begin{array}{c} 490 \sim \\ 660 \end{array}$	375 min.	22 min.	- 20	47	3 <i>YS</i>	490 ~ 660	375 min.	22 min.	- 20	47	
4 <i>YS</i>				- 40	- 47 min.	4 <i>YS</i>				- 40	47 min.	
5 <i>YS</i>				- 60		5 <i>YS</i>				- 60		
2 <i>Y</i> 40 <i>S</i>				0		2 <i>Y</i> 40 <i>S</i>				0		
3 <i>Y</i> 40 <i>S</i>	510 ~	400 min.	22 min.	- 20		3 <i>Y</i> 40 <i>S</i>	510 ~	400 min.	22 min.	- 20		
4 <i>Y</i> 40 <i>S</i>	690	400 mm.	22 mm.	- 40		4 <i>Y</i> 40 <i>S</i>	690	400 mm.	22 mm.	-40		
5 <i>Y</i> 40 <i>S</i>				- 60		5 <i>Y</i> 40 <i>S</i>				- 60		– To reflect IACS U
L 1S	400 ~ 560	305 min.	22 min.	- 40		<u>3¥47S</u>	$\frac{570 \sim}{\underline{720}}$	<u>460 min.</u>	<u>19 min.</u>	<u>-20</u>	<u>64 min.</u>	W31(Rev.2 CR)
L 2S	440 ~ 610	345 min.	22 min.	- 60	34 min.	L 1S	$400 \sim 560$	305 min.	22 min.	- 40		
L 3S	490 ~ 660	375 min.	21 min.	- 60		L 2S	440 ~ 610	345 min.	22 min.	- 60	34 min.	
L 91S	590 min	375 min. ⁽¹⁾	25 min.	- 196	27 min.	L 3S	490 ~ 660	375 min.	21 min.	- 60		
NOTE: (1) 0.2 %	% yield stres	38				L 91S	590 min	375 min. ⁽¹⁾	25 min.	- 196	27 min.	
						NOTE: (1) 0.2 9	% yield stre	58				

		Pres	sent				Amen	dment		reason	
5. Butt w	eld test				5. Butt we						
(2) Butt (a) (c)	 (1) <omitted></omitted> (2) Butt weld tensile tests (a) ~ (b) <omitted></omitted> (c) The tensile strength of test specimen is to comply with the requirements given in Table 2.2.47. able 2.2.47 Tensile and Impact Test Requirements for Butt weld test (2017) 				(1) <sa (2) <i>Butt</i> (a) ∼ (c) T tl Table 2.2.4</sa 	n					
			Impact test					Impact test			
Grade of welding	Tensile strength	Test	Average absor	bed energy (J)	Grade of welding	Tensile		Average absor	bed energy (J)		
consumabl es	(N/mm ²)	temp. (°C)	Flat, Horizontal Overhead	Vertical upward, Vertical downward	consumabl es	strength (N/mm ²)	Test temp. (°C)	Flat, Horizontal Overhead	Vertical upward, Vertical downward		
1 <i>S</i>		20	_		1S		20				
2S	400 min.	0	_		2S 3S 1YS	400 min.	0	_			
3 <i>S</i>		- 20	_				- 20	_			
1 YS		20		34 min.			20	_			
2YS		0			5 1 11111.	2YS		0		34 min.	
3 <i>YS</i>	490 min.	- 20	47 min.		3 <i>YS</i> 4 <i>YS</i>	490 min.	- 20	- 47 min.			
4YS		- 40					- 40				
5YS		- 60			5 <i>YS</i>		- 60				
2 <i>Y</i> 40 <i>S</i>		0			2 <i>Y</i> 40 <i>S</i>		0				
3 <i>Y</i> 40 <i>S</i>	510 min.	- 20	_	39 min.	3 <i>Y</i> 40 <i>S</i>	510 .	- 20		20		
4 <i>Y</i> 40 <i>S</i>		- 40	_		4 <i>Y</i> 40 <i>S</i>	510 min.	- 40		39 min.		
5 <i>Y</i> 40 <i>S</i>		- 60			5 <i>Y</i> 40 <i>S</i>		- 60			- To reflect IACS UF	
$L \ 1S$	400 min.	- 40			<u>3Y47S</u>	<u>570 min.</u>		<u>64 min.</u>	<u>64 min.</u>	W31(Rev.2 CR)	
L 2S	440 min.	- 60	27 min.	27 min.	L 1S	400 min.	- 40				
L 3S	490 min.	- 60		27 mm.	L 2S	440 min.	- 60				
L 91S	630 min.	- 196			L 3S	490 min.	- 60	27 min.	27 min.		
					L 91S	630 min.	- 196	1			

Р	resent	Am	endment	reason
 without crack exceed of other defects, be grees over a form thickness of test sp former for <i>L</i> 91, ho of the specimen and (4) <omitted></omitted> 6. ~ 9. <omitted></omitted> 605. Electro-slag and elect 1. <omitted></omitted> 2. Grades and marks 	s are to be capable of withstanding, eding 3 mm long on the outer surface sing bent through an angle of 120 de- er having a radius of 1.5 times the ecimen. The radius and angle of the wever, are to be 2 times the thickness d 180 degrees respectively. (2017) ro-gas welding consumables e classified as specified in Table	 without crack exce of other defects, b grees over a form for <u>3Y47</u>) the thick angle of the forme the thickness of respectively. (2017) (4) <same as="" li="" present<="" the=""> 6. ~ 9. <same as="" li="" p<="" the=""> 605. Electro-slag and elec 1. <same as="" li="" present<="" the=""> 2. Grades and marks </same></same></same>	hs are to be capable of withstanding, beeding 3 mm long on the outer surface being bent through an angle of 120 de- er having a radius of 1.5 times(<u>2 times</u> cness of test specimen. The radius and er for <i>L</i> 91, however, are to be 2 times of the specimen and 180 degrees (2021) t Rules> resent Rules> tro-gas welding consumables	W31(Rev.2 CR)
Table 2.2.49 Grades and Mark	s	Table 2.2.49 Grades and Mar	ks <i>(2021)</i>	
For normal strength steel	For higher strength steel	For normal strength steel	For higher strength steel	
1V, 2V, 3V	1 <i>YV</i> , 2 <i>YV</i> , 3 <i>YV</i> , 4 <i>YV</i> , 5 <i>YV</i> 2 <i>Y</i> 40 <i>V</i> , 3 <i>Y</i> 40 <i>V</i> , 4 <i>Y</i> 40 <i>V</i> , 5 <i>Y</i> 40 <i>V</i>	1 <i>V</i> , 2 <i>V</i> , 3 <i>V</i>	1YV, 2YV, 3YV, 4YV, 5YV 2Y40V, 3Y40V, 4Y40V, 5Y40V <u>, 3Y47V</u>	
	ests I for test assemblies are to be as giv- appropriate to the kind of welding			

	Present		Amendment	reason
Table 2.2.51	Grades of Steel used for Test Assembly	Table 2.2.5	1 Grades of Steel used for Test Assembly (2021)	- To reflect IACS UR
Grade of welding material	Grade of steel used for test assembly ⁽¹⁾⁽²⁾	Grade of welding material	Grade of steel used for test assembly ⁽¹⁾⁽²⁾	W31(Rev.2 CR)
1 <i>V</i>	A		A	
2 <i>V</i>	<i>A</i> , <i>B</i> or <i>D</i>	2V	A, B or D	
3V 1YV	A, B, D or E	3V	A, B, D or E	
2 <i>YV</i>	AH 32 or AH 36 AH 32, AH 36, DH 32 or DH 36	1 <i>YV</i>	<i>AH</i> 32 or <i>AH</i> 36	
3YV	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32 or <i>EH</i> 36	2 <i>YV</i>	AH 32, AH 36, DH 32 or DH 36	
517	AH 32, AH 36, DH 32, DH 36, EH 32 61 EH 36 AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH	3 <i>YV</i>	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	
4 <i>YV</i>	32 or FH 36	4 <i>YV</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	
5 <i>YV</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	5 <i>YV</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH	
2 <i>Y</i> 40 <i>V</i>	AH 40 or DH 40	2 <i>V</i> 40 <i>V</i>	32 or <i>FH</i> 36	
3 <i>Y</i> 40 <i>V</i>	AH 40, DH 40 or EH 40	2Y40V	AH 40 or DH 40	
4 <i>Y</i> 40 <i>V</i>	AH 40, DH 40, EH 40 or FH 40	<u>3Y40V</u>	AH 40, DH 40 or EH 40	
5 <i>Y</i> 40 <i>V</i>	AH 40, DH 40, EH 40 or FH 40	4Y40V	AH 40, DH 40, EH 40 or FH 40	
NOTE:		5Y40V	AH 40, DH 40, EH 40 or FH 40	
	nsile strength of higher strength steels of $AH 32$, $DH 32$ and $FH 32$ used in the test assemblies is to be	<u>3Y47V</u>	<u>EH 47-H</u>	
(2) This is and if g be used (3) ~ (6) <0	than 490 N/mm ² . s in respect of the content of grain refining elements, general approval is required, a niobium treated steel is to for the approval tests.	$\begin{array}{c} 32, E_{1}\\ greater\\ (2) This\\ and if\\ be use\\ (3) \sim (6) < \end{array}$	tensile strength of higher strength steels of $AH 32$, DH H 32 and $FH 32$ used in the test assemblies is to be than 490 N/mm ² . is in respect of the content of grain refining elements, general approval is required, a niobium treated steel is to d for the approval tests. Same as the present Rules>	
4. Butt weld te		4. Butt weld		
 (1) <omittee< li=""> (2) Tensile tender (a) ~ (b) </omittee<>		(2) Tensile	as the present Rules> test Same as the present Rules>	

		Pre	esent						Ame	ndment	•			reason
	strength, tudinal tes quirements tensile stru- given to t into cons shown in posited mo	yield stren st specimen in Table ength is ex he approva ideration c the test res etal.	gth and R14A a 2.2.52 . I ceeded, sp I of the v of the of ults and c	elongation re to converse Where pecial convelding ther me chemical	on of omply the up onsidera consum echanica compo	A and tensile each longi- with the re- oper limit of ation will be hables, taking al properties osition of de- or Butt weld		strength, tudinal tes quirements tensile stru- given to t into cons shown in posited me 2.52 Tensile	yield stren st specimen in Table ength is ex he approva ideration of the test res etal.	gth and R14A a 2.2.52 . acceeded, sp l of the v of the of sults and c	elongati re to c Where pecial c velding ther ma chemical	on of omply the up onsider consun echanic compo	A and tensile each longi with the re oper limit of ation will b nables, taking al propertie position of de	- - f e g s
Grade		Longitud	inal Tensile	e Test	Im	npact test	Grade		Longitud	inal Tensile	Test	In	npact test	
of welding consuma bles	Tensile strength (N/mm ²)	Tensile strength (N/mm ²)	Yield strength (N/mm ²)	Elong ation (%)	Test temp (℃)	Average absorbed energy (J)	of welding consuma bles	Tensile strength (N/mm ²)	Tensile strength (N/mm ²)	Yield strength (N/mm ²)	Elong ation (%)	Test temp (℃)	Average absorbed energy (J)	- To reflect IACS UR W31(Rev.2 CR)
1 <i>V</i>					20		1 <i>V</i>					20		
2 <i>V</i>	400 min.	$400 \sim 560$	305 min.	22 min.	0		2 <i>V</i>	400 min.	$400 \sim 560$	305 min.	22 min.	0		
3 <i>V</i>					-20		3 <i>V</i>					-20		
1 <i>YV</i>					20	34 min.	1 <i>YV</i>					20	34 min.	
2 <i>YV</i>		40.0			0	J- IIIII.	2 <i>YV</i>		400			0	54 mm.	
3 YV	490 min.	490 ~ 660	375 min.	22 min.	-20		3 <i>YV</i>	490 min.	490 ~ 660	375 min.	22 min.	-20		
4 <i>YV</i>	-				-40	-	4 <i>YV</i>					-40	-	
5YV					-60		5 <i>YV</i>					-60		
2 <i>Y</i> 40 <i>V</i>	-				0		2 <i>Y</i> 40 <i>V</i>					0		
3 <i>Y</i> 40 <i>V</i>	510 min.	510 ~	400 min.	22	-20	39 min.	3 <i>Y</i> 40 <i>V</i>	510 min.	510 ~	400 min.	22	-20	39 min.	
4 <i>Y</i> 40 <i>V</i>		690		min.	-40		4 <i>Y</i> 40 <i>V</i>		690		min.	-40		
5 <i>Y</i> 40 <i>V</i>					-60		5 <i>Y</i> 40 <i>V</i>					-60		
							<u>3Y47V</u>	<u>570 min.</u>	$\frac{570 \sim}{\underline{720}}$	<u>460 min.</u>	<u>19</u> <u>min.</u>	<u>-20</u>	<u>64 min.</u>	
(3) ~	(5) <omit< td=""><td>ted></td><td></td><td></td><td></td><td></td><td>(3) ~</td><td>(5) <same< td=""><td>e as the pro</td><td>esent Rule</td><td>s></td><td>-</td><td></td><td></td></same<></td></omit<>	ted>					(3) ~	(5) <same< td=""><td>e as the pro</td><td>esent Rule</td><td>s></td><td>-</td><td></td><td></td></same<>	e as the pro	esent Rule	s>	-		
5. ~ 6.	<omittee< td=""><td>!></td><td></td><td></td><td></td><td></td><td>5. ~ 6.</td><td><same a<="" td=""><td>is the pres</td><td>sent Rule</td><td>s></td><td></td><td></td><td></td></same></td></omittee<>	!>					5. ~ 6.	<same a<="" td=""><td>is the pres</td><td>sent Rule</td><td>s></td><td></td><td></td><td></td></same>	is the pres	sent Rule	s>			

					Ame	ndm	ent			reason					
	er stre					ormal strength s for low tem-		One side steels, high perature ser	er str	ig cor ength	nsuma steel	ables s and	for no steels	ormal strength for low tem-	- To reflect IACS UI W31(Rev.2 CR)
1. \sim 2. <omi< td=""><td>tted></td><td></td><td></td><td></td><td></td><td></td><td>1.</td><td>\sim 2. <sam< td=""><td>e as t</td><td>he pre</td><td>sent l</td><td>Rules></td><td></td><td></td><td></td></sam<></td></omi<>	tted>						1.	\sim 2. <sam< td=""><td>e as t</td><td>he pre</td><td>sent l</td><td>Rules></td><td></td><td></td><td></td></sam<>	e as t	he pre	sent l	Rules>			
3. General prov	isions/	for tes	sts				3.	General prov	visions	for te	sts				
 semblies, from each sumables a (2) Steel plate en in Tab (3) ~ (8) < C 	grades a test ass are to be es to be le 2.2.5 Omitted> Kinds	embly e as gi used 6.	mber for o ven in for te	of test ne side a Table st asser	specin autom 2.2.5 mblies	nsions of test as- nens to be taken atic welding con- 5. are to be as giv- tomatic Welding		semblies, g from each sumables a (2) Steel plate en in Tab (3) ~ (8) <s< td=""><td>grades test as tre to b tes to b le 2.2. ame as Kinds</td><td>and nu sembly be as gi e used 56. the pro- c of Te</td><td>imber for o iven ir for te esent l st for</td><td>of test ne side a Table st asser Rules></td><td>specin autom 2.2.55 nblies</td><td>tomatic Welding Welding</td><td></td></s<>	grades test as tre to b tes to b le 2.2. ame as Kinds	and nu sembly be as gi e used 56. the pro- c of Te	imber for o iven ir for te esent l st for	of test ne side a Table st asser Rules>	specin autom 2.2.55 nblies	tomatic Welding Welding	
Grade of welding consumables	Weld ing techn ique	Kind of test ⁽⁴⁾	Te Nu mbe r	Thick ness (mm) (1)	nbly Dime nsion	Kind and number of test specimens taken from test assembly		Grade of welding consumables	Weld ing techn ique	Kind of test ⁽⁴⁾	Te Nu mbe r	Thick ness (mm) (1)	nbly Dime nsion	Kind and number of test specimens taken from test assembly	
1, 2, 3, 1Y, 2Y, 3Y, 4Y, 5Y, 2Y40, 3Y40, 4Y40, 5Y40, L1, L2, L3, L91				<omitt< td=""><td>ed></td><td></td><td></td><td>1, 2, 3, 1Y, 2Y, 3Y, 4Y, 5Y, 2Y40, 3Y40, 4Y40, 5Y40, <u>3Y47</u> L1, L2, L3, L91</td><td></td><td><</td><td>Same a</td><td>s the p</td><td>resent R</td><td>ules></td><td></td></omitt<>	ed>			1, 2, 3, 1Y, 2Y, 3Y, 4Y, 5Y, 2Y40, 3Y40, 4Y40, 5Y40, <u>3Y47</u> L1, L2, L3, L91		<	Same a	s the p	resent R	ules>	
test asseIn this of maximum(2) Thicknee(3) Thicknee(4) The hydrogenee	emblies n case, the n applica ss of tes ss of tes	nay be maximu ible thic t assem t assem est may	change um tes kness. bly for bly for	ed upon t thickno r one ru r multi-1	approva ess is to in techn run tech			test asse In this c maximur (2) Thickner (3) Thickner	mblies case, the n applic ss of te ss of te lrogen t	may be maxim able thist assem st assem est may	change um tes ckness. ibly fo ibly fo	ed upon t thickn r one ru r multi-1	approva ess is to in techni run techni		

	Present		reason			
Table 2.2.56 Grades	s of Steel used for Test Assembly (2017)	Table 2.2.56 Grade (2021)	- To reflect IACS UR W31(Rev.2 CR)			
Grade of welding consumables	Grade of steel used for test assembly ⁽¹⁾	Grade of welding	Grade of steel used for test assembly ⁽¹⁾	W31(Rev.2 CR)		
1	A	consumables				
2	A, B or D	1	A			
3	A, B, D or E	2	A, B or D			
1 <i>Y</i>	AH 32 or AH 36	3	A, B, D or E			
2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36	1 <i>Y</i>	AH 32 or AH 36			
2.1/	AH 32, AH 36, DH 32, DH 36, EH 32 or EH	2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36			
3 <i>Y</i>	36	3 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36			
4 <i>Y</i>	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	4 <i>Y</i>	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36			
5 <i>Y</i>	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	5 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH			
2 <i>Y</i> 40	AH 40 or DH 40		36, <i>FH</i> 32 or <i>FH</i> 36			
3 <i>Y</i> 40	AH 40, DH 40 or EH 40	2 <i>Y</i> 40	AH 40 or DH 40			
4 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	3 <i>Y</i> 40	AH 40, DH 40 or EH 40			
5 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	4 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40			
<i>L</i> 1	E or RL 235A	5 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40			
L 2	E, RL 235A, RL 235B, RL 325A or RL 325B	<u>3Y47</u>	<u>EH 47-H</u>			
<i>L</i> 3	RL 325A, RL 325B or RL 360	L 1	E or RL 235A			
L 91	<i>RL</i> 9N490	L 2	E, RL 235A, RL 235B, RL 325A or RL 325B			
NOTE:		<i>L</i> 3	RL 325A, RL 325B or RL 360			
(1) The tensile stre	ngth of higher strength steels AH 32, DH 32, EH	L 91	<i>RL</i> 9 <i>N</i> 490			
32 and <i>FH</i> 32 490 N/mm ²	used in the test assemblies is to be greater than		ength of higher strength steels AH 32, DH 32, EH used in the test assemblies is to be greater than			

		Ρ	rese	ent					Ame	endr	nent			reason
Annual ins (1) <omitte (2) The kind given in (3) <omitted></omitted></omitte 	ed> ls of tes Table 2 ed>	st, etc.		he annu	ial inspec	tion are to be as	 6. Annual insp (1) <same (2) The kind given in (3) <same< li=""> 7. <same as<="" li=""> </same></same<></same 	as the p ls of tes Table 2 as the p	oresent st, etc. 2.2.58. oresent	in th Rules	ne annual ₅ >	inspec	tion are to be a	- To reflect IACS U W31(Rev.2 CR)) s
Table 2.2.58	Kinds	of Te			-		Table 2.2.58 <i>(2021)</i>	B Kind	ls of	Test	for Anr	nual In	spection <i>(2017)</i>	
Grade of welding consumable s	Weldin g techni que	Kind of test	Nu mb er	Test asse Dime nsion	Thickn ess (mm) ⁽¹⁾	Kind and number of test specimens taken from test assembly	Grade of welding consumable s	Weldin g techni que	Kind of test	T Nu mb er	Dime	bly Thickn ess (mm) ⁽¹⁾	Kind and number of test specimens taken from test assembly	
$\begin{array}{c} 1, \ 2, \ 3, \\ 1Y, \ 2Y, \\ 3Y, \ 4Y, \\ 5Y, \\ 2 \ Y \ 4 \ 0 \ , \\ 3Y40, \\ 4 \ Y \ 4 \ 0 \ , \\ 5Y40, \\ L1, \ L2, \\ L3, \\ L91 \end{array}$	<omitted></omitted>					$ \begin{array}{c} 1, 2, 3, \\ 1Y, 2Y, \\ 3Y, 4Y, \\ 5Y, \\ 2 Y 4 0, \\ 3Y40, \\ 4 Y 4 0, \\ 5 Y 4 0, \\ 3Y47 \\ L1, L2, \\ \end{array} $		<	Same	as the pre	esent Ru	iles>		
to Not approv (2) The b to be (3) The p	te (1) of al test is outt weld carried	Table to be tests out by of notel	2.2.5 applie for or one-r h and	5, the m ed. ne-run an un techn selection	naximum n nd multi-r nique. n of impa	hanged according test thickness for un technique are ct test specimens	to Not approv (2) The b to be (3) The p	e (1) of al test is utt weld carried ositions o	Table to be tests out by of notch	2.2.55 applie for on one-ru n and	5, the may ed. e-run and in techniq	ximum 1 multi-r ue.	hanged according test thickness for run technique are ct test specimens	

- Main Amendments -

(1) Enter into force on 1 July 2021 (the date of application for certification of material & welding or the contract date for ship construction)

- To reflect IACS UR W24(Rev.4 July 2020)
- To reflect IACS UR W27(Rev.2 July 2020)
- To reflect Request for Establishment/Revision of Classification Technical Rules

		Prese	ent				reason				
CHA	\PTE	R 1	MATERI	ALS		CHA					
			on 2 <or olled Steels</or 		Sec	tion 1 \sim					
I. Rolled steels	s for h	ull struc	tural		301. F	Rolled steels	s for h	ull struc	tural		
. ∼ 2. <omitte< td=""><td>d></td><td></td><td></td><td></td><td>1.</td><td>~ 2. <same< td=""><td>as the p</td><td>present Ru</td><td>les></td><td></td><td></td></same<></td></omitte<>	d>				1.	~ 2. <same< td=""><td>as the p</td><td>present Ru</td><td>les></td><td></td><td></td></same<>	as the p	present Ru	les>		
3. Manufacturing	g proce	ess			3. 1	Manufacturing	g proc	ess			
grade are t 2.1.6. For When therm ferred to as	dation to com steel p no-mech s "TMC ie chen	ply with t lates and nanical cor P") is use nical comp	the requirement wide flats over the trolled process and as heat treat position may	composition of each nts given in Table er 50mm thick and sing (hereinafter re- atment, slight devia- be allowed as ap-		grade are 2.1.6. For When therr ferred to as	dation to com steel p no-mecl s "TMC ne chen	practice ar ply with lates and nanical cor (P") is use nical comp	nd chemical of the requireme wide flats ov ntrolled process and as heat treat position may	er 50mm thick and	Establishment/Revision of Classification Technical Rules (MET4800-427-2020)
Table 2.1.6	Deoxida	tion Pract	ice and Chem	ical Composition		Table 2.1.6	Deoxida	tion Pract	ice and Chem	nical Composition	-typo
Kinds	Grade	Thickness, t(mm)	Deoxidation Practice	Chemical Composition (%) ⁽⁵⁾		Kinds	Grade	Thickness, $t(mm)$	Deoxidation Practice	Chemical Composition (%) ⁽⁵⁾	
Normal strength steels		<omitte< td=""><td>ed></td><td></td><td></td><td>Normal strength steels</td><td><sa< td=""><td>me as the pr</td><td>esent Rules></td><td></td><td></td></sa<></td></omitte<>	ed>			Normal strength steels	<sa< td=""><td>me as the pr</td><td>esent Rules></td><td></td><td></td></sa<>	me as the pr	esent Rules>		
Higher strength steels (13)	<i>AH</i> 40 <i>DH</i> 40	t≤100	Killed and Fine grain treated	<omitted></omitted>		Higher strength steels (13)	<i>AH</i> 40 <i>DH</i> 40	t≤100	Killed and Fine grain treated	<same as="" present<br="" the="">Rules></same>	
NOTES:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
. <omitted></omitted>		<on< td=""><td>nitted></td><td></td><td>4.</td><td>- 2 - <same as="" td="" the<=""><td></td><td></td><td>e present Rules></td><td></td><td></td></same></td></on<>	nitted>		4.	- 2 - <same as="" td="" the<=""><td></td><td></td><td>e present Rules></td><td></td><td></td></same>			e present Rules>		

Present	Amendment	reason
5. Mechanical properties The mechanical properties of steels are to comply with the re-		* Request for Establishment/Revision of
quirements given in Table 2.1.7. 6. \sim 13. <omitted></omitted>	quirements given in Table 2.1.7 . 6. ~ 13. <same as="" present="" rules="" the=""></same>	Classification Technical Rules (MET4800-427-2020)
302. ~ 304. <omitted></omitted>	302. ~ 304. <same as="" present="" rules="" the=""></same>	* Match to IACS UR W11 -typo

<Present>

		Tensile te	st				Impact to	est			
						Avera	age absorb	ed energy	(1)(J)		
Grade	Yield strength	Tensile strength	Elongation ⁽⁶⁾ ($L = 5.65 \sqrt{A}$)	test			Thickness	s, t (mm)			
	(N/mm^2)	(N/mm^2)	$ \begin{pmatrix} L = 5.05 \sqrt{A} \end{pmatrix} $ $ \begin{pmatrix} \% \end{pmatrix} $	temp (℃)	t \leq	50	50 < t	\leq 70	70 < t	\leq 100	
					$L^{(2)}$	<i>T</i> (2)	<i>L</i> (2)	<i>T</i> (2)	L(2)	<i>T</i> (2)	
A				+20	-	-	(4)	(4)	(4)	(4)	
В	235 min.	400~520(3	22 min.	0 ⁽⁵⁾							
D	233 mm.)	22 111111.	-20	27 min.	20 min.	34 min.	24 min.	41 min.	27 min.	
Ε				-40							
AH 32				0							
DH 32	215	440~570	22	-20	31 min.	22 min.	20	26 min.	46 min.	31 min.	
<i>EH</i> 32	- 315 min.	440~370	22 min.	-40	51 11111.	22 11111.	38 min.	20 mm.	40 mm.	31 min.	
FH 32				-60							
<i>AH</i> 36				0							
DH 36		100 (20	o1 ·	-20			44 .		50 .		
<i>EH</i> 36	355 min.	490~630	21 min.	-40	34 min.	24 min.	41 min.	27 min.	50 min.	34 min.	
FH 36				-60							
<i>AH</i> 40				0							
<i>DH</i> 40	1			-20							
<i>EH</i> 40	390 min.	510~660	20 min.	-40	39 min.	26 min.	46 min.	31 min.	55 min.	37 min.	
<i>FH</i> 40	-			-60							

Table 2.1.7 Mechanical Properties

NOTE:

(1) When the absorbed energy of two or more test specimens among a set of test specimens is less in value than the specified average absorbed energy or when the absorbed energy of a single test specimen is less in value than 70 % of the specified average absorbed energy, the test is considered to be failed.

(2) L (or T) denotes that the longitudinal axis of the test specimen is arranged parallel (or transverse) to the final direction of rolling.

(3) For all thickness of Grade A section, the upper limit of the specified tensile strength, may be exceeded.

(4) For Grade A steel over 50 mm in thickness with ARS or CRS heat treatment, impact tests are required. In this case, the average absorbed energy is to comply with the requirements of Grade B steel.

(5) For Grade B steels up to 25 mm in thickness, generally no impact testing is required.

(6) The minimum elongation for $R \ 1B$ test specimen (L=200mm) is to be in compliance with the requirement given in the Table below.

Thickness t								
(mm)	$3 \le t \le 5$	$5 \le t \le 10$	$10 < t \le 15$	$15 < t \le 20$	$20 \le t \le 25$	$25 < t \le 30$	$30 < t \le 40$	$40 < t \leq \underline{100}$
Grade								
A, B, D, E,								
AH 32, DH 32, EH 32,	14	16	17	18	19	20	21	22
FH 32								
AH 36, DH 36, EH 36,	13	15	16	17	18	19	20	21
FH 36	15	15	10	1 /	10	19	20	21
AH 40, DH 40, EH40,	12	14	15	17	17	18	10	20
FH 40	12	14	15	16	1 /	18	19	20

<Amendment>

		Tensile te	st				Impact to	est		
						Aver	age absorb	ed energy	(1)(J)	
Grade	Yield	Lionguiton		test			Thickness	s, t (mm)		
	(N/mm^2)	(N/mm^2)	$(L = 5.65 \sqrt{A})$ (%)	temp (℃)	$t \leq$	50	50 < t	\leq 70	70 < t	\leq 100
					$L^{(2)}$	T(2)	L(2)	<i>T</i> (2)	L(2)	<i>T</i> (2)
Α				+20	-	-	(4)	(4)	(4)	(4)
В	235 min.	400~520(3	22 min.	0 ⁽⁵⁾						
D	255 mm.)	22 mm.	-20	27 min.	20 min.	34 min.	24 min.	41 min.	27 min.
Ε				-40						
AH 32				0						
DH 32	215	440 570	22 ·	-20	21 .	22 min.	20 .	26	AC .	21
<i>EH</i> 32	315 min.	440~570	22 min.	-40	31 min.	22 111111.	38 min.	26 min.	46 min.	31 min.
FH 32				-60						
<i>AH</i> 36				0						
DH 36		100 500		-20						
<i>EH</i> 36	355 min.	490~630	21 min.	-40	34 min.	24 min.	41 min.	27 min.	50 min.	34 min.
FH 36				-60						
AH 40				0						
DH 40				-20						
<i>EH</i> 40	390 min.	510~660	20 min.	-40	39 min.	26 min.	46 min.	31 min.	55 min.	37 min.
<i>FH</i> 40				-60						

Table 2.1.7 Mechanical Properties

NOTE:

(1) When the absorbed energy of two or more test specimens among a set of test specimens is less in value than the specified average absorbed energy or when the absorbed energy of a single test specimen is less in value than 70 % of the specified average absorbed energy, the test is considered to be failed.

(2) L (or T) denotes that the longitudinal axis of the test specimen is arranged parallel (or transverse) to the final direction of rolling.

(3) For all thickness of Grade A section, the upper limit of the specified tensile strength, may be exceeded.

(4) For Grade A steel over 50 mm in thickness with ARS or CRS heat treatment, impact tests are required. In this case, the average absorbed energy is to comply with the requirements of Grade B steel.

(5) For Grade B steels up to 25 mm in thickness, generally no impact testing is required.

(6) The minimum elongation for $R \ 1B$ test specimen (L=200mm) is to be in compliance with the requirement given in the Table below.

Thickness t								
(mm)	$3 \le t \le 5$	$5 \le t \le 10$	$10 < t \le 15$	$15 < t \le 20$	$20 < t \le 25$	$25 < t \le 30$	$30 < t \le 40$	$40 < t \leq \underline{50}$
Grade								
A, B, D, E,								
AH 32, DH 32, EH 32,	14	16	17	18	19	20	21	22
FH 32								
AH 36, DH 36, EH 36,	13	15	16	17	18	19	20	21
FH 36	15	15	10	1 /	10	19	20	21
AH 40, DH 40, EH40,	12	14	15	16	17	18	10	20
FH 40	12	14	15	10	1/	18	19	20

					Ρι	resent					Amendment								reason			
805. Roll	led sta	ainl	ess	s st	eels	;					305. Roll	ed sta	inle	ess	ste	els						
1. ~ 3	. <om< td=""><td>ittec</td><td> ></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1. ~ 3</td><td>. <sam< td=""><td>e as</td><td>s th</td><td>e pr</td><td>esen</td><td>t Rules></td><td></td><td></td><td></td><td></td><td></td></sam<></td></om<>	ittec	>								1. ~ 3	. <sam< td=""><td>e as</td><td>s th</td><td>e pr</td><td>esen</td><td>t Rules></td><td></td><td></td><td></td><td></td><td></td></sam<>	e as	s th	e pr	esen	t Rules>					
4. Chemical composition									4. Chemical composition													
The	The chemical composition of steels is to comply with the re- quirements given in Table 2.1.19 . The chemical composition of steels is to comply with the re- quirements given in Table 2.1.19 .								>-													
Table 2.1.19 Grades and Chemical Composition of Stainless Table 2.1.19 Grades and Chemical Composition of Stainless Steels (2020) Steels (2020) (2021)										* Request for Establishment/Revision of Classification Technical Rule (MET4800-279-2020)												
G 1					Cher	nical con	position	(%)								Chen	nical com	position ((%)			$(\text{ME I } 4800^{-279-2020})$
Grade	C	S	M	P	S	Ni	Cr	Mo	N	Other s	Grade	C	Si	Mr	P	S	Ni	Cr	Mo	N	Other s	- ASTM A240(S30403)
<i>RSTS</i> 304	0.08 max.		2. 00			8.00~ 10.50					<i>RSTS</i> 304	0.08 max.		2. 00			8.00~ 10.50					Ni : 8~12
RSTS 304L	0.030 max.	1. 00 m		0.0 40		15.00	18.00~	_	-		RSTS 304L	0.030 max.	1. 00 m			0.0 30	$\frac{8.00}{13.00} \sim$	18.00~	_	-		
<i>RSTS</i> 304 <i>N</i> 1	0.08 max.	ax	2. 50 m ax			7.00~ 10.50	20.00		0.10~ 0.25		<i>RSTS</i> 304 <i>N</i> 1	0.08 max.	ax	2. 50 m ax	ma x.	ma x.	7.00~ 10.50	20.00		0.10~ 0.25		
					<	<omitted< td=""><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td><s< td=""><td>ame</td><td>as</td><td>the prese</td><td>ent Rule</td><td>s></td><td>1</td><td></td><td></td></s<></td></omitted<>	>							<s< td=""><td>ame</td><td>as</td><td>the prese</td><td>ent Rule</td><td>s></td><td>1</td><td></td><td></td></s<>	ame	as	the prese	ent Rule	s>	1		
5. ~ 1 06. ~ (>						5. ~ 1 306. ~ 3					-			es>			

			Presen	t					1	Amendmo	ent			reason
	Sec	tion 4	Steel Tub	bes and	Pipes			Sec						
	<omitte< td=""><td></td><td>essure pipi</td><td>na</td><td></td><td></td><td></td><td><same Steel pip</same </td><td></td><td></td></omitte<>		essure pipi	na				<same Steel pip</same 						
1. ~	_	-						- 2 . <sa< td=""><td></td><td>* Request for</td></sa<>		* Request for				
								eat treat		present reale				Establishment/Revision of Classification Technical Rules
3. Heat treatment The heat treatment of steel pipes is to comply with the require ments given in Table 2.1.53 .								The heat t lents given			is to comp	ly with	the require-	(MET4800-284-2020)
Table 2.1.53 Heat treatment									Seamless	s steel pipe	Electric-res	sistance v pipe	welded steel	
G	Grade Electric-resistance welded stee				velded steel	G	rade	Hot	Cold drawn	As drawn	Hot	Cold		
0	luue	Hot finished	Cold drawn	As drawn	Hot finishe d	Cold finished	Grade	<i>RST</i> 138	finished			d As	finished	
Grade	<i>RST</i> 138 <i>RST</i> 142		Annealed	As drawn	As drawn	Annealed	1	RST 142		Annealed Low tem-	As drawn	drawn	Annealed	
1	RST 142 RST 238	As drawn	Low tem- perature		diawii		Grade	RST 238 RST 242	As drawn	perature annealed		-		
Grade 2	<i>RST</i> 242		annealed or		-		2	RST 249		or Normalized				
	RST 249		Normalized	-	1	-	-			Low tem-	Low tem- perature		Low tem- perature	
Grade	<i>RST</i> 338 <i>RST</i> 342	As drawn	Low tem- perature annealed or	Low tem- perature annealed or Normalize	As drawn	Low tem- perature annealed or Normalize	Grade 3	<i>RST</i> 338 <i>RST</i> 342	As drawn	perature annealed or Normalized	annealed or Normalize d	As drawn	annealed or Normalize d	
			Normalized	d		d	-	<i>RST</i> 349				-		
	RST 349			-	-		NOTE:		the present	Rules>				
	<omitted></omitted>							In the case		2 & Grade 3, d if necessary.		ture anne	aled or nor-	* To reflect KS D 3564
4. ∼ 9. <omitted> 403. ∼ 405. <Omitted></omitted>										present Rule		>		

Present	Amendment	reason
Section 5 Castings	Section 5 Castings	
501. \sim 504. <omitted> 505. Stainless steel casting for propeller</omitted>	501. \sim 504. <same as="" present="" rules="" the=""> 505. Stainless steel casting for propeller</same>	* Request for Establishment/Revision of Classification Technical Rules (MET4800-110-2020)
 Application These requirements are applicable to the manufacture of stainless steel casting(hereinafter referred to as "steel propeller casting") for propellers, blades and bosses. These requirements may also be used for the repair of propellers damaged in service, subject to prior agreement with the Society. [See Guidance] Steel propeller castings having characteristics differing from those specified in 505. are to comply with the requirements in 101. 2. 	 spection and repair procedures of stainless steel casting(here-inafter referred to as "steel propeller casting") for propellers, blades and bosses. These requirements may also be used for the repair of propellers damaged in service, subject to prior agreement with the Society. [See Guidance] (2) Steel propeller castings having characteristics differing from those specified in 505. are to comply with the requirements in 101. 2. 	- To reflect IACS UR W27(Rev.2, July 2020)
2. Kinds	2. Kinds	
Steel propeller castings are classified as specified in Table 2.1.80 .	Steel propeller castings are classified as specified in Table 2.1.80 .	
3. Chemical composition Chemical composition is classified as specified in Table 2.1.80. (1) \sim (2) <new></new>	 3. Chemical composition (2021) (1) Chemical composition is classified as specified in Table 2.1.80. Cast steel whose chemical composition deviate from the typical values of Table 2.1.80 must be specially approved by the Society. (2) The manufacturer is to maintain records of the chemical analyses of the production casts, which are to be made available to the Surveyor so that he can satisfy himself that the chemical composition of each casting is within the specified limits. 	
Table 2.1.80 <omitted></omitted>	Table 2.1.80 <same as="" present="" rules="" the=""></same>	
4. <omitted></omitted>	4. <same as="" present="" rules="" the=""></same>	

		Pre	esent					Amer	ndment	t		reason
(1) T c o	able 2.1.81	cal properti These valu ntegrally ca	ues refer ast test b	to the test	requirements in t specimens ma- d to the hub or		hanical prop The mechanic Table 2.1.81 hined from i on the blade. ordance with .81 Mechanic	- r				
		Tensile			Impact test			Tensile	test		Impact test	
Types	Yield strength (¹⁾ (N/mm ²)	Tensile strength (N/mm ²)	Elongat ion (%)	Reduction area (%)	Average absorbed energy (J) (³⁾	Types	Yield strength (¹⁾ (N/mm ²)	Tensile strength (N/mm ²)	Elongat ion (%)	Reduction area (%)	Average absorbed energy (J) (³⁾	
12 <i>Cr</i> 1 <i>Ni</i>	440 Min.	590 Min.	15 Min.	30 Min.	20 Min.	12Cr 1Ni	440 Min.	590 Min.	15 Min.	30 Min.	20 Min.	
13 <i>Cr</i> 4 <i>Ni</i>	550 Min.	750 Min.	15 Min.	35 Min.	30 Min.	13Cr 4Ni	550 Min.	750 Min.	15 Min.	35 Min.	30 Min.	
16 <i>Cr</i> 5Ni	540 Min.	760 Min.	15 Min.	35 Min.	30 Min.	16Cr 5Ni	540 Min.	760 Min.	15 Min.	35 Min.	30 Min.	
19 <i>Cr</i> 11Ni	180 Min.(²⁾	440 Min.	30 Min.	40 Min.	-	19 <i>Cr</i> 11Ni	180 Min.(²⁾	440 Min.	30 Min.	40 Min.	-	
(2) 1.0 (3) No	(Grade ID). F	gth is min. 2 r general se	rvice and	the lowest	Ice class nota- are to be made	(2) 1.0 (3) No	(Grade ID). F	gth is min. 2 general se	rvice and	the lowest	Ice class nota- are to be made	

 6. <omitted></omitted> 7. <new></new> 6. <same as="" present="" rules="" the=""></same> 7. Quality of castings (2021) (1) All castings are to have a workmanlike finish and are to be free from imperfections defects which would be prejudicial to their proper application in service. (2) Minor casting defects which may still be visible after machining such as small sand and slag inclusions, small cold shuts and scabs shall be trimmed off by the manufacturer in accordance with 10 (3) Casting defects which may impair the serviceability of the castings, e.g. major non-metallic inclusions, shrinkage cavities, blow holes and cracks, are not permitted. They may be removed by one of the methods described in 10. and repaired
 (1) All castings are to have a workmanlike finish and are to be free from imperfections defects which would be prejudicial to their proper application in service. (2) Minor casting defects which may still be visible after machining such as small sand and slag inclusions, small cold shuts and scabs shall be trimmed off by the manufacturer in accordance with 10 (3) Casting defects which may impair the serviceability of the castings, e.g. major non-metallic inclusions, shrinkage cavities, blow holes and cracks, are not permitted. They may be re-
 7. Surface and dimension inspection Steel propeller castings are to be free from cracks, hot tears or other imperfections which, due to their nature, degree or extent, will interfere with the use of the castings. Steel propeller castings are to be free from cracks, hot tears or other imperfections which, due to their nature, degree or extent, will interfere with the use of the castings. The dimensions are the responsibility of the manufacturer and the report on the dimensional inspection is to be handed over to the Surveyor, who may require checks to be made in his presence. Steel propeller castings are to be free from cracks, hot tears or other imperfections which, due to their nature, degree or extent, will interfere with the use of the castings. The dimensiona are the responsibility of the manufacturer and the report on the dimensional inspection is to be handed over to the Surveyor, who may require checks to be made in his presence. The report on the dimensional inspection is to be handed over to the Surveyor, who may require checks to be made in his presence.

Present	Amendment	reason
8. Non-destructive inspection	9. Non-destructive inspection	
$\begin{array}{ll} (1) & < \text{Omitted} \\ (2) & < \text{New} \end{array}$	 (1) <same as="" present="" rules="" the=""></same> (2) Qualification of personnel involved in NDT is in accordance with Appendix Pt B 1.4, 1.5 and 1.9 of Guidance for Approval of Service Suppliers. (2021) 	
 (2) The division of severity zones of steel propeller casting is to be in accordance with the Guidance relating to Rules specified by the Society. [See Guidance] (3) Where serious doubt exists that the castings are not free from internal defects, further non-destructive inspections are to be carried out upon request of the Surveyor, e.g. radiographic and/or ultrasonic tests. The acceptance criteria are then to be agreed between the manufacturer and the Society. (4) The foundry is to maintain records of inspections traceable to each propeller casting. These records are to be reviewed by the Surveyor. The foundry is also to provide the Surveyor with a statement confirming that non-destructive tests have 	 (3) The division of severity zones of steel propeller casting is to be in accordance with the Guidance relating to Rules specified by the Society. [See Guidance] (4) Where serious doubt exists that the castings are not free from internal defects, further non-destructive inspections are to be carried out upon request of the Surveyor, e.g. radiographic and/or ultrasonic tests. The acceptance criteria are then to be agreed between the manufacturer and the Society. (5) The foundry is to maintain records of inspections traceable to each propeller casting. These records are to be reviewed by the Surveyor. The foundry is also to provide the Surveyor with a statement confirming that non-destructive tests have 	
been carried out with satisfactory results. 9. Repair of defects	been carried out with satisfactory results. 9. Repair of defects	
 In general the repairs are to be carried out by mechanical means, e.g. by grinding or milling. Where the steel propeller castings from which defects where removed are used in that condition, the steel propeller castings are to be approved by the Surveyor. The resulting grooves are to be blended into the surrounding surface so as to avoid any sharp contours. Complete elimination of the defective material is to be verified by liquid penetrant testing. Weld repairs are to be undertaken only when they are considered to be necessary and have prior approval of the Surveyor. Welds having an area less than 5 cm² are to be avoided. The repair welding procedures are to have prior approval of the Surveyor in accordance with the Guidance relating to the Rules specified by the Society. [See Guidance] All weld repairs are to be documented by means of sketches or photographs showing the location and major dimensions of 	 In general the repairs are to be carried out by mechanical means, e.g. by grinding, chipping or milling. Where the steel propeller castings from which defects where removed are used in that condition, the steel propeller castings are to be approved by the Surveyor. (2021) The resulting grooves are to be blended into the surrounding surface so as to avoid any sharp contours. Complete elimination of the defective material is to be verified by liquid penetrant testing, or magnetic particle testing if applicable. (2021) Weld repairs are to be undertaken only when they are considered to be necessary and have prior approval of the Surveyor. Welds having an area less than 5 cm² are to be avoided. The repair welding procedures are to have prior approval of the Surveyor in accordance with the Guidance relating to the Rules specified by the Society. [See Guidance] The foundry is to maintain records of inspections, welding, and any subsequent heat treatment, traceable to each casting. 	
the grooves prepared for welding. The documentation is to be presented to the Surveyor prior to repair welding.	and any subsequent heat treatment, traceable to each casting. Before welding is started, full details of the extent and loca- tion of the repair, the proposed welding procedure, heat treat- ment and subsequent inspection procedures are to be sub- mitted to the Society for approval. (2021)	

Present	Amendment	reason
<u>10.</u> Retest procedure	11. Retest procedure	
Where the results of tensile tests fail to meet the requirements, additional test may be carried out in accordance with the requirements of 109 .	Where the results of tensile tests fail to meet the requirements, additional test may be carried out in accordance with the requirements of 109 .	- To reflect IACS UR
<u>11.</u> Marking	<u>12.</u> Marking <i>(2021)</i>	W27(Rev.2, July 2020)
Steel propeller castings which have satisfactorily complied with the required tests are to be marked with the identification mark in accordance with the requirements in 110 . (<u>1</u>) ~ (<u>2</u>) \leq New>		
12. Test certificates (2017)	13. Test certificates (2017)	
The manufacturer is to provide the Surveyor with an inspection certificate giving the following particulars for each casting which has been accepted:		
 Purchaser's name and order number Vessel identification, where known Description of the casting with drawing number Diameter, number of blades, pitch, direction of turning Skew angle for high skew propellers Final mass Alloy type, heat number and chemical composition Casting identification number Details of time and temperature of heat treatment Results of non-destructive tests, where applicable 	 Purchaser's name and order number Vessel identification, where known Description of the casting with drawing number Diameter, number of blades, pitch, direction of turning Skew angle for high skew propellers Final weight Alloy type, heat number and chemical composition Casting identification number Details of time and temperature of heat treatment Results of the mechanical tests Results of non-destructive tests and details of test procedure where applicable (2021) 	
505. \sim 507. <omitted></omitted>	505. \sim 507. <same as="" present="" rules="" the=""></same>	

Present							Amendment								reason									
		Se	ectio	n 6	Ste	el F	orgi	ngs						S	ecti	on 6	S SI	eel	Forg	ings	5			
)1. Ste	el fo	rging	S									601. S	teel f	orgin	gs									
1. ~	4. <(Omitte	d>									1. \sim 4. <same as="" present="" rules="" the=""></same>									* Request for			
5. Che	emical	com	posi	tion								5. C	hemic	al co	mpos	ition								Establishment/Revision of
(1) The chemical composition of steel forgings is to complexit with the requirements given in Table 2.1.85.Table 2.1.85 Chemical Composition (2017)					omply		 (1) The chemical composition of steel forgings is to comp with the requirements given in Table 2.1.85. Table 2.1.85 Chemical Composition (2017) (2021) 								comply	Classification Technical Rules (MET4800-553-2020)								
				(Chemic	al con	npositi	on (%)							(Chemi	cal con	npositi	on (%	b)			
Steel	type	С	Si	Mn	Р	S	Cr	Мо	Ni	Cu(³⁾	Total residu al	Steel	type	С	Si	Mn	Р	s	Cr	Мо	Ni	Cu(³⁾	Total residu al	
Hull and General	Carbon steel	0.23 ⁽¹⁾⁽²) max.	0.45 max.	0.30- 1.50	0.035 max.	0.035 max.	0.30 ⁽³⁾ max.	0.15 ⁽³⁾ max.	0.40 ⁽³⁾ max.	0.30 max.	0.85 max.	Hull and General	Carbon steel	0.23 ⁽¹⁾⁽²) max.	0.45 max.	0.30- 1.50	0.035 max.	0.035 max.	0.30 ⁽³⁾ max.	0.15 ⁽³⁾ max.	0.40 ⁽³⁾ max.	0.30 max.	0.85 max.	
purpose steel forging(⁵⁾	Alloy steel	(4)	0.45 max.	(4)	0.035 max.	0.035 max.	(4)	(4)	(4)	0.30 max.	-	purpose steel forging ⁽ ⁴⁾	Alloy steel	<u>0.23</u> <u>max.</u>	0.45 max.	<u>0.30-</u> <u>1.00</u>	0.035 max.	0.035 max.	<u>0.40⁽⁶⁾</u> <u>min.</u>	<u>0.15⁽⁶⁾</u> <u>min.</u>	$\frac{0.40^{(6)}}{\text{min.}}$	0.30 max.	-	-Chemical composition
Machin ery	Carbon steel	0.65 ⁽¹⁾ max.	0.45 max.	0.30- 1.50	0.035 max.	0.035 max.	0.30 ⁽³⁾ max.	0.15 ⁽³⁾ max.	0.40 ⁽³⁾ max.	0.30 max.	0.85 max.	Machin ery	Carbon steel	0.65 ⁽¹⁾ max.	0.45 max.	0.30- 1.50	0.035 max.	0.035 max.	0.30 ⁽³⁾ max.	0.15 ⁽³⁾ max.	0.40 ⁽³⁾ max.	0.30 max.	0.85 max.	values are defined based on the approval
steel forging	Alloy steel(⁶⁾	0.45 max.	0.45 max.	0.30- 1.00	0.035 max.	0.035 max.	0.40 <u>(7)</u> min.	0.15 <u>(7)</u> min.	0.40 <u>(7)</u> min.	0.30 max.	-	steel forging	Alloy steel(5 ⁾		0.45 max.	0.30- 1.00	0.035 max.	0.035 max.	0.40 <u>(6)</u> min.	0.15 <u>(6)</u> min.	0.40 <u>(6)</u> min.	0.30 max.	-	results.
(4) S (5) R (6) W pr (7) O	(3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3) < (3)	tion is stocks illoy s chemi more c	to be and p teel fo cal co of the	intles orgings omposit elemen	should are in tion is	be of ntende subjec	welda d for t to aj	weldec pprova	l const l by th	ne Soc	iety.	$ \begin{array}{c} \underline{(4)} \\ \underline{(4)} \\ \underline{(5)} \\ \underline{(5)} \\ \underline{(6)} \\ \underline{(6)}$	S: (3) < <Delete (2)Udder $=(2)$ Vhere $=(3)(3)$	<u>d></u> stocks illoy s chemi more c	and p teel fo cal co of the	intles orgings mposit elemen	should are i ion is nts is	be of ntende subjec to com	d for at to ago aply w	welded pprova	d cons l by th	he Soc	iety.	
	8. <(-15								6. ~	8. <	Same	as tl	ne pre	esent	Rules>	>					
2. ~	604.	<0	mitte	d>								602. ~	604	. <\$	Same	as t	the p	resei	nt Ru	lles>				

	reason
ind Copper Alloy	* Request for Establishment/Revision of
les>	Classification Technical Rule (MRD4800-110-2020)
	- To reflect IACS UR
	W24(Rev.4, July 2020)
apply to the <u>manufacture</u> , <u>es of</u> copper alloy castings to peller blades (hereinafter refer Also, upon special considerat ements may also be applied of propellers becoming damag cel used for important parts differ are to comply with the requi hereto. The tests and inspection in the presence of the Survey are given in connection with racteristics differing from the pomply with the requirements classified as specified in Tal	be red on for ged ing re- ons vor the ose in
Grade	
1 <i>CU</i> 1	
	_
	_
	_
• 3	e 2 CU 2 e 3 CU 3 e 4 CU 4

Present	Amendment	reason
3. <omitted></omitted>	3. <same as="" present="" rules="" the=""></same>	
4. Chemical composition	4. Chemical composition	
 The chemical composition of propeller castings is to comply with the requirements given in Table 2.1.99. 	(1) The chemical composition of propeller castings is to comply with the requirements given in Table 2.1.99 .	- To reflect IACS UR
Table 2.1.99 Chemical Composition -{%}	Table 2.1.99 Chemical Composition	W24(Rev.4, July 2020)
Grade Cu Al Mn Zn Fe Sn Ni Pb	Grade Cu(%) Al(%) Mn(%) Zn(%) Fe(%) Sn(%) Ni(%) Pb(%)	
CU152~62 $0.5~3.$ $0.5~4.$ $35~40$ $0.5~2.$ 1.5 1.0 0.5 0 0 0 5 max $max.$ $max.$	CU152~62 $0.5~3.$ 0 $0.5~4.0$ $35~40$ $0.5~2.$ 5 1.5 max 1.0 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CU250~57 $0.5~2.$ 0 $1.0~4.0$ $33~38$ $0.5~2.$ 5 1.5 max $3.0~8.$ 0 0.5 max.	
$CU3$ $77 \sim 82$ $7.0 \sim 11$ $0.5 \sim 4.$ 1.0 $2.0 \sim 6.$ 0.1 $3.0 \sim 6.$ 0.03 $.0$ 0 max. 0 max. 0 max.	CU377~827.0~11 .00.5~4.01.0 max.2.0~6.0.1 max.3.0~6.0.03 max.	
$CU4$ 70~80 $6.5\sim9.$ $8.0\sim20$ 6.0 $2.0\sim5.$ 1.0 $1.5\sim3.$ 0.05 0 0 0 $max.$ 0 $max.$ 0 $max.$	$CU4$ 70~80 $6.5\sim9.$ $8.0\sim20.$ 6.0 $2.0\sim5.$ 1.0 $1.5\sim3.$ 0.05 0 0 $max.$ 0 $max.$ 0 $max.$	
 (2) <- <new></new> (2) For CU1 and CU2, it is also to comply with the followings: (a) The zinc equivalent as specified below is not to exceed 45 % Zinc equivalent = 100 - 100 × Cu(%)/100 + A Where A : Sn + 5Al - 0.5Mn - 0.1Fe - 2.3Ni (%) (b) <new></new> (b) Each tensile test specimen is to be examined metalographically, and the proportion of alpha-phase determined from an average of five counts is not to be less than 25 %. 5. ~ 6. <omitted></omitted> 	 (2) The manufacturer is to maintain records of the chemical analyses of the production casts, which are to be made available to the Surveyor. (2021) (3) For CU1 and CU2, it is also to comply with the followings: (a) The zinc equivalent as specified below is not to exceed 45 % Zinc equivalent = 100 - 100 × Cu(%)/100 + A Where A : Sn + 5Al - 0.5Mn - 0.1Fe - 2.3Ni (%) (b) The micro structure is to be verified by determining the proportion of alpha phase. For this purpose, at least one specimen is to be taken from each heat. The proportion of alpha phase is to be determined as the average value of 5 counts. (2021) (c) Each tensile test specimen is to be examined metalographically, and the proportion of alpha-phase determined from an average of five counts is not to be less than 25 %. 5. ~ 6. 5. Same as the present Rules> 	

	Amendment	reason
 7. Surface and dimension Inspection Propeller casting is to be subjected to a comprehensive visual inspection by the Surveyor at final process and other proper processing stages if necessary. (2) (2) (2) (2) (2) (3) The Surveyor may be require areas to be etched (e.g. by iron chloride) for the purpose of investigating weld repairs. 8. Quality	 7. Surface and dimension Inspection All finished castings are to be 100% visually inspected by the manufacturer. A general visual examination is to be carried out by the Surveyor. (2021) (2) Castings are to be free from cracks, hot tears or other imperfections which, due to their nature, degree or extent, will interfere with the use of the castings. (2021) (3) <same as="" present="" rules="" the=""></same> (4) The Surveyor may be require areas to be etched (e.g. by iron chloride) for the purpose of investigating weld repairs. 8. Quality 	- To reflect IACS UR W24(Rev.4, July 2020)
All castings must have a workman like finish and must be free from defects liable to impair their use. Minor casting defects which may still be visible after machining such as small sand and slag inclusions, small cold shuts and scabs shall be trimmed off by the manufacturer.	All castings must have a workman like finish and must be free from defects liable to impair their use. Minor casting defects which may still be visible after machining such as small sand and slag inclusions, small cold shuts and scabs shall be trimmed off by the manufacturer_in accordance with 10 . (5).	
9. Non-destructive inspection	9. Non-destructive inspection	
 (1) The important parts of propeller castings are to be subjected to the liquid penetrant test in accordance with the Guidance relating to Rules specified by the Society. [See Guidance] (2) <new></new> (2) The division of severity zones of propeller casting is to be in accordance with the Guidance relating to Rules specified by the Society. [See Guidance] (3) Where serious doubts exist that the castings are not free 	 The important parts of propeller castings are to be subjected to the liquid penetrant test in accordance with the Guidance relating to Rules specified by the Society. [See Guidance] Qualification of personnel involved in NDT is in accordance with Appendix Pt B 1.4, 1.5 and 1.9 of Guidance for Approval of Service Suppliers. (2021) The division of severity zones of propeller casting is to be in accordance with the Guidance relating to Rules specified by the Society. [See Guidance] When required by the Society or when deemed necessary by 	
from internal defects, further nondestructive inspections are to be carried out upon request of the Surveyor, e.g. radiographic and/or ultrasonic tests. For this purpose, the acceptance cri- teria are to be agreed between the manufacturer and the Society in accordance with a recognized standard. (4) All defects requiring welding repair on the propeller castings are to be documented preferably on drawings or special sketches showing their dimensions and locations. Furthermore, the inspection procedure is to be reported. The documentation is to be presented to the Surveyor prior to any repair weld- ings will be carried out.	 the manufacturer, further nondestructive testing(e.g. radio-graphic and/or ultrasonic testing) are to be carried out. The acceptance criteria or applied quality levels are to be agreed between the manufacturer and the Society in accordance with a recognized standard. (2021) (5) All defects requiring welding repair on the propeller castings are to be documented preferably on drawings or special sketches showing their dimensions and locations. Furthermore, the inspection procedure is to be reported. The documentation is to be presented to the Surveyor prior to any repair weldings will be carried out. 	

Present	Amendment	reason
10. Repair of defects	10. Repair of defects	
 In the event of finding defects in the propeller castings, the defects may be removed by grinding, etc. After removing the defects, liquid penetrant tests are to be carried out to ensure that all defects have been completely removed. Where the propeller castings from which defects where removed are used in that condition or after repaired by welding, the propeller castings are to be approved by the Surveyor. After weld repairs, the portions repaired by welding are to be subjected to the stress-relieving treatments. It is to be confirmed that the portions repaired by welding are free from harmful defects by the non-destructive inspections such as liquid penetrant test, etc. The repair welding procedures are to have prior approval of the Surveyor in accordance with the Guidance relating to the Rules specified by the Society. [See Guidance] 	(6) The foundry is to maintain records of inspections, welding, and any subsequent heat treatment, traceable to each casting. Before welding is started, full details of the extent and loca- tion of the repair, the proposed welding procedure, heat treat- ment and subsequent inspection procedures are to be sub- mitted to the Society for approval. (2021)	- To reflect IACS UR W24(Rev.4, July 2020)
11. <omitted></omitted>	11. <same as="" present="" rules="" the=""></same>	
12. <u>Marking</u> (1) <new></new>	12. <u>Identification and Marking</u> (1) The manufacturer is to adopt a system for the identification	
 (1) Prior to final inspection by the Surveyor each casting shall be marked by the manufacturer at least with the following symbols: (a) ~ (c) <omitted></omitted> (d) Specimen number (e) Date of final inspection (f) Number of the Society's test certificate (g) Ice class symbol, where applicable (h) Skew angle for high skew propellers. (i) Manufacturer's certificate 	of all castings, which enable the material to be traced to its original cast. The Surveyor is to be given full facilities for so tracing the castings when required. (2) Each finished casting propeller shall be marked by the man- ufacturer at least with the following particulars: (a) ~ (c) <same as="" present="" rules="" the=""> (d) <deleted> (d) Date of final inspection (e) Number of the Society's test certificate (f) Ice class symbol, where applicable (g) Skew angle for high skew propellers.</deleted></same>	

Present	Amendment	reason
3. <new></new>	13. Test certificates	- To reflect IACS UR W24(Rev.4, July 2020)
 (2) For each propeller the manufacturer <u>must_supply</u> to the Surveyor a certificate containing the following details: (a) Purchaser and order number (b) Shipbuilding project number, if known (c) Description of the casting with drawing number (d) Diameter, number of blades, pitch, direction of turning (e) Grade of alloy and chemical composition of each heat (f) Heat or casting number (g) Final weight (h) Results of non-destructive tests and details of test procedure where applicable (i) Portion of alpha-structure for CU 1 and CU 2 alloys (j) Results of the mechanical tests (k) Casting identification No. (l) Skew angle for high skew propellers 	 For each propeller the manufacturer is to supply to the Surveyor a certificate containing the following details: (1) Purchaser and order number (2) Shipbuilding project number, if known (3) Description of the casting with drawing number (4) Diameter, number of blades, pitch, direction of turning (5) Grade of alloy and chemical composition of each heat (6) Heat or casting number (7) Final weight (8) Results of non-destructive tests and details of test procedure where applicable (9) Portion of alpha-structure for CU 1 and CU 2 alloys (10) Results of the mechanical tests (11) Casting identification No. (12) Skew angle for high skew propellers 	

			Presen	t						Α	mendme	ent			reason
Alum		ection 8 alloys	Alumir	nium Allo	ys		Section 8 Aluminium Alloys 801. Aluminium alloys							* Request for Establishment/Revision of Classification Technical Rules	
~ 4.	<omi< th=""><th>tted></th><th></th><th></th><th></th><th></th><th></th><th>1. ~ 4</th><th>. <sam< th=""><th>e as the p</th><th>resent Rules</th><th>s></th><th></th><th></th><th>(MET4800-336-2020)</th></sam<></th></omi<>	tted>						1. ~ 4	. <sam< th=""><th>e as the p</th><th>resent Rules</th><th>s></th><th></th><th></th><th>(MET4800-336-2020)</th></sam<>	e as the p	resent Rules	s>			(MET4800-336-2020)
Mecha	anical	properties						5. Mec	hanical	properties	3				
				tension te Tables 2.1							operties in s given in				7
		•	•	for Rolled						-	Properties				
		viechanica	Troperties	Tensile					2.1.105			Tensile			
	Temper	Thickness,	Yield	Tensile	Elongati	on(%)		Grade	Temper	Thickness,	Yield	Tensile	Elongati	on(%)	
s co	ondition (2)	t (mm)	strength (N/mm ²)	strength (N/mm ²)	$ L = 5.65 \sqrt{A} $	(L=5d)		s	condition (2)	t (mm)	strength (N/mm^2)	strength (N/mm ²)	$ \begin{array}{ } \begin{array}{c} (\\ L = 5.65 \sqrt{A} \\) \end{array} $	(L=5d)	
083P		I		1	1			5083P		I	I	I			
383P			<or< td=""><td>nitted></td><td></td><td></td><td></td><td>5383P</td><td></td><td><</td><td>Same as the</td><td>present Rule</td><td>es></td><td></td><td></td></or<>	nitted>				5383P		<	Same as the	present Rule	es>		
059P	0	2<1<50	05 .	205	16	14		5059P	0	2<1<50	05	240, 205	16	14	
	0	$3 \le t \le 50$	95 min.	<u>305 min.</u>	16 min.	min.			0	$3 \le t \le 50$	95 min.	240~305	16 min.	min.	- To reflect IACS UR
	H111	$3 \le t \le 50$	95 min.	<u>305 min.</u>	16 min.	14 min.			H111	$3 \le t \le 50$	95 min.	<u>240~305</u>	16 min.	14 min.	W25(Rev.5, June 14)
086P		$3 \le t \le 12.$	125 min.	250 min.	8 min.	-		5086P		$3 \le t \le 12.$	125 min.	250 min.	8 min.	-	- Туро
	H112	$12.5 < t \le 5$	105 min.	240 min.	-	9 min.			H112	$\begin{vmatrix} 12.5 < t \le 5 \\ 0 \end{vmatrix}$	105 min.	240 min.	-	9 min.	
	H116	$3 \le t \le 50$	195 min.	275 min.	10 min. ⁽³⁾	9 min.			H116	$3 \le t \le 50$	195 min.	275 min.	10 min. ⁽³⁾	9 min.	
754P 456P			<or< td=""><td>nitted></td><td></td><td></td><td></td><td>5754P 5456P</td><td></td><td><</td><td>Same as the</td><td>present Rule</td><td>es></td><td></td><td></td></or<>	nitted>				5754P 5456P		<	Same as the	present Rule	es>		
NOTES	:							NOTE	S :						
			<omitte< td=""><td>ed></td><td></td><td></td><td></td><td></td><td></td><td><san< td=""><td>ne as the pre</td><td>esent Rules></td><td></td><td></td><td></td></san<></td></omitte<>	ed>						<san< td=""><td>ne as the pre</td><td>esent Rules></td><td></td><td></td><td></td></san<>	ne as the pre	esent Rules>			
< /	<omittee< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>ent Rules></td><td></td><td></td><td></td><td></td></omittee<>									-	ent Rules>				
~ 14	•. <on< td=""><td>nitted></td><td></td><td></td><td></td><td></td><td></td><td>6. ~ 1</td><td>4. <sa< td=""><td>me as the</td><td>present Rule</td><td>es></td><td></td><td></td><td></td></sa<></td></on<>	nitted>						6. ~ 1	4. <sa< td=""><td>me as the</td><td>present Rule</td><td>es></td><td></td><td></td><td></td></sa<>	me as the	present Rule	es>			
~ 14	I. <on< td=""><td>nitted></td><td></td><td></td><td></td><td></td><td></td><td>6. ~ 1</td><td> 4. <sar< td=""><td>ne as the</td><td>present Rul</td><td>es></td><td></td><td></td><td></td></sar<></td></on<>	nitted>						6. ~ 1	4. <sar< td=""><td>ne as the</td><td>present Rul</td><td>es></td><td></td><td></td><td></td></sar<>	ne as the	present Rul	es>			

	Present				Amendment		reason
Sect	HAPTER 2 WE ion 1 \sim Section 2 3 Welding Work a	<omitted></omitted>	Se	ction 1 \sim	ELDING as the present Rules> and Inspection	* Request for Establishment/Revision of Classification Technical Ru (MET4800-448-2019)	
. ~ 302. <	Omitted>		301.	~ 302. <	Same as the present	Rules>	
. Application	of welding consuma	bles	303.	Application	of welding consuma	bles	
to be of the 6 according t (1) Application ious grade	grades as specified in the to the following requirement on of welding consumables es of steel is to be as specified Selection of welding	s for welded joints of var-		to be of the 6 according t (1) Application ious grade Table 2.2.3	grades as specified in the o the following requirement on of welding consumable as of steel is to be as species	s for welded joints of var-	
· · · ·	rade of steel to be welded	Grade of applicable welding consumables ⁽¹⁾			ade of steel to be welded	Grade of applicable welding consumables ⁽¹⁾	
RolMildledsteelsteeHigherlsstrengthforlowhullsteel	<on< th=""><th>nitted></th><th>-</th><th>Rol Mild steel led Higher stee strength for low hull steel</th><th><same as="" th="" the<=""><th>e present Rules></th><th></th></same></th></on<>	nitted>	-	Rol Mild steel led Higher stee strength for low hull steel	<same as="" th="" the<=""><th>e present Rules></th><th></th></same>	e present Rules>	
Rolled steels	RL235A	4Y, 4Y40, L1, L2, L3			RL235A	4Y, 4Y40, L1, L2, L3	
for low tem-	RL235B, RL325A, RL325B	5Y42, L2, L3 ⁽⁴⁾		Rolled steels	RL235B, RL325A, RL325B	5 <i>Y</i> 42, <i>L</i> 2, <i>L</i> 3 ⁽⁴⁾	
perature serv-	RL360	5Y42, <i>L</i> 3		for low tem- perature serv-	RL360	5Y42, L3	
ices	RL9N490	L91		ices	<u>RL5N390</u>	<u>L51, L91</u>	A 1 1
High strength					RL9N490	L91	- Addition of Weldin
steels for welded structures ⁽⁵⁾	<on< td=""><td>nitted></td><td></td><td>High strength steels for welded structures⁽⁵⁾</td><td><same as="" td="" the<=""><td>e present Rules></td><td>consumables for RL5N390(5%Ni alloy steel)</td></same></td></on<>	nitted>		High strength steels for welded structures ⁽⁵⁾	<same as="" td="" the<=""><td>e present Rules></td><td>consumables for RL5N390(5%Ni alloy steel)</td></same>	e present Rules>	consumables for RL5N390(5%Ni alloy steel)
(2) ~ (4) <0 . ~ 311. <			304.	$(2) \sim (4) < 5$	Same as the present Rules Same as the present	⊰> Rules>	

	Present				reason	
ection 4 Weldi	ng Procedure Qualification	on Tests	Section 4 W	lelding Procedure Qualification	Tests	* Request for
. \sim 403. <omitt< td=""><td>ed></td><td></td><td>401. ~ 403. <</td><td></td><td>Establishment/Revision of Classification Technical Rule</td></omitt<>	ed>		401. ~ 403. <		Establishment/Revision of Classification Technical Rule	
. Tests for butt w				utt welded joints		(MET4800-151-2020)
.~ 8. <omitted></omitted>			1. ~ 8. <same< td=""><td>e as the present Rules></td><td></td><td></td></same<>	e as the present Rules>		
. Hardness test <i>(20</i>	01 <i>9)</i>		9. Hardness tes	st <i>(2019)</i>		
with Table 2.2. Table 2.2.10 Hard	m the hardness test are to be i 10. <i>(2019)</i> ness Test Requirements for Butt <i>(2019)</i>		e (2) The result with Table Table 2.2.10 Har	s the present Rules> ts from the hardness test are to be in e 2.2.10. (2019) dness Test Requirements for Butt Welde 9) (2021)		
Grades and mat	erial symbols of test specimens	Hardness (Hv10)	Grades and	l material symbols of test specimens	Hardness (Hv10)	
AH 36, DH 36, EH 36, FH 36, Rolled steels for hull 40, DH 40, EH 40, FH 40		350 max.	Rolled steels for	AH 36, DH 36, EH 36, FH 36, AH 40, DH 40, EH 40, FH 40	350 max.	
structural	ЕН47-Н	380 max.	hull structural	ЕН47-Н	380 max.	
Welda	ble high strength steel	<u>420 max.</u>	Weldable high	<u>AH 43 ~ FH 70</u>	<u>420 max.</u>	
	RL 235A, RL 235B, RL 325A, RL 325B,	<u>320 max.</u>	strength steel	<u>AH 90, DH 90, EH 90, AH 97, DH 97, EH 97</u> RL 235A, RL 235B, RL 325A, RL 325B,	<u>450 max.</u>	- To reflect IACS UR W16 & W28
Rolled steels & Steel	RLPA, RLPB, RLPC	380 max.		RLPA, RLPB, RLPC	<u>380 max.</u>	
pipes for low	RL 1N355, RL 2N255, RLP 2	<u>300 max.</u>	Rolled steels &	RL 360	<u>450 max.</u>	- To reflect ISO
temperature service	RL 111355, RL 211233, RLF 2 RL 311355, RL 511390, RLP 3	<u>500 max.</u>	Steel pipes for low	RL 1N355, RL 2N255, RLP 2	<u>350 max.</u>	15614-1
	RL 9N490, RLP 9	<u>350 max.</u>	temperature service	RL 3N355, RL 5N390, RLP 3		
Rolled steel plates The pipes for ordi	for boiler & pressure vessel nary piping	320 max.(1)		RL 9N490, RLP 9	450 max.	
The pipes used for Note :	eated, hardness may be accepted by		The pipes for ord	s for boiler & pressure vessel linary piping or high temperature and high pressure	380 max.	

	Present				reason	
Section	Section 5 <omitted> n 6 Welding Consu</omitted>	mables	Section Section	* Request for Establishment/Revision of Classification Technical Rules (MET4800-448-2019)		
601. <omitted></omitted>			601. <same as="" t<="" th=""><th>he present Rules></th><th></th><th>(WIL14000 440 2013)</th></same>	he present Rules>		(WIL14000 440 2013)
	r manual arc welding f strength steels and s ce			strength steels and s		
1. <omitted></omitted>			1. <same as="" th="" the<=""><th>e present Rules></th><th></th><th></th></same>	e present Rules>		
2. Grades and ma	arks of electrode		2. Grades and m	arks of electrode		
(1) Electrodes an	re classified as specified in	Table 2.2.25.	(1) Electrodes as	re classified as specified ir	n Table 2.2.25.	
Table 2.2.25 Grades	and Marks <i>(2017)</i>		Table 2.2.25 Grades	and Marks <i>(2017) (2021)</i>		
For normal strength steel	For higher strength steel	For steel for low temperature service	For normal strength steel	For higher strength steel	For steel for low temperature service	- Addition of Welding
1, 2, 3	2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> , 5 <i>Y</i> , 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40	L 1, L 2, L 3, L 91	1, 2, 3	2Y, 3Y, 4Y, 5Y, 2Y40, 3Y40, 4Y40, 5Y40	L 1, L 2, L 3, <u>L 51</u> , L 91	consumables for RL5N390(5%Ni alloy
	itted> to be used in preparation ren in Table 2.2.28 accor		 3. General provis (1) ~ (4) <san< li=""> (5) Steel plates to be as givelectrode. </san<>	the present Rules> sions for tests he as the present Rules> to be used in preparation yen in Table 2.2.28 acco he as the present Rules>		

	Present		Amendment	reason
able 2.2.28 Grade	e of Steels used for Test Assembly (2017)	Table 2.2.28 Grade	of Steels used for Test Assembly (2017) (2021)	
Grade of electrode	Grade of steels used for test assembly ⁽¹⁾⁽²⁾	Grade of electrode	Grade of steels used for test assembly ⁽¹⁾⁽²⁾	
1	A	1	Α	
2	A, B or D	2	A, B or D	
3	A, B, D or E	3	A, B, D or E	
2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36	2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36	
3 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	3 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	
4 <i>Y</i>	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	4 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	
5 <i>Y</i>	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	5 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	
2 <i>Y</i> 40	<i>AH</i> 40 or <i>DH</i> 40	2 <i>Y</i> 40	AH 40 or DH 40	
3740	AH 40, DH 40 or EH 40	3 <i>Y</i> 40	AH 40, DH 40 or EH 40	
4¥40	AH 40, DH 40, EH 40 or FH 40	4 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	
5Y40		5 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	
	AH 40, DH 40, EH 40 or FH 40	L 1	E or RL 24A	
<i>L</i> 1	E or RL 24A	L 2	E, RL 235A, RL 235B, RL 325A or RL 325B	
<i>L</i> 2	E, RL 235A, RL 235B, RL 325A or RL 325B	L 3	RL 325A, RL 325B or RL 360	
<i>L</i> 3	RL 325A, RL 325B or RL 360	<u>L 51</u>	<u>RL 5N390</u>	- Addition of Welding
L 91	<i>RL</i> 9 <i>N</i> 490	L 91	RL 9N490	consumables for
higher strength assembly. In thi priately buttered (2) The tensile str	g the requirements in this Table normal strength or steel may be used for the deposited metal test is case, test assemblies of grade L 91 are to be appro- ength of higher strength steels AH 32, DH 32 EH 32, in butt weld test assemblies is to be greater than 490	 (1) Forwarding higher strength assembly. In thi priately buttered. (2) The tensile strength 	s case, test assemblies of grade L 91 are to be appro-	

		Pre	esent					Amer	ndment			reason
4. Depos	sited metal	test				4. Depo	sited metal	test				
(1) ~ (3) De (a) (c)	 (2) <omitti li="" meta<="" posited=""> ~ (b) <on< li=""> The tensile test specimin Table strength is to the approof the other sults and the sults are subscriptly the sults are subscriptly the subscrint subscriptly the sub</on<></omitti>	ed> al tensile tensile tensile tensile tensile tensile strength, y en are to 2.2.29 , exceeded, roval of the er mechani he chemica	vield streng comply wi where the special co e electrode cal propert l compositi ct Test Re	th the upper onsiderat , taking ies show on of d	elongation of each requirements given limit of tensile ion will be given into consideration wn in the test re- eposited metal. nts for	$(1) \sim (3) Da (a) (c)$	(2) <omittee <math="">(2) <</omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee></omittee>					
					Impact test					_ //	Impact test	
Grade of electrode	Tensile strength (N/mm ²)	Yield strength (N/mm ²)	Elongatio n (%)	Test temp. (℃)	Average absorbed energy(J)	Grade of electrode	Tensile strength (N/mm ²)	Yield strength (N/mm ²)	Elongatio n (%)	Test temp. (℃)	Average absorbed energy(J)	
1				20		1				20		
2	400 ~ 560	305 min.	22 min.	0	-	2	400 ~ 560	305 min.	22 min.	0	-	
3 2 <i>Y</i>				-20 0	-	3 2Y				-20		
3Y				-20	-	3Y				-20		
4 <i>Y</i>	490 ~ 660	375 min.	22 min.	-40	47 min.	4 <i>Y</i>	490 ~ 660	375 min.	22 min.	-40	47 min.	
5 <i>Y</i>				-60		5 <i>Y</i>				-60		
2 <i>Y</i> 40				0		2 <i>Y</i> 40				0	-	
3 <i>Y</i> 40	510 ~ 690	400 min.	22 min.	-20		3 <i>Y</i> 40	510 ~ 690	400 min.	22 min.	-20		
4 <i>Y</i> 40	510 000		22 mm.	-40		4 <i>Y</i> 40	510 000	+00 IIIII.	22 11111.	-40		
5 <i>Y</i> 40				-60		5 <i>Y</i> 40				-60		
L 1	400 ~ 560	305 min.	22 min.	-40		<i>L</i> 1	400 ~ 560	305 min.	22 min.	-40	-	
L 2	440 ~ 610	345 min.	22 min.	-60	34 min.	L 2	440 ~ 610	345 min.	22 min.	-60	34 min.	
L 3	490 ~ 660	375 min.	21 min.	-60		<i>L</i> 3	490 ~ 660	375 min.	21 min.	-60		- Addition of Welding
L 91	590 min.	375 min. ⁽¹⁾	25 min.	-196	27 min.	<u>L 51</u>	<u>530 min.</u>	<u>375 min.⁽¹⁾</u>	<u>25 min.</u>	<u>-120</u>	<u>27 min.</u>	consumables for
NOTE: (1) 0.2	2% Yield stre	ength				L 91 NOTE: (1)-0.2	590 min. 24⁄0-Yield str	375 min. ⁽¹⁾	25 min.	-196	27 min.	RL5N390(5%Ni alloy steel)

		Presen	t				An	nendm	ent		reason
(d) <om< th=""><th>nitted></th><th></th><th></th><th></th><th></th><th>(d) <san< th=""><th>ne as the pr</th><th>esent Rul</th><th>es></th><th></th><th></th></san<></th></om<>	nitted>					(d) <san< th=""><th>ne as the pr</th><th>esent Rul</th><th>es></th><th></th><th></th></san<>	ne as the pr	esent Rul	es>		
5. Butt weld to	est				5. Bu	itt weld te	est				
(c) The t the re	<i>l tensile test.</i> <omitted> tensile streng equirements g</omitted>	gth of tes given in T	Table 2.2.30.	to comply with	(2)	Butt weld (a) \sim (b) (c) The t the re	quirements g	s the presen gth of tes given in T	t specimen is able 2.2.30 .	to comply with	
Table 2.		e and imp veld <i>(201</i>)	pact Test Requ <i>7)</i>	lirements for		Table 2.2		e and imp veld <i>(201)</i>	oact Test Requ <i>7) (2021)</i>	lirements for	
			Impact te	st					Impact te	st	
Grade	Tensile	Test	Average abso	orbed energy (J)		Grade	Tensile	Test	Average absorbed energy (J)		
of electrode	strength (N/mm ²)	temp. (°C)	Flat, Horizontal, Overhead	Vertical upward Vertical downward		of electrode	strength (N/mm ²)	temp. (°C)	Flat, Horizontal, Overhead	Vertical upward Vertical downward	
1		20				1		20			
2	400 min.	0				2	400 min.	0			
3		-20				3		-20			
2 <i>Y</i>		0	_	34 min.		2 <i>Y</i>		0		34 min.	
3 <i>Y</i>	490 min.	-20	_			3 <i>Y</i>	490 min.	-20			
4 <i>Y</i>	150 mm.	-40	47 min.			4 <i>Y</i>	190 mm.	-40	47 min.		
5 <i>Y</i>		-60	_			5Y		-60			
2 <i>Y</i> 40	-	0	_			2 <i>Y</i> 40		0			
3 <i>Y</i> 40	510 min.	-20	_	39 min.		3 <i>Y</i> 40	510 min.	-20		39 min.	
4 <i>Y</i> 40	-	-40				4 <i>Y</i> 40		-40			
5Y40		-60				5 <i>Y</i> 40		-60			
L 1	400 min.	-40				<i>L</i> 1	400 min.	-40			
L 2	440 min.	-60	- 27 min.	27 min.		L 2	440 min.	-60			- Addition of Welding
L 3	490 min.	-60		2,		L 3	490 min.	-60	27 min.	27 min.	consumables for
L 91	630 min.	-196				<u>L 51</u>	<u>530 min.</u>	<u>-120</u>			RL5N390(5%Ni alloy
						L 91	630 min.	-196			steel)
(3) ~ (4) <	Omitted>						Same as the	•			
6. <omitted></omitted>					6. <	Same as	the presen	t Rules>			

Present				reason		
O3. Automatic welding consumables for steels, higher strength steels and s perature service			for normal strength I steels for low tem-			
1. <omitted></omitted>		1. <same as="" th="" th<=""><th></th></same>				
2. Grades and marks		2. Grades and m	arks			
(1) The automatic welding consumables as fied in Table 2.2.35 .	e classified as speci-	(1) The automa fied in Tabl		are classified as speci-		
able 2.2.35 Grade and Marks <i>(2017)</i>		Table 2.2.35 Grade	and Marks <i>(2017) (2021</i>)		
For normal strength steel For higher strength steel	For steel for low temperature service	For normal strength steel	For higher strength steel	For steel for low temperature service	- Addition of Welding	
$1, 2, 3 \qquad \begin{array}{c} 1Y, 2Y, 3Y, 4Y, 5Y \\ 2Y40, 3Y40, 4Y40, 5Y40 \end{array}$	L 1, L 2, L 3, L 91	1, 2, 3	1 <i>Y</i> , 2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> , 5 <i>Y</i> 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40	L 1, L 2, L 3 <u>, L 51</u> , L 91	consumables for RL5N390(5%Ni alloy	
 (2) ~ (3) <omitted></omitted> 3. General provisions for tests (1) Steel plates to be used for test assemble en in Table 2.2.38, appropriate to the welding consumables. (2) Kinds of test, number, thickness and examplies, grades and number of test show each test assembly for automatic are to be as given in Table 2.2.39. (3) ~ (8) <omitted></omitted> 	ne kind of automatic limensions of test as- pecimens to be taken	 3. General provision (1) Steel plates en in Table welding construction (2) Kinds of te semblies, gradient from each te are to be as 	to be used for test asse e 2.2.38, appropriate to sumables. est, number, thickness an ades and number of tes	emblies are to be as giv- the kind of automatic d dimensions of test as- t specimens to be taken atic welding consumables		

	Present		Amendment	reason
Table 2.2.38 Grades	s of Steel used for Test Assembly (2017)	Table 2.2.38 Grades	s of Steel used for Test Assembly (2017) (2021)	
Grade of welding consumable	Grade of steel used for test assembly ⁽¹⁾⁽²⁾	Grade of welding consumable	Grade of steel used for test assembly ⁽¹⁾⁽²⁾	
1	A	1	A	
2	A, B or D	2	A, B or D	
3	A, B, D or E	3	A, B, D or E	
1 <i>Y</i>	AH 32 or AH 36	1 <i>Y</i>	AH 32 or AH 36	
2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36	2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36	
37	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32 or <i>EH</i> 36	3 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	
	AH 32, AH 36, DH 32, DH 36, EH 32 61 EH 36 AH 32, AH 36, DH 32, DH 36, EH 32, EH 36,	4 <i>Y</i>	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	
4Y	<i>FH</i> 32 or <i>FH</i> 36 <i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36,	5 <i>Y</i>	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	
5 <i>Y</i>	<i>FH</i> 32 or <i>FH</i> 36	2 <i>Y</i> 40	AH 40 or DH 40	
2 <i>Y</i> 40	AH 40 or DH 40	3 <i>Y</i> 40	AH 40, DH 40 or EH 40	
3 <i>Y</i> 40	AH 40, DH 40 or EH 40	4 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	
4 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	5Y40	AH 40, DH 40, EH 40 or FH 40	
5 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	L 1	E or RL 235A	
L 1	E or RL 235A	L 2	E, RL 235A, RL 235B, RL 325A or RL 325B	
L 2	E, RL 235A, RL 235B, RL 325A or RL 325B	L 3	RL 325A, RL 325B or RL 360	- Addition of Welding
L 3	RL 325A, RL 325B or RL 360	<u>L 51</u>	<u>RL 5N390</u>	consumables for
L 91	RL 9N490	L 91	RL 9N490	RL5N390(5%Ni alloy
or higher strength In this case, tes buttered. (2) The tensile streng	the requirements in this Table, normal strength steel a steels may be used for deposited metal test assembly at assemblies of grade L 91 are to be appropriately gth of higher strength steels AH 32, DH 32, EH 32 and butt weld test assemblies is to be greater than 490	or higher strength In this case, tes buttered. (2) The tensile streng	the requirements in this Table, normal strength steel a steels may be used for deposited metal test assembly at assemblies of grade L 91 are to be appropriately gth of higher strength steels AH 32, DH 32, EH 32 and butt weld test assemblies is to be greater than 490	steel)

		Pre	sen	t					Amen	dm	ent			reason
Table 2 <i>(2017)</i>	.2.39 Kir	nds of Test of	Aut	omati	ic Welc	ling Consumables	Table 2 <i>(2017)</i>		nds of Test of	Aut	omat	ic Weld	ling Consumables	
Weldin g techniq ue ⁽⁷⁾	Kind of test ⁽⁸⁾	Grade of welding consumables	T Numb er	-sio	embly Thick ness (mm) ⁽ ₃₎	Kinds and no. of test specimens taken from test assembly	Weldin g techniq ue ⁽⁷⁾	Kind of test ⁽⁸⁾	Grade of welding consumables	To Numb er	Di men -sio	embly Thick ness (mm) ⁽ ₃₎	Kinds and no. of test specimens taken from test assembly	
	Deposited metal test	1, 2, 3	1	ns Fig 2.2. 27	20	Tensile test speci- men: 2 Impact test speci- men: 3		Deposited metal test	1, 2, 3	1	ns Fig 2.2. 27	20	Tensile test speci- men: 2 Impact test speci- men: 3	
Multi-r un techniq ue	Butt weld test	- 1Y, 2Y, 3Y, 4Y, 5Y 2Y40, 3Y40, 4Y40, 5Y40 L1, L2, L3, L91	1(4)	Fig 2.2. 28	20~25	Tensile test speci- men: $2^{(4)}$ Face bend test specimen: $2^{(4)(6)}$ Root bend test specimen: $2^{(4)(6)}$ Impact test speci- men: 3	ue	Butt weld test	- 1Y, 2Y, 3Y, 4Y, 5Y 2Y40, 3Y40, 4Y40, 5Y40 L1, L2, L3, <u>L51, L91</u>	1(4)	Fig 2.2. 28	20~25	Tensile test speci- men: $2^{(4)}$ Face bend test specimen: $2^{(4)(6)}$	- Addition of Welding consumables for RL5N390(5%Ni alloy steel)
		<omitted></omitted>				<omitted></omitted>		<same< td=""><td>as the present Rul</td><td>es></td><td></td><td><same< td=""><td>e as the present Rules></td><td></td></same<></td></same<>	as the present Rul	es>		<same< td=""><td>e as the present Rules></td><td></td></same<>	e as the present Rules>	
Two-ru n techniq ue	Butt weld test	L1, L2, L3, L91	1	Fig 2.2. 29	12~15 20 or accepta ble maxim um thickne ss	Tensile test speci- men: 2 Longitudinal ten- sile test speci- men: 1 ⁽⁵⁾ Face bend test specimen: 1 Root bend test specimen: 1 Impact test speci- men: 3	Two-ru n techniq ue	Butt weld test	L1, L2, L3, L51, L91	1	Fig 2.2. 29	12~15 20 or accepta ble maxim um thickne ss	Tensile test speci- men: 2 Longitudinal ten- sile test speci- men: 1 ⁽⁵⁾ Face bend test specimen: 1 Root bend test specimen: 1 Impact test speci- men: 3	- Addition of Welding consumables for RL5N390(5%Ni alloy steel)
NOTES:		<0	mittec	\triangleright			NOTES	:	<same as="" td="" the<=""><td>e pres</td><td>sent R</td><td>ules></td><td></td><td></td></same>	e pres	sent R	ules>		

Present	Amendment	reason
Deposited metal test with multi-run technique	4. Deposited metal test with multi-run technique	
 Deposited metal test with multi-run technique (1) ~ (2) <omitted></omitted> (3) Deposited metal tensile test with multi-run technique (a) <omitted></omitted> (b) The tensile strength, yield point and elongation of each test specimen are to comply with the requirements given in Table 2.2.40, where the upper limit of tensile strength is exceeded, special consideration will be given to the approval of the electrode, taking into consideration of the other mechanical properties shown in the test results and the chemical composition of deposited metal. 	 (1) ~ (2) <same as="" present="" rules="" the=""></same> (3) Deposited metal tensile test with multi-run technique (a) <same as="" present="" rules="" the=""></same> (b) The tensile strength, yield point and elongation of each test specimen are to comply with the requirements given in Table 2.2.40, where the upper limit of tensile strength is exceeded, special consideration will be given to the approval of the electrode, taking into consideration of the 	

		Pres	ent						reason			
Table 2.2.40	Tensile a Metal tes		est Require	ements fo	r Deposited	Table 2.2.4		nd Impact 1 st <i>(2017) (2</i> 0	-	ements fo	r Deposited	
Grade of	Tensile	Yield	Elongatio	Imp	oact test	Grade of	Tensile	Yield	Elongatio	Imp	act test	
welding	strength (N/mm ²)	strength (N/mm^2)	n (%)	Test temp. (°C)	Average absorbed energy (J)	welding material	strength (N/mm ²)	strength (N/mm^2)	n (%)	Test temp. (°C)	Average absorbed energy (J)	
1				20		1				20		
2	$400 \sim 560$	305 min.	22 min.	0	_	2	$400 \sim 560$	305 min.	22 min.	0		
3				-20		3				-20		
1 <i>Y</i>				20	- 34 min.	1 <i>Y</i>				20	34 min.	
2 <i>Y</i>				0	54 min.	2 <i>Y</i>				0	34 min.	
3 <i>Y</i>	490 ~ 660	375 min.	22 min.	-20		3 <i>Y</i>	$490 \sim 660$	375 min.	22 min.	-20		
4 <i>Y</i>				-40		4 <i>Y</i>				-40		
5 <i>Y</i>				-60		5 <i>Y</i>				-60		
2 <i>Y</i> 40				0		2 <i>Y</i> 40				0		
3 <i>Y</i> 40	$510 \sim 690$	400 min.	22 min.	-20	39 min.	3 <i>Y</i> 40	$510 \sim 690$	400 min.	22 min.	-20	39 min.	
4 <i>Y</i> 40	510 . 090	400 mm.	22 mm.	-40	59 mm.	4 <i>Y</i> 40	310 090	400 mm.	22 mm.	-40	39 mm.	
5 <i>Y</i> 40				-60		5 <i>Y</i> 40				-60		
L 1 4	$400 \sim 560$	305 min.	22 min.	-40		L 1	$400 \sim 560$	305 min.	22 min.	-40		- Addition of Weldin
L 2	$440 \sim 610$	345 min.	22 min.	-60	27 min.	L 2	$440 \sim 610$	345 min.	22 min.	-60		consumables for
L 3	490 ~ 660	375 min.	21 min.	-60	27 111111.	L 3	$490 \sim 660$	375 min.	21 min.	-60	27 min.	RL5N390(5%Ni alloy
L 91	590 min.	375 min. ⁽¹⁾	25 min.	-196		<u>L 51</u>	<u>530 min.</u>	<u>375 min.⁽¹⁾</u>	<u>25 min.</u>	<u>-120</u>		steel)
NOTE:						L 91	590 min.	375 min. ⁽¹⁾	25 min.	-196		5(001)
	<omitted> mitted></omitted>					(c)	6 yield stress Same as 5 Same as the	the present present Rul	Rules> es>			

	Pres	ent			Ameno	dment		reason					
5. Butt weld	test with multi-ru	ın technique		5. Butt weld	test with multi-ru	ın technique							
(2) Butt we (a) \sim (b) (c) The the f	 (1) <omitted></omitted> (2) Butt weld tensile test with multi-run technique (a) ~ (b) <omitted></omitted> (c) The tensile strength of test specimen is to comply with the requirements given in Table 2.2.41. Table 2.2.41 Tensile and Impact Test Requirements for butt weld test with multi-run technique (2017) 				 (1) <same as="" present="" rules="" the=""></same> (2) Butt weld tensile test with multi-run technique (a) ~ (b) <same as="" present="" rules="" the=""></same> (c) The tensile strength of test specimen is to comply with the requirements given in Table 2.2.41. Table 2.2.41 Tensile and Impact Test Requirements for butt weld test with multi-run technique (2017) (2021) 								
			mpact test				mpact test	1					
Grade of welding material	Tensile strength(N/mm ²)	Test temp.	Average absorbed energy (J)	Grade of welding material	Tensile strength(N/mm ²)	Test temp.	Average absorbed energy (J)						
1		20		1		20							
2	400 min.	0		2	400 min.	0							
3		- 20		3		- 20							
1 Y		20	34 min.	1 <i>Y</i>		20	34 min.						
2 <i>Y</i>		0	54 mm.	2 <i>Y</i>		0	34 mm.						
3 <i>Y</i>	490 min.	- 20		3 <i>Y</i>	490 min.	- 20							
4 <i>Y</i>		- 40		4 <i>Y</i>		- 40							
5 <i>Y</i>		- 60		5 <i>Y</i>		- 60							
2 <i>Y</i> 40		0		2 <i>Y</i> 40		0							
3 <i>Y</i> 40	- 510 min.	-20	39 min.	3 <i>Y</i> 40	510 min.	- 20	- 39 min.						
4 <i>Y</i> 40	510 mm.	-40	<i>39</i> mm.	4 <i>Y</i> 40	510 mm.	- 40	39 mm.						
5 <i>Y</i> 40		-60		5 <i>Y</i> 40		- 60							
L 1	400 min.	-40		L 1	400 min.	- 40							
L 2	440 min.	- 60	27 min	L 2	440 min.	- 60]	- Addition of Welding					
L 3	490 min.	- 60	27 min.	L 3	490 min.	- 60	27 min.	consumables for					
L 91	630 min.	- 196		<u>L 51</u>	<u>530 min.</u>	<u>- 120</u>]	RL5N390(5%Ni alloy					
				L 91	630 min.	- 196		steel)					
(3) ~ (4) ~ 6. ~ 7. <o< td=""><td></td><td></td><td></td><td></td><td><same as="" prese<br="" the="">me as the prese</same></td><td></td><td></td><td></td></o<>					<same as="" prese<br="" the="">me as the prese</same>								

			l	Pres	ent						An	nend	lment			reason
(1) · · (2) T to (3) ·	 (2) The kinds of test, etc. involved in the annual inspection to be as given in Table 2.2.42. (3) <omitted></omitted> (3) <omitted></omitted> (3) <omitted></omitted> (4) Test assembly (5) Test assembly (7) Test assembly (8) Kind of test (9) Nu mbe sions (10) Thick ness taken from to assembly 						n <i>(2017)</i>	(1) (2) T to (3)	be as <same a<br="">2.42 Ki</same>	as th s of giver as th	e preser test, etc i in Tat e preser	t invo ble 2.2 it Rule for A	olved in 2.42 . es>	spectio	nual inspections are n <i>(2017) (2021)</i>	
of welding consum ables	ng techni	К		Nu mbe	Dimen	Thick	test specimens taken from test	of welding consum ables	Weldi ng techni que ⁽¹⁾		ind of test	Nu mbe r	Dimen sions	Thick ness (mm)	Kinds and no. of test specimens taken from test assembly	
	Multi-r un techni que		eposited etal test	1	Fig 2.2.27	20	Tensile test specimen: 1 Impact test specimen: 3		Multi-r un techni que		posited tal test	1	Fig 2.2.27	20	Tensile test specimen: 1 Impact test specimen: 3	
1, 2, 3 1Y, 2Y, 3Y, 4Y, 5Y 2Y40, 3Y40, 4Y40, 5Y40	Two-r un	Bu		1	Fig	20	Tensile test specimen: 1 Longitudinal tensile test specimen: 1 Face bend test specimen: 1 Root bend test specimen: 1 Impact test specimen: 3	1, 2, 3 1Y, 2Y, 3Y, 4Y, 5Y 2Y40, 3Y40, 4Y40, 5Y40	Two-r un	But t	Subme rged arc weldin g	1	Fig	20	Tensile test specimen: 1 Longitudinal tensile test specimen: 1 Face bend test specimen: 1 Root bend test specimen: 1 Impact test specimen: 3	- Addition of Wolding
L1, L2, L3, L91	techni que	d test		1	2.2.29	20~2 5	Tensile test specimen: 1 Longitudinal tensile test specimen: 1 Face bend test specimen: 1 Root bend test specimen: 1 Impact test specimen: 3	L1, L2, L3, <u>L51,</u> L91	techni que	d test	Gas shielde d and self shielde d arc weldin g	1	2.2.29	20~2 5	Tensile test specimen: 1 Longitudinal tensile test specimen: 1 Face bend test specimen: 1 Root bend test specimen: 1 Impact test specimen: 3	- Addition of Welding consumables for RL5N390(5%Ni alloy steel)
NOTE:	I	1	1	<om< td=""><td>itted></td><td>1</td><td></td><td>NOTE:</td><td>1</td><td><u> </u></td><td><same< td=""><td>as the</td><td>present</td><td>Rules></td><td></td><td></td></same<></td></om<>	itted>	1		NOTE:	1	<u> </u>	<same< td=""><td>as the</td><td>present</td><td>Rules></td><td></td><td></td></same<>	as the	present	Rules>		
9. <or< td=""><td>mitted></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9. <<u>S</u>a</td><td>ame_as</td><td>the</td><td>presen</td><td>t Rule</td><td>es></td><td></td><td></td><td></td></or<>	mitted>							9. < <u>S</u> a	ame_as	the	presen	t Rule	es>			

	Present			Amendment		reason	
	, higher strength st	nables for normal teels and steels for					
1. <omitted></omitted>			1. <same as="" th="" the<=""><th></th></same>				
2. Grades and mar	ks		2. Grades and mai	'ks			
(1) The semi-auto specified in Ta		ables are classified as	(1) The semi-aut specified in T a	omatic welding consum able 2.2.43.	ables are classified as		
Table 2.2.43 Grades	and Marks <i>(2017)</i>		Table 2.2.43 Grades	and Marks <i>(2017)</i>			
For normal strength steel	For higher strength steel	For steel for low temperature service	For normal strength steel	For higher strength steel	For steel for low temperature service		
1, 2, 3	1 <i>Y</i> , 2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> 5 <i>Y</i> 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40	L1, L2, L3, L91	1, 2, 3	1 <i>Y</i> , 2 <i>Y</i> , 3 <i>Y</i> , 4 <i>Y</i> 5 <i>Y</i> 2 <i>Y</i> 40, 3 <i>Y</i> 40, 4 <i>Y</i> 40, 5 <i>Y</i> 40	L1, L2, L3, L51, L91	- Addition of Welding consumables for RL5N390(5%Ni alloy	
$(2) \sim (4)$ <omittee< td=""><td>ed></td><td></td><td>(2) ~ (4) <same< td=""><td>as the present Rules></td><td></td><td>steel)</td></same<></td></omittee<>	ed>		(2) ~ (4) <same< td=""><td>as the present Rules></td><td></td><td>steel)</td></same<>	as the present Rules>		steel)	
3. General provisio	ns for tests		3. General provisio	ons for tests			
	be used for test assen 2.2.45 , appropriate to consumables.	ablies are to be as giv- the kind of semi-auto-	(3) Steel plates to en in Table matic welding	as the present Rules> be used for test assen 2.2.45 , appropriate to consumables. as the present Rules>			

	Present		Amendment	reason
Table 2.2.45	Grades of Steel for Test Assembly (2017)	Table 2.2.45 G	rades of Steel for Test Assembly (2017) (2021)	
Grade of welding consumables	Grade of steel for test assembly ⁽¹⁾⁽²⁾	Grade of welding consumables	Grade of steel for test assembly ⁽¹⁾⁽²⁾	
15	A	1S	A	
28	A, B or D	28	A, B or D	
38	A, B, D or E	38	A, B, D or E	
1 <i>Y</i> S	AH 32 or AH 36	1 <i>Y</i> S	AH 32 or AH 36	
2YS	AH 32, AH 36, DH 32 or DH 36	2YS	AH 32, AH 36, DH 32 or DH 36	
3YS	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	3YS	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	
4 <i>Y</i> S	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	4YS	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	
5 <i>Y</i> S	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	5YS	<i>AH</i> 32, <i>AH</i> 36, <i>DH</i> 32, <i>DH</i> 36, <i>EH</i> 32, <i>EH</i> 36, <i>FH</i> 32 or <i>FH</i> 36	
2 <i>Y</i> 40S	AH 40 or DH 40	2 <i>Y</i> 40S	AH 40 or DH 40	
3 <i>Y</i> 40S	AH 40, DH 40 or EH 40	3 <i>Y</i> 40S	AH 40, DH 40 or EH 40	
4 <i>Y</i> 40S	AH 40, DH 40, EH 40 or FH 40	4 <i>Y</i> 40S	AH 40, DH 40, EH 40 or FH 40	
5 <i>Y</i> 40S	AH 40, DH 40, EH 40 or FH 40	5 <i>Y</i> 40S	AH 40, DH 40, EH 40 or FH 40	
L 1S	E or RL 235A	L 1S	E or RL 235A	
L 2S	E, RL 235A, RL 235B, RL 325A or RL 325B	L 2S	E, RL 235A, RL 235B, RL 325A or RL 325B	
L 3S	RL 325A, RL 325B or RL 360	L 3S	RL 325A, RL 325B or RL 360	- Addition of Welding
L 91S	<i>RL</i> 9 <i>N</i> 490	<u>L 518</u>	<u>RL 5N390</u>	consumables for
NOTES;		L 91S	<i>RL</i> 9 <i>N</i> 490	RL5N390(5%Ni alloy
strength this cas buttered. (2) The ter	sile strength of higher strength steels AH 32, DH 32, EH 32 32 used in butt weld test assemblies is to be greater than	 (1) Notwithsta strength sto this case, buttered. (2) The tensil 	anding the requirements in this Table, normal or higher eels may be used for deposited metal test assembly. In test assemblies of grade L 91 are to be appropriately e strength of higher strength steels <i>AH</i> 32, <i>DH</i> 32, <i>EH</i> 32 used in butt weld test assemblies is to be greater than ² .	steel)

		Pres	ent					Ameno	dment			reason	
4. Deposi	ited metal	test				4. Depos	ited metal	test					
(3) Dep (a) (c)	 (1) ~ (2) <omitted></omitted> (3) Deposited metal tensile test (a) ~ (b) <omitted></omitted> (c) The tensile strength, yield strength and elongation of each test specimen are to comply with the requirements giver in Table 2.2.46, where the upper limit of tensile strength is exceeded, special consideration will be giver to the approval of the electrode, taking into consideration of the other mechanical properties shown in the test results and the chemical composition of deposited metal. able 2.2.46 Tensile and Impact Test Requirements for Deposited Metal test (2017) 						 (1) ~ (2) <same as="" present="" rules="" the=""></same> (3) Deposited metal tensile test (a) ~ (b) <same as="" present="" rules="" the=""></same> (c) The tensile strength, yield strength and elongation of each test specimen are to comply with the requirements given in Table 2.2.46, where the upper limit of tensile strength is exceeded, special consideration will be given to the approval of the electrode, taking into consideration of the other mechanical properties shown in the test results and the chemical composition of deposited metal. able 2.2.46 Tensile and Impact Test Requirements for Deposited Metal test (2017) (2021) 						
Grade of	Tensile	Yield		Imp	act test	Grade of	Tensile	Yield		Imp	act test		
welding consumabl es	strength (N/mm ²)	strength (N/mm ²)	Elongation (%)	Test temp. (℃)	Average absorbed energy (J)	welding consumabl es	strength (N/mm ²)	strength (N/mm ²)	Elongation (%)	Test temp. (℃)	Average absorbed energy (J)		
		<om< td=""><td>itted></td><td></td><td></td><td></td><td><</td><td>Same as the</td><td>present Rules</td><td>></td><td></td><td></td></om<>	itted>				<	Same as the	present Rules	>			
L 1S	400 ~ 560	305 min.	22 min.	- 40		L 1S	$400 \sim 560$	305 min.	22 min.	- 40			
L 2S	440 ~ 610	345 min.	22 min.	- 60	34 min.	L 2S	440 ~ 610	345 min.	22 min.	- 60	34 min.		
L 3S	490 ~ 660	375 min.	21 min.	- 60		L 3S	490 ~ 660	375 min.	21 min.	- 60		- Addition of Weldin	
L 91S	590 min	375 min. ⁽¹⁾	25 min.	- 196	27 min.	<u>L 51S</u>	<u>530 min</u>	<u>375 min.⁽¹⁾</u>	<u>25 min.</u>	- 120	<u>27 min.</u>	consumables for RL5N390(5%Ni alloy	
NOTE:	• • • • •					L 91S	590 min	375 min. ⁽¹⁾	25 min.	- 196	27 min.	steel)	
(1) 0.2 %	j yield stress					NOTE: (1) 0.2 %	b yield stress						
(4) <0	Omitted>					(4) <5	Same as the	present Rul	es>				

Present						Amendment					reason
 5. Butt weld test (1) <omitted></omitted> (2) Butt weld tensile tests (a) ~ (b) <omitted></omitted> (c) The tensile strength of test specimen is to comply with the requirements given in Table 2.2.47. Table 2.2.47 Tensile and Impact Test Requirements for Butt weld test (2017) Impact test Grade of Tensile Welding Tensile 						 5. Butt weld test (1) <same as="" present="" rules="" the=""></same> (2) Butt weld tensile tests (a) ~ (b) <same as="" present="" rules="" the=""></same> (c) The tensile strength of test specimen is to comply with the requirements given in Table 2.2.47. Table 2.2.47 Tensile and Impact Test Requirements for Butt weld test (2017) (2021) 					
consumab les	strength (N/mm ²)	temp. (℃)	Flat, Horizontal Overhead	Vertical upward, Vertical downward		consumab les	strength (N/mm ²)	temp. (℃)	Flat, Horizontal Overhead	Vertical upward, Vertical downward	
1S	400 min.	20	47 min.	34 min.		1 <i>S</i>		20	47 min.	34 min.	
2 <i>S</i>		0				28	400 min.	0			
3 <i>S</i>		- 20				3 <i>S</i>		- 20			
1 <i>YS</i>	490 min.	20				1YS	490 min.	20			
2 <i>YS</i>		0				2YS		0			
3 <i>YS</i>		- 20				3YS		- 20			
4 <i>YS</i>		- 40				4YS		- 40			
5 <i>YS</i>		- 60				5YS		- 60			
2 <i>Y</i> 40 <i>S</i>	510 min.	0	-	39 min.		2 <i>Y</i> 40 <i>S</i>	510 min.	0		39 min.	
3 <i>Y</i> 40 <i>S</i>		- 20				3 <i>Y</i> 40 <i>S</i>		- 20			
4 <i>Y</i> 40 <i>S</i>		- 40				4 <i>Y</i> 40 <i>S</i>		- 40			
5Y40S		- 60				5 <i>Y</i> 40 <i>S</i>		- 60			
L 1S	400 min. 440 min.	- 40	27 min.	27 min.		L 1S	400 min. –	- 40	27 min.	27 min.	– Addition of Weldi
L 2S		- 60				L 2S	440 min.	- 60			consumables for
L 3S	490 min.	- 60				L 3S	490 min.	- 60			RL5N390(5%Ni allo
L 91S	630 min.	- 196				<u>L 51S</u>	<u>530 min.</u>	<u>- 120</u>			steel)
						L 91S	630 min.	- 196			

Present	Amendment	reason
(3) ~ (4) <omitted></omitted>	(3) ~ (4) \leq Same as the present Rules>	
6. \sim 9. <omitted></omitted>	6. \sim 9. <same as="" present="" rules="" the=""></same>	
	605. <same as="" present="" rules="" the=""></same>	
606. One side welding consumables for normal strength steels, higher strength steels and steels for low tem- perature service.	606. One side welding consumables for normal strength steels, higher strength steels and steels for low tem- perature service.	
1. ~ 2. <omitted></omitted>	1. \sim 2. <same as="" present="" rules="" the=""></same>	
3. General provisions for tests	3. General provisions for tests	
 Kinds of test, number, thickness and dimensions of test assemblies, grades and number of test specimens to be taken from each test assembly for one side automatic welding consumables are to be as given in Table 2.2.55. Steel plates to be used for test assemblies are to be as given in Table 2.2.56. (3) ~ (8) <omitted> Table 2.2.55 Kinds of Test for One-side Automatic Welding </omitted> 	 (1) Kinds of test, number, thickness and dimensions of test assemblies, grades and number of test specimens to be taken from each test assembly for one side automatic welding consumables are to be as given in Table 2.2.55. (2) Steel plates to be used for test assemblies are to be as given in Table 2.2.56. (3) ~ (8) <same as="" present="" rules="" the=""></same> 	
Consumables (2017)	Table 2.2.55 Kinds of Test for One-side Automatic Welding Consumables <i>(2017) (2021)</i>	
$ \begin{array}{c ccccc} Grade & of & Weldin \\ welding & g \\ consumabl \\ es & ue \end{array} \begin{array}{c ccccc} Kind \\ of \\ test^{(4)} \end{array} \begin{array}{c ccccc} Test \\ Kind \\ of \\ test^{(4)} \end{array} \begin{array}{c cccccc} Test \\ Num \\ ber \end{array} \begin{array}{c cccccc} Test \\ Thickne \\ ss \\ (mm)^{(1)} \\ on \end{array} \begin{array}{c cccccc} Kind \\ of \\ test \\ me \\ ss \\ me \\ assembly \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c } \hline Grade & of & Weldin & & & & & & & & & & & & & & & & & & &$	
1, 2, 3, 1Y, 2Y, 3Y, 4Y, 5Y, 2Y 4 0, 3Y40, <omitted> 4Y 4 0, 5Y40, L1, L2, L3, L91</omitted>	1, 2, 3, $1Y, 2Y,$ $3Y, 4Y,$ $5Y,$ $2Y 4 0,$ $3Y40,$ $4Y 4 0,$ $5Y40,$ $L1, L2,$ $L3, L51,$ $L91$	- Addition of Welding consumables for
NOTES: <omitted></omitted>	NOTES: <pre></pre>	RL5N390(5%Ni alloy steel)

	Present		Amendment			
Table 2.2.56	Grades of Steel used for Test Assembly (2017)	Table 2.2.56 Grades	s of Steel used for Test Assembly (2017) (2021)			
Grade of we consumabl	(trade of steel used for test assembly)	Grade of welding consumables	Grade of steel used for test assembly ⁽¹⁾			
1	A	1	A			
2	A, B or D	2	A, B or D			
3	A, B, D or E	3	A, B, D or E			
1 <i>Y</i>	AH 32 or AH 36	1 Y	AH 32 or AH 36			
2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36	2 <i>Y</i>	AH 32, AH 36, DH 32 or DH 36			
3 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36	3 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32 or EH 36			
4 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	4 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	-		
5 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36	5 <i>Y</i>	AH 32, AH 36, DH 32, DH 36, EH 32, EH 36, FH 32 or FH 36			
2 <i>Y</i> 40	AH 40 or DH 40	2 <i>Y</i> 40	AH 40 or DH 40			
3 <i>Y</i> 40	AH 40, DH 40 or EH 40	3 <i>Y</i> 40	AH 40, DH 40 or EH 40			
4 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	4 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40			
5 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40	5 <i>Y</i> 40	AH 40, DH 40, EH 40 or FH 40			
L 1	E or RL 235A	L 1	E or RL 235A			
L 2	E, RL 235A, RL 235B, RL 325A or RL 325B	L 2	E, RL 235A, RL 235B, RL 325A or RL 325B			
L 3	RL 325A, RL 325B or RL 360	L 3	RL 325A, RL 325B or RL 360	- Addition of Welding		
L 91	<i>RL</i> 9 <i>N</i> 490	<u>L 51</u>	<u>RL 5N390</u>	consumables for		
NOTE:		L 91	RL 9N490	RL5N390(5%Ni alloy		
. ,	sile strength of higher strength steels <i>AH</i> 32, <i>DH</i> 32, <i>EH</i> 32 32 used in the test assemblies is to be greater than 490 2		ength of higher strength steels <i>AH</i> 32, <i>DH</i> 32, <i>EH</i> 32 in the test assemblies is to be greater than 490	steel)		
4. ~ 5. <	<omitted></omitted>	4. ~ 5. <same< td=""><td>as the present Rules></td><td></td></same<>	as the present Rules>			

Present						Ame	endme	nt		reason				
(2) Th giv	Omitted ne kinds zen in 1	l> s of test, Γ able 2. 2	stions6. Annual inspectionsof test, etc. in the annual inspection are to be as oble 2.2.58.6. Annual inspections (1) <same as="" present="" rules="" the=""> (2) The kinds of test, etc. in the annual inspection are to be as given in Table 2.2.58.s of Test for Annual Inspection (2017)Table 2.2.58 Kinds of Test for Annual Inspection (2017) (2021)</same>											
Grade of	Weldi			Test ass		Kind and number	Grade of	Weldi			Test ass	-	Kind and number	
welding consuma bles	ng techni que	Kind of test	Nu mb er	Dimens ion	Thickness (mm) ⁽¹⁾	of test specimens taken from test assembly	welding consumab les	ng techni que	Kind of test	Nu mb er	Dimens ion	Thickness (mm) ⁽¹⁾	of test specimens taken from test assembly	
1, 2, 3, 1Y, 2Y, 3Y, 4Y, 5Y, 2 Y 4 0, 3Y40, 4 Y 4 0, 5Y40, L1, L2, L3, L91				<om< td=""><td>itted></td><td></td><td colspan="4">1, 2, 3, 1Y, 2Y, 3Y, 4Y, 5Y, 2 Y 4 0, 3Y40, 4 Y 4 0, 5Y40, L1, L2, L3, L51, L91 (Same as the present Rules></td><td>- Addition of Welding consumables for RL5N390(5%Ni alloy</td></om<>	itted>		1, 2, 3, 1Y, 2Y, 3Y, 4Y, 5Y, 2 Y 4 0, 3Y40, 4 Y 4 0, 5Y40, L1, L2, L3, L51, L91 (Same as the present Rules>				- Addition of Welding consumables for RL5N390(5%Ni alloy			
			Note test (2) The car (3) The	e (1) of is to be butt we ried out position e as give	Table 2.3applied.eld testsby one-ras of noten in Fig	2.55, for or un teo ch an 2.2.3	the maxin ne-run and chnique. d selectio 5 (b).	num test thi 1 multi-run	anged according to ckness for approval technique are to be test specimens are	steel)				

Present	Amendment	reason
7. Welding consumables for stainless steel 6	607. Welding consumables for stainless steel	* Request for
1. ~ 4. <omitted></omitted>	1. \sim 4. <same as="" present="" rules="" the=""></same>	Establishment/Revision of Classification Technical Rul
5. Butt weld test	5. Butt weld test	(MET4800-308-2020)
 (1) Welding of butt weld test assemblies (a) Test assemblies as shown in Figs 2.2.37 and 2.2.38 are to be welded in each welding position (flat, horizontal, vertical upward, vertical downward and overhead) which is recommended by the manufacturer. 	 (1) Welding of butt weld test assemblies (a) Test assemblies as shown in Figs 2.2.37 and 2.2.38 are to be welded in each welding position (flat, horizontal, vertical upward, vertical downward and overhead) which is recommended by the manufacturer. 	
About 250	About 250	
Discard	Discard	
Tensile test specimen 50	Tensile test specimen 50	
Face bend test specimen 30	Face bend test specimen	
Root bend test specimen 30 Discard	Root bend test specimen Discard	
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Resolving the discrepancy between the Rules for thicknes
Kind of welding consum- ables Electrode for manual arc welding Elec- trode for TIG welding Wire for MIG welding Flux cored wire for semi-auto- matic welding	Kind of welding consum- ablesElectrode for manual arc weldingElec- trode for TIGWire for MIG weldingFlux cored wire for semi-auto- matic welding	of test samples
s(mm) Max. dia. of electrode Max.5 Max.5 Max.6	s(mm) Max. dia. of electrode Max.5 Max.5 Max.6	
Fig. 2.2.37 Butt Weld Test Assembly for Stainless Steel(Except for	Fig. 2.2.37 Butt Weld Test Assembly for Stainless Steel(Except for	
Submerged arc welding, Unit : mm) (b) <omitted></omitted>	Submerged arc welding, Unit : mm) (b) <same as="" present="" rules="" the=""></same>	
$(2) \sim (3) \langle \text{Omitted} \rangle$	(b) $<$ same as the present Rules> (2) \sim (3) $<$ Same as the present Rules>	
6. <omitted></omitted>	6. <same as="" present="" rules="" the=""></same>	
	608. \sim 609. <same as="" present="" rules="" the=""></same>	

GUIDANCE RELATING TO THE RULES FOR THE CLASSIFICATION OF STEEL SHIPS

(Guidance Part 2 Materials and Welding)

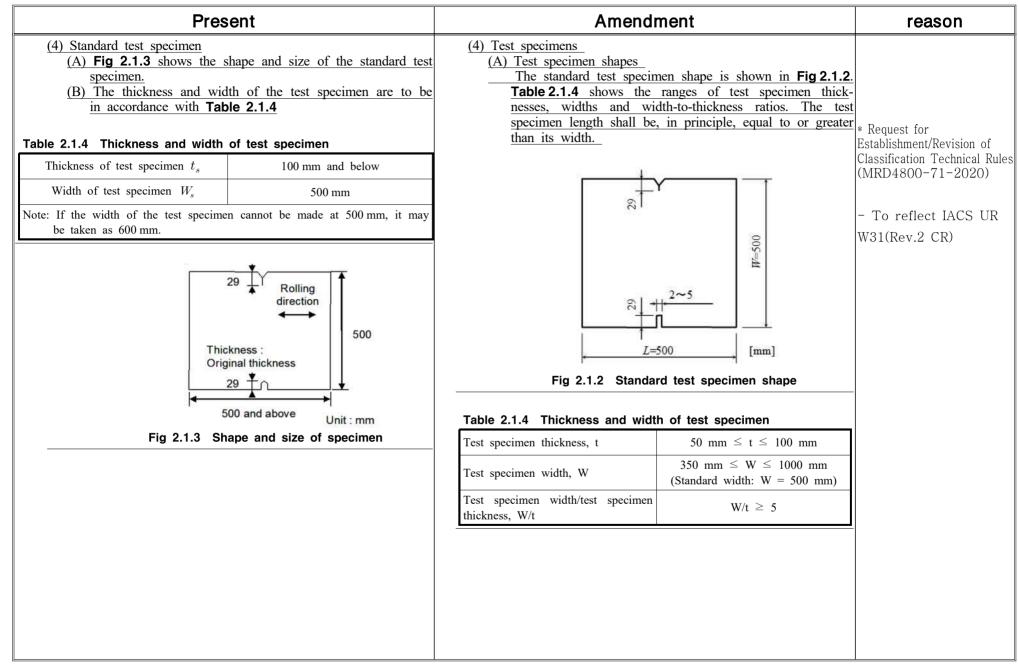
- For external opinion -

2020. 10.

Machinery Rule Development Team

- Main Amendments -

(1) Enter into force on 1 January 2021 (the date of application for certification of material & welding or the contract date for ship construction)


 Circular

• To reflect IACS UR W31(Rev.2 Dec 2019 CR)

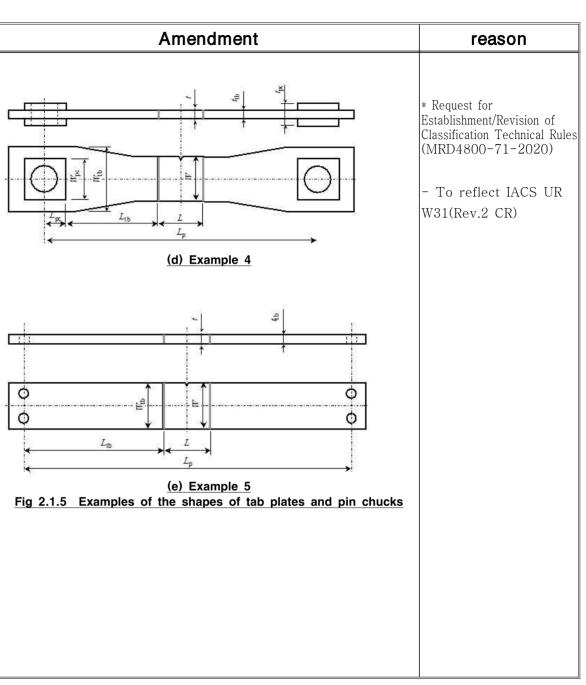
CHAPTER 1 MATERIALS Section 2 Test Specimens and Testing Procedures CHAPTER 1 MATERIALS Section 2 Test Specimens and Testing Procedures * Request for Establishment/Revision of Classification Technical Rule; (0) Scope In application to 203. of the Rules, the ESSO test method is used to estimate the brittle crack arrest toughness value K _{ca} of rolled steel plates for hull of thickness 100 mm or less. I Test method for Brittle crack arrest toughness, K _m (See Rule] * Request for Establishment/Revision of Classification Technical Rule; (MRD4800-71-2020) (1) Scope In application to 203. of the Rules, the ESSO test method is used to estimate the brittle crack arrest toughness value K _{ca} of rolled steel plates for hull of thickness 100 mm or less. (1) Scope (A) In application to 203. of the Rules, this test method for brittle crack arrest toughness(i.e. K _m) of steel using frac- ture mechanics parameter is applicable to hull structural steels with the thickness over 50 mm and not greater than 100 mm. (B) Setting a temperature gradient in the width direction of a test specimen, and applying uniform stress to the test specimen and causes crack arrest (temperature gradient Wall Rev.2 CR)
 type arrest testing). Using the stress intensity factor, calculate the brittle crack arrest toughness, K_{co}, from the applied stress and the arrest crack length. This value is the brittle crack arrest toughness at the temperature of the point of crack arrest (arrest temperature). To obtain K_{co} at a specific temperature followed by the necessary evaluation, the method specified in 2. can be used. (C) As a method for initiating a brittle crack, a secondary loading mechanism can also be used (see "Double tension type arrest test" specified in 3.).

		Present			Amendment	reason
(2) <u>S</u>	ymbols				eir significance nd their significance	
able 2.1	.3 Nomeno	slature	Symbol	Unit	Significance	
Symbol	unit	Meaning	<u>a</u>	mm	Crack length or arrest crack length	
<u>t</u> s	mm	Thickness of test specimen	E	N/mm^2	Modulus of longitudinal elasticity	* Request for
$\underline{W_{S}}$	mm	Width of test specimen	$\underline{E_i}$	Ī	Impact energy	Establishment/Revision of Classification Technical R
Ls	mm	Length of test specimen	$\underline{E_s}$	Ī	Strain energy stored in a test specimen	(MRD4800-71-2020)
<u>t</u> r	mm	Thickness of tab plate	$\underline{E_t}$	I	Total strain energy stored in tab plates and pin	
Wr	mm	Width of tab plate		<u>-</u>	chucks	- To reflect IACS U
<u> </u>		Length of tab plate	<u>F</u>	<u>MN</u>	Applied load	W31(Rev.2 CR)
L _P	 	Distance between pins	K	$N/mm^{3/2}$	Stress intensity factor	
		Length of crack projected on surface normal to the	K _{ca}	$N/mm^{3/2}$	Arrest toughness	
<u>a</u>	mm	line of load		mm	Test specimen length	
<u>a</u> a	mm	Maximum crack length at brittle crack arrest position	$\underline{L_p}$	mm	Distance between the loading pins	
<u>T</u>	<u>°C</u>	Temperature of test specimen	<u>L_{pc}</u>	mm	Pin chuck length	
dT/da	<u>°C/mm</u>	Temperature gradient of test specimen	$\underline{L_{tb}}$	mm	Tab plate length	
σ	N/mm ²	Gross stress in tested part $(load/W_S \cdot t_S)$	<u>T</u>	<u>°C</u>	Temperature or arrest temperature	
<u>K_{ca}</u>	<u>N/mm^{3/2}</u>	Brittle crack arrest toughness value	<u>t</u>	mm	Test specimen thickness	
			$\underline{t_{tb}}$	mm	Tab plate thickness	
	1		$\underline{t_{pc}}$	mm	Pin chuck thickness	
			W	mm	Test specimen width	
($(\overline{1})$	W_r Tab plate W_r Specimen (ι_r)	<u></u>	mm	Tab plate width	
	\bigcirc		W_{pc}	<u>mm</u>	Pin chuck width	
			$\underline{x_a}$	mm	Coordinate of a main crack tip in the width di- rection	
Fig 2.	1.2 Conce	ptual view of test specimen, tab and load jig	$\underline{x_{br}}$	<u>mm</u>	Coordinate of the longest branch crack tip in the width direction	
			$\underline{y_a}$	mm	Coordinate of a main crack tip in the stress loading direction	
			$\underline{y_{br}}$	mm	Coordinate of the longest branch crack tip in the stress loading direction	
			<u>o</u>	<u>N/mm²</u>	Applied stress	
			σ_{Y0}	$\Lambda N/mm^2$	Yield stress at room temperature	

Present	Amendment	reason
(3) Purpose The purpose of this test is to encourage the performance of a standard test for assessment of brittle crack arrest toughness with temperature gradient and to obtain the corresponding brittle crack arrest toughness value K _{en} :	 (3) Testing equipment. The following specifies the testing machine needed for conducting the brittle crack arrest test. Testing machine is used to apply tensile force to an integrated specimen, and impact equipment is used to generate a brittle crack on the test specimen. (A) Testing machine (a) Loading method Tensile load to an integrated specimen shall be hydraulically applied. The loading method to an integrated specimen shall be of a pin type. The stress distribution in the plate width direction shall be made uniform by aligning the centres of the loading pins of both sides and the neutral axis of the integrated specimen. (b) Loading directions The loading directions shall be either vertical or horizontal. In the case of the horizontal direction, test specimen surfaces shall be placed either perpendicular to the ground. (c) Distance between the loading pins The distance between the loading pins shall be approximately 3.4W or more, where W is the width of the test specimen. Since the distance between the loading pins sometimes has an effect on the load drop associated with crack propagation, the validity of the test results is determined by the judgment method described in (7) (A). (B) Impact equipment (a) Impact methods Methods to apply an impact load to an integrated specimen shall be of a drop weight type or of an air gun type. The wedge shall be end or or greater than that of the test specimen, and the wedge angle shall be greater than that of the test specimen, and the wedge angle shall be greater than that of the test specimen. 	 * Request for Establishment/Revision of Classification Technical Rul (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)

Present	Amendment	reason
 (C) The test specimens are to be taken from the same steel plate: (D) Test specimens are to be taken in such a way that the axial direction of the load is parallel to the rolling direction of the steel plate. (E) The thickness of the test specimen is to be the same as the thickness of the steel plate to be used in the vessel structure. (5) Test equipment (A) The test equipment to be used is to consist of pin load type hydraulic test equipment capable of tensile tests. (B) The distance between the pins is to be not less than 2,000 mm. The distance between pins refers to the distance between the centres of the pin diameters. (C) Drop weight type or air gun type impact equipment may be used for the impact energy required for generating brittle cracks. (D) The wedge is to have an angle greater than the upper notch of the test specimen, and an opening force is to be applied on the notch. (6) Test preparations (A) The test piece is to be fixed directly to the pin load jig or by means of weld joint through the tab plate. The overall length of the test specimen and tab plate is to be not less than 3W_s. The thickness and width of the tab plate are to be in accordance with Table 2.1.5. (B) Thermocouples are to be fitted at 50 mm pitch on the notch extension line of the test specimen. 	Pin cnuck (linckness: T_{pc}) W_{pc} W_{b} $Tab plate$ $Tab plate$ $Thickness: T_{tb}$	 * Request for Establishment/Revision of Classification Technical Rule (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)

	Present	Amendment	reason
sumed cour points separ	le crack is estimated to deviate from its pre- rese, thermocouples are to be fitted at two ated by 100 mm on the line of load from the sion line at the centre of width of the test		* Request for Establishment/Revision of Classification Technical Rules
Table 2.1.5 Allowable u	Thickness(t_r) Width(W_r)		(MRD4800-71-2020)
Dimensions of tab plate	$\frac{1}{0.8t_s^{(1)(2)} \le t_r \le 1.5 \cdot t_s} \qquad \qquad$	$\overbrace{L_{pc}} L_{tb} \xrightarrow{L}_{L_{p}}$	- To reflect IACS UR
Note:		(a) Example 1	W31(Rev.2 CR)
flection of stress wav therefore, considering	specimen thickness smaller than the test specimen, the re- e will be on the safer side for the assessment; the actual circumstances for conducting the test, kness is taken as $0.8t_s$.		
and crack g(E) The test sptogether witjig.(F) The impact	e measurements are necessary, strain gauges auges are to be fitted at specific locations. ecimen is to be fixed to the testing machine h the tab plate after welding and the pin load equipment is to be mounted. The construction		
energy is c be arranged	act equipment is to be such that the impact orrectly transmitted. An appropriate jig is to to minimize the effect of bending load due ct equipment.	(b) Example 2	
 (7) Test method (A) To elimina angular defe the test load (B) Cooling and on the side is fitted, or (C) The temper of 0.25 °C/m 0.3 W_s to 0 	te the effect of residual stress or correct the ormation of tab welding, a preload less than I may be applied before cooling. I heating may be implemented from one side opposite the side on which the thermocouple from both sides. ature gradient is to be controlled in the range nm to $0.35 ^{\circ}C$ /mm in the range of width from .7 W_s at the central part of the test specimen. specific temperature gradient is reached, the	Welds L_{pc} L_{b} L_{c}	
temperature	is to be maintained for more than 10 minutes, the specified test load may then be applied.		


Present

- (E) After maintaining the test load for at least 30 seconds, a brittle crack is to be generated by impact. The standard impact energy is taken as 20 to 60 J per 1 mm plate thickness. If the brittle crack initiation characteristics of the base metal are high, and it is difficult to generate a brittle crack, the impact energy may be increased to the upper limit of 120 J per 1 mm plate thickness.
- (F) Loading is stopped when the initiation, propagation, and arrest of crack have been confirmed. Normal temperature is restored, and if necessary, the ligament is broken by gas cutting and forcibly the specimen is broken by using the testing machine. Or, after the ductile crack has been propagated to an adequate length with the testing machine, the ligament is broken by gas cutting.
- (G) After forcing the fracture, photos of the fractured surface and the propagation route are to be taken, and the crack length is to be measured.

(8) Test results

- (A) The distance from the top of the test specimen including the notch to the maximum length in the plate thickness direction of the arrested crack tip is to be measured. If the crack surface deviates from the surface normal to the line of load of the test specimen, the projected length on the surface normal to the line of load is to be measured. In this case, if the trace of brittle crack arrest is clearly visible on the fractured surface, the first crack arrest position is taken as the arrest crack position.
- (B) From the results of thermocouple measurement, the temperature distribution curve is to be plotted, and the arrest crack temperature is to be measured corresponding to the arrest crack length.
- (C) The brittle crack arrest toughness value (K_{ca} value) of each test is to be determined by using the following formula:

$$-K_{ca} = \sigma \sqrt{\pi a} \sqrt{\left(\frac{2 W_s}{\pi a}\right) \tan\left(\pi a/2 W_s\right)}$$

Present	Amendment		reason
 (?) Report (A) The following items are to be reported: (a) Testing machine specifications; testing machine capacity, distance between prins (L_p) (b) Load jig dimensions; tab plate thickness (t_r), tab plate width(W_r), test specimen length including tab plate (L_s+2L_r) (c) Test specimen dimensions; plate thickness (t_r); test specimen width(W_s) and length(L_s) (d) Test conditions; preload stress, test stress, temperature distribution (figure or table) impact energy (e) Test results; crack arest length (a₃), temperature gradient at arrest position, brittle crack arrest toughness (K_{ea}) (f) Dynamic measurement results (if measurement is carried out); crack growth rate, strain change (g) Test specimen photos; fracture route, fractured surface (B) If the conditions below are not satisfied, the test results are to be treated as reference values: (a) The brittle crack arrest position is to be in the range of the hatched part shown in Fig 2.1.4. In this case; if the brittle crack arrest position is more than 50 mm away from the center of the test specimen in the longitudinal direction of the test specimen, the temperature of the thermocouple at the ±100 mm position is to be within ±3 °C of the thermocouple at the centre. 	(a) Tab plates The tolerances of tab plate dimention Table 2.1.5. When the lengths of tached to both ends of a test specified to both ends the blate of the blate test of the blate test of the blate to both ends of an integrated specified to both ends of an integrated specified to bar bearing strength. When pin chuck ength of the shorter one shall chuck length, L_{\muc} . The distance b is obtained from the equation be shown in Fig 2.1.5 (c), Example by setting $L_{\muc} = 0$.	$\begin{array}{c} \underbrace{\text{of the tab plates at-ecimen are different,}}_{\text{as the tab length,}}\\ \hline \\ \underbrace{0.8t \leq t_{tb} \leq 1.5t}_{W \leq W_{tb} \leq 2.0W}\\ \hline \\ \underbrace{3.0W \leq L+2L_{tb}}_{(2.0W \leq L+L_{tb})}\\ \hline \\ \hline \\ \underbrace{1.0 \leq L_{tb}/W_{tb}}\\ \hline \\ \hline \\ \underbrace{1.0 \leq L_{tb}/W_{tb}}_{\text{vech the pins}}\\ \hline \\ \underbrace{1.0 \leq L_{tb}/W_{tb}}_{\text{are asymmetric, the be used as the pins}}_{\text{eveen the pins, } L_p, \\ \hline \\ \hline \\ \hline \\ \underbrace{1.0 \leq L_{tb}}_{tb} \\ \hline \\ \hline \\ \underbrace{1.0 \leq L_{tb}}_{tb} \\ \hline \\ $	
Fig 2.1.4 Necessary conditions of arrest crack position	- 10 -		I

Present	Amendment	reason
 (b) The brittle crack should not have a distinct crack bifurcation while it propagates (c) From effective test results measured at more than 3 points, the linear approximation equation is to be determined on the Arrhenius plot, and K_{ex} at the desired temperature is to be calculated. In this case, data should exist on both sides, that is, the high temperature and low temperature sides around the assessed temperature. (10) Marking Marking for steel is generally to comply with the requirements given in 203. 1. of the Guidance has been applied, "BCA(Brittle Crack Arrest)" is to be suffixed to the marking.(e.g. EH40TM-BCA, EH47-H-BCA) 	 (a) Test specimen, tab plates, and pin chucks shall be connected by welding. The welds shall have a sufficient force bearing strength. (b) As shown in Fig 2.1.6 (a), the flatness (angular distortion, linear misalignment) of the weld between a test specimen and a tab plate shall be 4 mm or less per 1 m. In the case of preloading, however, it is acceptable if the value after preloading satisfies this condition. (c) As shown in Fig 2.1.6 (b), the accuracy of the 	Establishment/Revision of Classification Technical Rul (MRD4800-71-2020) - To reflect IACS UR

 SNew≥ (5) Test methods: (A) Temperature control methods (a) A predetermined temperature gradient shall be established arons a test specimen method. (b) Temperature andom shall be established in accord temperature gradient shall be established in accord temperature gradient shall be established in accord specific predictions (11) through (11), (11) A temperature gradient shall be established in a test specimen methods in the cash specimen width range of 0.3W - 0.7W. When measuring the emperatures are been the cash specime methods. (a) Temperature gradient shall be kept within ±2°C for 10 minutes or more, whereas when measuring the temperatures on the ford at dback. Surface positions of the test specimen, it shall be kept within ±2°C for 10 minutes or more taking account of the inst needed for soaking to the centre. If the temperature gradient at 0.3W - 0.7W is less than 0.25°C/mm, each areast may become difficult, and if the gradient is larger than 0.35°C/mm, the obtained rest longthma in the staperime with the temperature at the center position (i.e., 0.5W), and in the grange of ±100 min the test specimen with temperature at the center position in the kingle direction, shall be kept within ±5°C. However, when temperature measurement as not performed at the center position in the length direction, the division in the with dirext on the caset position in the with dir	Present	Amendment	reason
	<u>_New></u>	 (A) Temperature control methods (a) A predetermined temperature gradient shall be established across a test specimen width by soldering at least nine thermocouples to the test specimen for temperature measurement and control. (b) Temperature gradient shall be established in accordance with the following conditions (i) through (iii). (i) A temperature gradient of 0.25 ~ 0.35°C/mm shall be established in a test specimen width range of 0.3W ~ 0.7W. When measuring the temperatures at the centre position of the test specimen methickness, it shall be kept within ± 2°C for 10 minutes or more, whereas when measuring the temperatures on the front and back surface positions of the test specimen, it shall be kept within ± 2°C for (10+0.1t[mm]) minutes or more taking account of the time needed for soaking to the centre. If the temperature gradient at 0.3W ~ 0.7W is less than 0.25 °C/mm, crack arrest may become difficult, and if the gradient is larger than 0.35°C/mm, the obtained arrest toughness may be too conservative. (ii) At the test specimen width centre position (i.e., 0.5W), and in the range of ± 100 mm in the test specimen length direction, the deviation from the temperature at the centre position in the length direction, the average temperature at the closest position shall be used as the temperature at the centre position. 	Establishment/Revision of Classification Technical Rule: (MRD4800-71-2020) - To reflect IACS UR

Present	Amendment	reason
<new></new>	$(B) Crack initiation methods(a) Impact energy shall be applied to a test specimeninitiate a crack. However, if the energy is excessivit may influence on the test results. In that case, tresults shall be treated as invalid data in accordanwith the judgment criteria specified in (7) (B).(b) It is desirable to use equation below and Fig 2.1as guides for obtaining valid data.\underbrace{\frac{E_i}{t} \le \min(1.2\sigma - 40, 200)}Units : E_i[J], t[mm], \sigma[N/mm^2]Definition : min[the minimum of the two values]$	to ve, he cce * Request for Establishment/Revision of
	400 350 300 200 200 150 200 150 200 200 200 200 200 200 200 2	

Present	Amendment	reason
⊴New>	 (6) Test procedures (A) Pretest procedures (a) Install an integrated specimen in the testing machine. (b) Mount a cooling device on the test specimen. A heating device may also be mounted on the test specimen. (c) Install an impact apparatus specified in (3) (B), on the testing machine. Place an appropriate reaction force receiver as necessary. (d) The above procedures (a) through (c) do not necessarily specify the order of implementation, and they may be completed, for example, on the day before the test. (e) After checking that all measured values of the thermocouples indicate room temperature, start cooling. The temperature distribution and the holding time shall be as provided in the specifications in (5) (A). (f) Set an impact apparatus, as specified in (3) (B) so that it can supply predetermined energy to the test specimen. (g) Apply force to the test specimen until it reaches the predetermined value. This force is applied after temperature control to prevent autonomous crack initiation during force increase. Alternatively, temperature control may be implemented after loading. The loading rate and applied stress shall satisfy the conditions (i) and (ii) described below, respectively. (i) Loading rate There is no specification of loading rate, but it shall be determined considering that an excessively slow loading rate may prolong the temperature distribution to depart from the desired condition and an excessively fast loading rate may cause over-shooting of the load. (ii) Applied stress/yield stress shall be within the range shown by equation. 	(MRD4800-71-2020)

Present	Amendment	reason
≤New>	(h) To initiate a crack, the notch may be cooled further immediately before impact on the condition that the cooling does not disturb the temperature in the range of $0.3W \sim 0.7W$. The test temperature in this case shall be the measured temperature obtained from the temperature record immediately before the further	 * Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)

Present	Amendment	reason
<new></new>	 (c) Return the temperature of the test specimen to room temperature. For that purpose, the test specimen may be heat-tinted using a gas burner or the like. If it is necessary to prevent heating of the fracture surface, this method shall be avoided. (d) After gas-cutting an uncracked ligament, use the testing machine to cause ductile fracture, as necessary. Alternatively, it is also possible to gas-cut the uncracked ligament after using the testing machine to develop a ductile crack to a sufficient length. (D) Observation of fracture surfaces (a) Photograph the fracture surfaces and propagation path. (b) Measure the longest length of the arrest crack tip in the plate thickness direction, and record the result as the arrest crack length. The arrest crack length shall include the notch length. In the case where a crack deviates from the direction vertical to the loading direction, the length projected to the plane vertical to the loading line is defined as the arrest crack length. In the following cases, however, judge the results according to the methods described for each case. (i) Crack re-initiation In the case where a brittle crack has re-initiated from an arrested crack, the original arrest position is defined as the arrest crack and re-initiated cracks are completely separated by a stretched zone can be clearly observed. In the case where a crack continuously propagates partially in the thickness direction, the position of the stretched zone can be clearly observed. In the case where a crack continuously propagates partially in the thickness direction, the position of the stretched zone can be clearly observed. 	 * Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)

Present	Amendment	reason
< <u>New></u>	(ii) Crack branching In the case where a crack deviates from the direction vertical to the loading direction, the length projected to the plane vertical to the loading line is defined as the arrest crack length. Similarly, in the case of crack branching, the length of the longest branch crack branch crack length. More specifically, from the coordinates $(x_{u,}, y_{u})$ of the branch crack tip position shown in Fig 2.1.8 , obtain the angle Θ from the x-axis and define xa as the arrest crack length, a. Here, x is the coordinate in the test specimen width direction, and the side face of the impact side is set as x=0; y is the coordinate in the test specimen length direction, and the notch position is set as y=0.	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)
	Test specimen width W (a) Case of branching from notch (b) Case of branching during brittle crack propagation Fig 2.1.8 Measurement methods of main crack and branch crack lengths (c) Prepare a temperature distribution curve (line diagram showing the relation between the temperature and the distance from the test specimen top side) from the thermocouple measurement results, and obtain the arrest temperature T corresponding to the arrest crack length.	

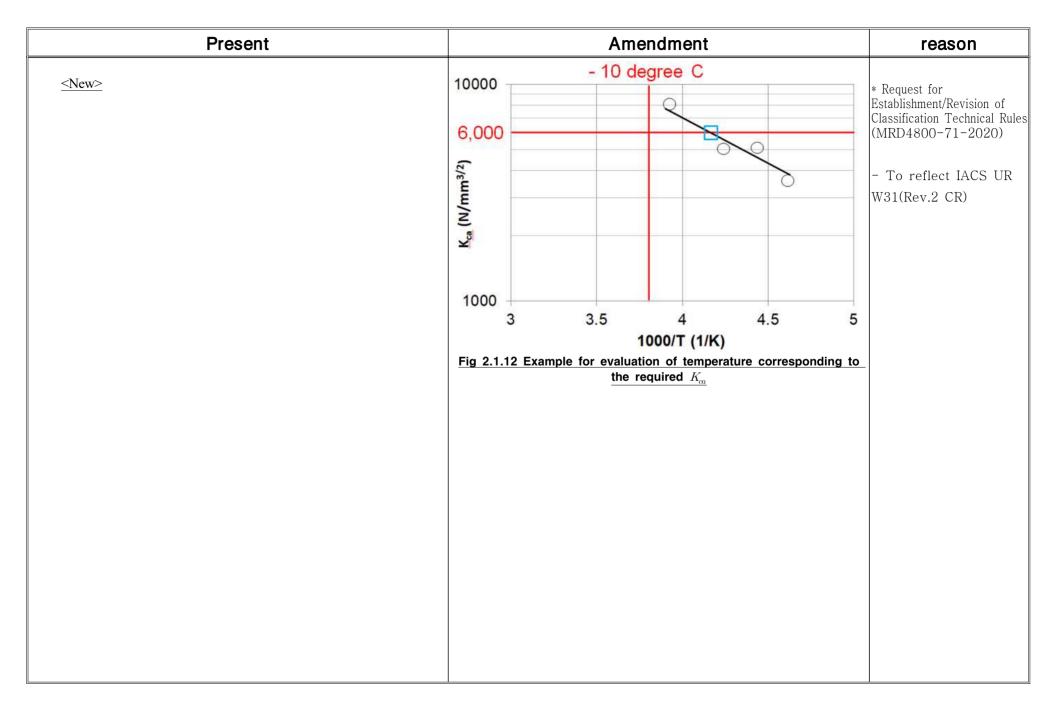
Present	Amendment	reason
≤New>	(7) Determination of arrest toughness. (A) Judgment of arrested crack When an arrested crack satisfies all of the conditions (through (d) below as shown in Fig2.1.9, the length the arrested crack determined by (6) (D) is valid. If a of the conditions is not met, the arrest toughness cale lated from (7) (C) is invalid. If the conditions of the co	of ny

Present	Amendment	reason
New>	(a) Conditions for crack propagation path All of the crack path from crack initiation to ar shall be within the range shown in Fig 2.1. However, in the case where a main crack tip within this range but a part of the main crack pas outside the range, the arrest toughness may be sessed as valid if the temperature at the most viated position of the main crack in the y direct is lower than that at y=0, and also K for the m crack falls within $\pm 5\%$ of K for a straight crack the same a. The calculation method of Ks for main crack and a straight crack is obtained fr equation below. $\underline{K} = K_1 \cos^3(\frac{\phi}{2}) + 3K_{\Pi} \cos^2(\frac{\phi}{2}) \sin(\frac{\phi}{2})$ The second	10 . <u>lies</u> <u>ses</u> * Request for <u>as-</u> Establishment/Revision of <u>de-</u> Classification Technical Rule <u>ion</u> (MRD4800-71-2020) <u>ain</u> <u>of</u> <u>the</u> - To reflect IACS UR

Present	Amendment	reason
 ≤New>	Amendment(b) Conditions for arrest crack length Equation (3) ensures minimal influence of force drop at the centre of the specimen which might be caused by crack propagation and reflection of the stress 	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)

Present	Amendment	reason
<u><new></new></u>	(B) Assessment of impact energy Impact energy shall satisfy equation below. If it does not satisfy the equation, the value of arrest toughness calculated from the equations in (C) is invalid. Conditions for impact energy:	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020)
	$\frac{E_i}{E_s + E_t} \le \frac{5a - 1050 + 1.4 W}{0.7 W - 150} \ , \ \ 0.3 \le \left(\frac{a}{W}\right) \le 0.7 \ \cdots \cdots \cdots (6)$	- To reflect IACS UR
	units: a [mm], and W [mm]. $\underline{E_i}$ [impact energy calculated from the equation (7), J]	W31(Rev.2 CR)
	E_s [energy calculated from the equation (8), J] E_t [energy calculated from the equation (9), J]	
	If equation (6) is not satisfied, the influence of impact energy on the stress intensity factor is too large to obtain an accurate arrest toughness.	
	In the case where the tab plates are multistage as shown in Fig 2.1.5 (b), calculate and total the strain energy of each tab plate using equation (8).	
	In the case where tab plate widths are tapered as shown in Fig 2.1.5 (d), calculate the strain energy based on elastostatics.	
	$\frac{\text{Units: } E_{s}[J], E_{t}[J], F[MN], E[N/mm^{2}], L[mm], W[mm],}{\underline{t[mm]}}$	

Present	Amendment	reason
<u><new></new></u>	$\frac{(C) \text{ Calculation of arrest toughness}}{\text{The arrest toughness, } K_{\alpha}, at the temperature, T, shall be calculated from equation (10) using the arrest crack length, a, and the applied stress, \sigma, judged by (A). Calculate \sigma from equation (11).$	Establishment/Revision of
		- To reflect IACS UR W31(Rev.2 CR)
	 Units : F[MN], W[mm], t[mm] If the conditions specified in (A) and (B) are not satisfied, the K_{ca} calculated from equation (10) is invalid. (8) Reporting Using Table 2.1.6, the following items shall be reported. (A) Test material: Steel type and yield stress at room temperature (B) Testing machine: Capacity of the testing machine (C) Test specimen dimensions: Thickness, width, length, angular distortion, and linear misalignment (D) Integrated specimen dimensions: Tab plate thickness, tab plate width, integrated specimen length including the tab plates, and distance between the loading pins (E) Test conditions: Applied force, applied stress, temperature gradient, impact energy, and the ratio of impact energy to the strain energy stored in the integrated specimen (sum of test specimen strain energy and tab plate strain 	
	 (sum of test specifien strain energy and tab plate strain energy) (F) Test results (a) Judgment of arrest: Crack length, presence or absence of crack branching, main crack angle, presence or absence of crack re-initiation, and arrest temperature (b) Arrest toughness value (G) Temperature distribution at moment of impact: Thermocouple position, temperature value, and temperature distribution (H) Test specimen photographs: Crack propagation path (one side), and brittle crack fracture surface (both sides) (I) Dynamic measurement results(if necessary): History of crack propagation velocity, and strain change at pin _ 2 chucks_ 	


<New>

|--|

<u>Item</u>		Details	<u>Symbol</u>	<u>Conditions/</u> <u>Results</u>	<u>Unit</u>	<u>Valid/</u> Invalid
	Steel type		_		_	-
(1) Test material	Yield stress at 1	room temperature	σ_{Y0}		<u>N/mm²</u>	_
(2) Test equipment	Testing machine capacity		-		<u>MN</u>	_
	Thickness		t		mm	
	Width		W		mm	
(3) Test specimen	Length		L		mm	
	Angular distortio	on + linear misalignment	_		<u>mm/m</u>	
	Tab plate thickr	iess	t_{tb}		mm	
	Tab plate width		$\overline{W_{tb}}$		mm	
(4) Integrated	Test specimen l	ength including a tab plate	$\underline{L + L_{tb}}$		mm	
specimen dimensions	Distance betwee	n loading pins	\underline{L}_p		mm	
	Applied force		<u>F</u>		MN	
	Applied stress		<u></u> <u></u> <u></u>		<u>N/mm²</u>	
(5) Test conditions	Temperature gradient		<u> </u>		<u>°C /mm</u>	
	Impact energy		E_i		J	
Ratio c	Ratio of im stored in integra	pact energy to strain energy tted specimen	$\underline{E_i/(E_s+E_t)}$		_	
		Crack length	a		mm	
		Presence/absence of crack branching				_
		Ratioofbranchcracklengthtomaincrack	$\underline{x_{br}/x_a}$		_	
		Main crack angle	Θ		degree(°)	
		Presence/absence of crack re-initiation	<u> </u>		_	
		<u>Temperature</u> at crack ar- rest position	Ţ		<u>°C</u>	
	Arrest toughness value		$\underline{K_{\alpha a}}$	_	$N/mm^{3/2}$	
	Temperature me	asurement position	-	Attached	_	_
	Temperature ment position	at each temperature measure-	_	Attached	<u>°C</u>	_
of impact	Temperature dis		_	Attached	_	
(8) Test specimen	Crack propagation	on path		Attached	_	
(8) Test specimen photographs	Brittle crack fra	cture surface (both sides)	_	Attached	_	
	History of crack	propagation velocity	_	Attached	_	
(9) Dynamic measurement results	Strain change at	pin chucks	_	Attached	_	

Present	Amendment	reason
<u>⊴New></u>	 2. Method for Obtaining K_a at a specific temperature and the evaluation (1) Application (1) Application This requirement specifies the method for conducting multiple tests specified in 1. to obtain K_a value at a specific temperature T_D. (2) Method A number of experimental data show dependency of K_{ca} on arrest temperature, as expressed by equation below, where T_K 	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020)

Present	Amendment	reason
<u></u>	Amendment (3) Evaluation The straight-line approximation of arrhenius plot for valid K _m data by interpolation method are to comply with either the following (A) or (B). (A) The evaluation temperature of K _m (i.e10 degree C) is located between the upper and lower limits of the arrest temperature, with the K _m corresponding to the evaluation temperature not lower than the required K _m (e.g. 6,000 N/mm ^{3/2}), as shown in Fig 2.1.11. -10 degree C 10000 (a) The upper and upper and upper and upper	* Request for Establishment/Revision of Classification Technical Rules
	 3 3.5 4 4.5 5 1000/T (1/K) Fig 2.1.11 Example for evaluation of K_{ca} at -10 degree C (B) The temperature corresponding to the required K_{ca} (e.g. 6,000 N/mm^{3/2} or 8,000 N/mm^{3/2}) is located between the upper and lower limits of the arrest temperature, with the temperature corresponding to the required K_{ca} not higher than the evaluation temperature (i.e10 degree C), as shown in Fig 2.1.12. (C) If both of (1) and (2) above are not satisfied, conduct additional tests to satisfy this condition. 	

Present	Amendment	reason
<new></new>	3. Double tension type arrest test	
	(1) Application	
	(A) The values of arrest toughness obtained by this method	
	can be considered the same as the results obtained by	
	the brittle crack arrest toughness test specified in 1	Classification Technical Rules
	(B) The specifications described in 1. shall be applied to	(MRD4800-71-2020)
	conditions not mentioned in these requirements.	
	(2) Features of this test method	- To reflect IACS UR
	A double tension type arrest test specimen consists of a main	
	plate and a secondary loading tab. The main plate is a test	W31(Rev.2 CR)
	plate for evaluating brittle crack arrest toughness. The secon-	
	dary loading tab is a crack starter plate for assisting a brittle	
	crack to run into the main plate. After applying a pre-	
	determined tension force and a temperature gradient to the	
	main plate, a secondary force is applied to the secondary	
	loading tab by a secondary loading device to cause a brittle	
	crack to initiate and run into the main plate. The arrest	
	toughness is evaluated from the arrest temperature and the crack length in the main plate.	
	The narrow connection part of the main plate and the secon-	
	dary loading tab in this test suppress the flow of the tension	
	stresses of the secondary loading tab into the main plate.	
	(3) Test specimen shapes	
	The recommended shapes of the entire double tension type	
	arrest test specimen and the secondary loading tab are shown	
	in (a) and (b) of Fig 2.1.13 , respectively. Clause (4) (B) of	
	1. is applied to the shapes of the tab plates and pin chucks.	
	Secondary → O O O 460	
	∩ Machined for easy britte crack	
	Shaped for shess deconcentration	
	(e g, hrge curvature radius) [Imim]	
	500 [mm]	
	(a) Example of shape of (b) Example of shape of	
	entire test specimen secondary loading tab	
	Fig 2.1.13 Test specimen shapes for double tension type	
	arrest test	

Present	Amendment	reason
<u>≺New></u>		Establishment/Revision of Classification Technical Rule (MRD4800-71-2020)

Present	Amendment	reason
<u>≤New></u>	 4. Outline of requirements for undertaking isothermal Crack Arrest Temperature Application These requirements are to be applied according to the scope defined in Pt2, Ch1, 312. of the Rules. These are requirements for test procedures and test conditions when using the isothermal crack arrest test to determine a valid test result under isothermal conditions and in order to establish the crack arrest temperature(CAT). These requirements are applicable to steels with thickness over 50mm and not greater than 100mm. This method uses an isothermal temperature in the test specimen being evaluated. Unless otherwise specified in these requirements, the other test parameters are to be in accordance with 1 Table 2.1.35 of Pt2, Ch1, 312. of the Rules gives the relevant requirements for the brittle crack arrest property described by the crack arrest temperature(CAT). The manufacturer is to submit the test procedure to the Society for review prior to testing. Where required, the method can also be used for determining the lowest temperature at which a steel can arrest a running brittle crack (the determined CAT) as the material property characteristic in accordance with (8) (C). Symbols and their significance Table 2.1.7 supplements Table 2.1.3 with specific symbols for the isothermal test. 	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)

Present			Amendment	reason
< <u>New></u> <u>Table 2.1.7 Symbols and their significance</u>				
	Symbol	Unit	Significance	* Request for
	<u>t</u>	mm	Test specimen thickness	Establishment/Revision of Classification Technical Rules
	L	mm	Test specimen length	(MRD4800-71-2020)
	<u>W</u>	mm	Test specimen width	
	$\underline{a_{MN}}$	mm	Machined notch length on specimen edge	- To reflect IACS UR
	\underline{L}_{SG}	<u>mm</u>	Side groove length on side surface from the speci- men edge. L_{SG} is defined as a groove length with constant depth except a curved section in depth at side groove end.	W31(Rev.2 CR)
	$\underline{d_{SG}}$	mm	Side groove depth in section with constant depth	
	$L_{EB-\min}$	<u>mm</u>	Minimum length between specimen edge and electron beam re-melting zone front	
	$\underline{L_{EB-s1,-s2}}$	mm	Length between specimen edge and electron beam re-melting zone front appeared on both specimen side surfaces	
	$\underline{L_{LTG}}$	<u>mm</u>	Local temperature gradient zone length for brittle crack runway	
	$\underline{a_{arrest}}$	<u>mm</u>	Arrested crack length	
	T_{target}	<u>°C</u>	Target test temperature	
	T_{test}	<u>°C</u>	Defined test temperature	
	$\underline{T_{arrest}}$	<u>°C</u>	Target test temperature at which valid brittle crack arrest behaviour is observed	
	<u></u>	N/mm^2	Applied test stress at cross section of W x t	
	<u>SMYS</u>	<u>N/mm²</u>	Specified minimum yield strength of the tested steel grade to be approved	
	<u>CAT</u>	<u>°C</u>	$\frac{Crack arrest temperature, the lowest temperature,}{T_{arrest}, at which running brittle crack is arrested}$	

Present	Amendment	reason
<u>≺New></u>	 (3) Testing equipment (A) The test equipment to be used is to be of the hydrau type of sufficient capacity to provide a tensile lo equivalent to ²/₃ of SMYS of the steel grade to approved. (B) The temperature control system is to be equipped maintain the temperature in the specified region of t specimen within ±2 °C from T_{target}. (C) Methods for initiating the brittle crack may be of draweight type, air gun type or double tension tab platype. (D) The detailed requirements for testing equipment a specified in 1. (3). (4) Test specimens (A) Impact type crack initiation (a) Test specimens are to be in accordance with 1. (4) specimen dimensions are shown in Fig 2.1.14. T test specimen width, W shall be 500mm. The test specimen length, L shall be equal to or greater th 500mm. 	ad Establishment/Revision of Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR) tre 4), he est
	$\begin{array}{c} \begin{array}{c} a_{MN}=29 \stackrel{+1}{} \\ \hline \\ 0 \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	<u>n</u>

Present	Amendment	reason
<u><new></new></u>		 * Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)

Present	Amendment	reason
<u>≤New></u>	 the embrittled zone to keep brittle crack propagation straight. Side grooves shall be machined in the speci- fied cases as specified in this section. (b) In EBW embrittlement, side grooves are not necessa- rily mandatory. Use of EBW avoids the shear lips. However, when shear lips are evident on the frac- tional straight in the section. 	 * Request for Establishment/Revision of Classification Technical Rule (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)
	_ 33 _	

Present	Amendme	nt	reason
< <u>New></u>		zone ed zone shall be nominally systems of EBW and LTG.	* Request for
	(1) No side groove	(2) With side groove	Establishment/Revision of Classification Technical Rules (MRD4800-71-2020)
	Fig 2.1.16Side groove configure(b)EBW zone length is reg on the fracture surface2.1.16, L_{EB-min} between front line, and L_{EB-s1} and (c)(c)The minimum length II EBW front line, L_{EB-min} 150 mm. However, it L_{EB-min} is no smaller to specimen thickness. Wh 150 mm, a temperature s ered into T_{test} (See (8) ((d) Another two are the lend and EBW front appeare	ulated by three measurements after test as shown in Fig a specimen edge and EBW d L_{EB-s2} . between specimen edge and should be no smaller than can be acceptable even if han 150mm-0.2t, where t is en L_{EB-min} is smaller than afety margin shall be consid- (A) (b)). ngths between specimen edge d on both side surfaces, as L_{EB-s2} . Both of L_{EB-s1} and er than 150 mm.	- To reflect IACS UR W31(Rev.2 CR)

Present	Amendment	reason
<u>≤New></u>	the integrated specimen, which is welded with specimen, tab plates and pin chucks, shall be also within the re- quirement in 1 . (4) (C). (5) Test method (A) Preloading Preloading at room temperature can be applied to avoid	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)
	$ \begin{array}{c} $	

Present	Amendment	reason
<new></new>	 (c) For EBW embrittlement (i) The temperatures of the thermocouples across the range of 0.3W-0.7W in both width and longitudinal directions are to be controlled within ± 2°C of the target test temperature. T_{langet}. (ii) When all measured temperatures across the range of 0.3W-0.7W have reached T_{langet} steady temperature control shall be kept at least for 10+0.1 x (Imm] minutes to ensure a uniform temperature distribution into mid-thickness prior to applying test load. (iii) The machined notch tip can be locally cooled to easily initiate brittle crack. Nevertheless, the local cooling shall not disturb the steady temperature control across the range of 0.3W-0.7W. (d) For LTG embrittlement (i) In LTG system, in addition to the temperature measurements shown in Fig 2.1.17, the additional temperature measurement at the machine notch tip, A₀ and B₀ is required. Thermocouples positions within LTG zone are shown in Fig 2.1.18. Fig 2.1.18 Detail of LTG zone and additional thermocouple A₀	Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)

Present	Amendment	reason
New>	 (ii) The temperatures of the thermocouples across the range of 0.3W~0.7W in both width and longitudinal directions are to be controlled within ± 2 °C of the target test temperature, T{longet}. However, the temperature measurement at 0.3W (location of A_a and B_a)shall be in accordance with (f) below. (iii) Once the all measured temperatures across the range of 0.3W~0.7W have reached T_{longet}, steady temperature control shall be kept at least for 10+0.1 x t[mm] minutes to ensure a uniform temperature distribution into mid-thickness, then the test load is applied. (iv) LTG is controlled by local cooling around the machined notch tip. LTG profile shall be recorded by the temperature measurements from A_a to A_a shown in Fig 2.1.19. (v) LTG zone is established by temperature gradients in three zones, Zone I, Zone II and Zone III. The acceptable range for each temperature gradient is listed Table 2.1.8. (vi) Two temperature measurements at A₂, B₂ and A₃, B₃ shall be satisfied the following requirements. T at A_a, T at B_a < T_{tanget} - 2 °C T at A_a < 5 °C (vii) No requirements for T at A_a and T at A_a satisfy the requirements above. Face B is the same. (viii) The temperatures for M_a, b_a should be decided at test planning stage refer to Table 2.1.8. 	 Establishment/Revision of Classification Technical Rule: (MRD4800-71-2020) To reflect IACS UR W31(Rev.2 CR)

	Amendment	reason
<u>_New></u>	AmendmentThe state of the state of th	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR) perature /mm

Present	Amendment	reason
≤New≥	 (c) The test load shall be held at the test target load or higher for a minimum of 30 seconds prior to crack initiation. (d) Brittle crack can be initiated by impact or secondary tab plate tension after all of the temperature measure- 	Establishment/Revision of Classification Technical Rules

Present	Amendment	reason
<u><new></new></u>	 Fig 2.1.20 Allowable range of main crack propagation path (C) Fracture surface examination, crack length measuremen and their validation (a) Fracture surface examination, crack length measuremen and their validation (a) Fracture surface shall be observed and examined. The crack "initiation" and "propagation" are to be checkee for validity and judgements recorded. The crack "initiation trigger point is clearly detected at side groove root, other than the V-notch tip, the test shall be invalid. (c) In EBW embrittlement setting, EBW zone length is quantified by three measurements of L_{ERI-ex}, L_{ERI-ex} and L_{ERI-min}, which are defined in 4.5. When eithe or both of L_{ERI-ex} and L_{ERI-exi} and L_{ERI-exi} and L_{ERI-exi} and L_{ERI-exi} and L_{ERI-exi} and I_{LERI-exi} and I_{LERI-e}	

Present	Amendment	reason
≤New>	projected defect part to the total thickness is defined as defect line fraction (See Fig 2.1.21). When the defects line fraction is larger than 10 %, the test shall be invalid.	Establishment/Revision of

Present	Amendment	reason
<u>_New></u>		 * Request for Establishment/Revision of Classification Technical Rul (MRD4800-71-2020) - To reflect IACS UR W31(Rev.2 CR)

Present	Amendment	reason
	(b) If $L_{EB-\min}$ in EBW embrittlement is no smaller than	
<u><new></new></u>	<u>150 mm</u> , T_{test} can be defined to equal with T_{target} . If	* Request for
	not, T_{test} shall be equaled with $T_{target} + 5$ C.	Establishment/Revision of
	(c) In LTG embrittlement, T_{test} can be equaled with	
	$\frac{T_{target}}{T_{target}}$	(MRD4800-71-2020)
	(d) The final arrest judgment at T_{test} is concluded by at least two tests at the same test condition which are	
	least two tests at the same test condition which are	
	judged as "arrest".	- To reflect IACS UR
	$\frac{(B) T_{arrest} \text{ determination}}{When at least repeated two "arrest" tests appear at the$	W31(Rev.2 CR)
	When at least repeated two "arrest" tests appear at the same T_{taroet} , brittle crack arrest behaviour at T_{taroet} will	
	be decided $(T_{arrest} = T_{target})$. When a "propagate" test re- sult is included in the multiple test results at the same	
	T_{target} , the T_{target} cannot to be decided as T_{arrest} .	
	(C) CAT determination I_{target} cannot to be decided as I_{arrest} .	
	(a) When CAT is determined, one "propagate" test is	
	needed in addition to two "arrest" tests. The target	
	test temperature, T_{target} for "propagate" test is recom-	
	mended to select 5 °C lower than T_{arrest} . The mini-	
	multiplicative of T_{arrest} is determined as CAT.	
	(b) With only the "arrest" tests, without "propagation"	,
	test, it is decided only that CAT is lower than T_{test}	
	in the two "arrest" tests, i.e. not deterministic CAT.	-
	(9) Reporting	
	The following items are to be reported.	
	(A) Test material: grade and thickness	
	(B) Test machine capacity	
	(C) Test specimen dimensions: thickness t; width W and	
	length L; notch details and length a_{MN} side groove de-	-
	tails if machined	
	(D) Embrittled zone type: EBW or LTG embrittlement	
	(E) Integrated specimen dimensions: Tab plate thickness, tab	
	plate width, integrated specimen unit length including the	
	tab plates, and distance between the loading pins, angular	•
	distortion and linear misalignment	
	(F) Brittle crack trigger information: impact type or double	
	tension. If impact type, drop weight type or air gun type,	
	and applied impact energy.	

Present	Amendment	reason
	(G) Test conditions; Applied load; preload stress, test stress	
<u><new></new></u>	- Judgements for preload stress limit, hold time require-	
	ment under steady test stress.	
	(ii) iest temperature: complete temperature records what the	* Request for
	mocouple positions for measured temperatures (figure	Establishment/Revision of Classification Technical Rules
	and/or table) and target test temperature.	(MRD 4800 - 71 - 2020)
	- Judgements for temperature scatter limit in isothermal	
	region.	
	- Judgement for local temperature gradient requirements	- To reflect IACS UR
	and holding time requirement after steady local temper-	W31(Rev.2 CR)
	ature gradient before brittle crack trigger, if LTG system	WOT(Rev.2 CR)
	$\frac{\text{is used.}}{(1) - C - c - b} = \frac{1}{2} \int $	
	(I) Crack path and fracture surface: tested specimen photos	
	showing fracture surfaces on both sides and crack path side view; Mark at "embrittled zone tip" and "arrest"	
	positions.	
	- Judgment for crack path requirement.	
	- Judgment for cleavage trigger location (whether side	
	groove edge or V-notch edge).	
	(J) Embrittled zone information:	
	(a) When EBW is used: L_{EB-s1} , L_{EB-s2} and L_{EB-min}	
	- Judgement for shear lip thickness requirement	
	- Judgment whether brittle fracture appearance area	
	continues from the EBW front line	
	- Judgement for EBW defects requirement	
	- Judgement for EBW lengths, L_{EB-s1} , L_{EB-s2} and	
	$L_{EB-\min}$ requirements	
	(b) When LTG is used: L_{LTG}	
	- Judgment for shear lip thickness requirement	
	(c) Test results:	
	(i) When the specimen did not break into two	
	pieces after brittle crack trigger, arrested crack	
	length a _{arrest}	
	(ii) When the specimen broke into two pieces after	
	brittle crack trigger,	
	$\frac{\text{not.}}{(\text{iii})}$ If a superior description of the second state of the second st	
	(iii) If so, arrested crack length a_{arrest} :	
	- Judgement for a_{arrest} in the valid range (0.3W <	
	$\underline{a_{arrest} \leq 0.7W}$ Final independent either "emerget" "proposite" or	
	- Final judgement either "arrest", "propagate" or	
	<u>"invalid"</u>	

Present	Amendment	reason
<u>(K) <new></new></u>	(K) Dynamic measurement results: History of crack prop- agation velocity, and strain change at pin chucks, if <u>needed</u>	* Request for
Section 3 Rolled Steels	Section 3 Rolled Steels	Establishment/Revision of Classification Technical Rule
301. \sim 310. <omitted></omitted>	301. \sim 310. <same as="" guidance="" present="" the=""></same>	(MRD4800-71-2020)
311. YP47 Steel Plates	311. <deleted></deleted>	- To reflect IACS UR
 Application The following (2) and (3) from "The requirements other than those specified in this instruction" in 311. (4) of the Rules are to be in accordance with this Guidance. In the case where YP47 steel is applied as brittle crack arrest steel required by Pt 7, Annex 7-8 of the Guidance, the brittle crack arrest properties are to be in accordance with 2 Brittle fracture toughness of welded joints is to comply with Pt 2, Ch 2, Sec. 4 of the Rules and this Guidance. 		W31(Rev.2 CR)
 Brittle crack arrest steel is defined as steel plate with measured crack arrest properties at manufacturing approval stage, K_{cπ} ≥ 6,000 N/mm^{3/2}-at -10 °C or other methods based on the determination of Crack Arrest Temperature(CAT). (1) The Crack Arrest Fracture Toughness K_{cπ} is to be determined by the ESSO Test shown in 203. of this Guidance or other alternative method. Crack Arrest Temperature (CAT) may also be determined by the Double Tension Wide Plate Test or equivalent. The use of small scale test parameters such as the Nil Ductility Test Temperature (NDTT) may be considered provided that mathematical relationships of NDTT to K_{cπ} or CAT can be shown to be valid. (2) Where the thickness of the steel exceeds 80 mm the required K_{cπ} value or alternative crack arrest parameter for the brittle crack arrest steel plate is to be specifically agreed with the Society. 		

Present	Amendment	reason
<u>312. <new></new></u>	 312. Brittle crack arrest steels (2021) 1. Brittle crack arrest properties (1) The K_{cn} value in Table 2.1.45 Note (3) of 312. of the Rules are obtained by performing a brittle crack arrest test in accordance with Pt 2, Ch 1, 203. 1. of the Guidance. [See Rule] (2) The CAT in Table 2.1.45 Note (4) of 312. of the Rules are obtained by performing a test in accordance with Pt 2, Ch 1, 203. 4. of the Guidance. [See Rule] 	(MRD4800-71-2020) - To reflect IACS UR
Section 4 ~ Section 8 <omitted></omitted>	Section 4 \sim Section 8 <same as="" guidance="" present="" the=""></same>	

Present	Amendment	reason
CHAPTER 2 WELDING	CHAPTER 2 WELDING	
Section 1 <omitted> Section 3 Welding Works and Inspection</omitted>	Section 1 <same as="" guidance="" present="" the=""> Section 3 Welding Works and Inspection</same>	
803. Application of welding consumables	303. Application of welding consumables	
Hydrogen cracking test specified in 303. (4) of the Rules is to comply with <i>KS B ISO 17642-2</i> or equivalent. [See Rule]	1. Hydrogen cracking test specified in 303. (4) of the Rules is to comply with <i>KS B ISO 17642-2</i> or equivalent. [See Rule]	
<u>2. <new></new></u>	(6) of 303. of the Rules, the manufacturer of the welding con- sumables is to be guaranteed that it can be used for EH47-H,	for slight differences i
304. ~ 309. <omitted></omitted>	304. \sim 309. <same as="" guidance="" present="" the=""></same>	
311. Welding works for YP47 Steel Plates [See Rule]	311. <deleted></deleted>	
1. Welder		
Welders engaged in YP47 welding work are to possess welder's qualifications specified in Pt 2, Ch 2, Sec 5 of the Rule.		
2. Short bead		
Short bead length for tack and repairs of welds by welding are not to be less than 50mm. In the case where P_{cm} is less than or equal to 0.19, 25mm of short bead length may be adopted with approval of the Society.		
3. Preheating		
Preheating is to be 50°C or over when air temperature is 5°C or below. In the case where P_{cm} is less than or equal to 0.19, air temperature of 0°C or below may be adopted with approval of the Society.		

		Pres	ent	
(1) Spec are to	o be in acco	`welding (ordance wit	consumables for ` t <mark>h Table 2.2.5.</mark> or deposited metal	
M	echanical Pro	perties	In	ipact test
$\frac{\text{field Strength}}{(N/mm^2)-\frac{1}{\min}}$	t Tensile Strength (N/mm ²	Elong		Average Impact Energy (J) min.
460	570~720	1	9 -20	53
sumables		-	of bull weld lesis	for welding con-
Tanaila	Bend test	1	Charpy V-notch imp	pact tests
Tensile− strength− (<u>N/mm²</u>)	$\frac{\text{Bend test}}{\text{ratio:}}$ $\frac{\left(\frac{D}{t}\right)}{\left(\frac{D}{t}\right)}$	1	Charpy V-notch imp Average ene	rgy (J) min. Vertical
strength-	ratio:	Test temp	Charpy V-notch imp Average ene Downhand, horizontal-vertical;	rgy (J) min. Vertical

GUIDANCE RELATING TO THE RULES FOR THE CLASSIFICATION OF STEEL SHIPS

(Guidance Part 2 Materials and Welding)

- For external opinion inquiries -

2021. 01.

Machinery Rule Development Team

- Main Amendments -

(1) Enter into force on 1 July 2021 (the date of application for certification of material & welding or the contract date for ship construction)

• To reflect Request for Establishment/Revision of Classification Technical Rules

- To reflect IACS UR W24(Rev.4 July 2020)
- To reflect IACS UR W27(Rev.2 July 2020)
- To reflect IACS Rec.69(Rev.2 Oct 2020)

Present	Amendment	reason
CHAPTER 1 MATERIALS	CHAPTER 1 MATERIALS	
Section 1 \sim Section 4 < $Omitted$ > Section 5 Castings	Section 1 \sim Section 4 <same as="" guidance="" present="" the=""> Section 5 Castings</same>	
501. \sim 502. <omitted> 505. Stainless steel casting for propeller</omitted>	501. \sim 502. <same as="" guidance="" present="" the=""> 505. Stainless steel casting for propeller</same>	* Request for
1. Application		Establishment/Revision of
"agreement with the Society" referred in 505. 1 (1) of the Rules includes the possible normal operation throughout the repair of propellers damaged in service. [See Rule]		Classification Technical Rules (MRD4800-110-2020)
2. Non-destructive inspection	2. Non-destructive inspection	- To reflect IACS UR
 (1) The liquid penetrant test of steel propeller casting specified in 505. 8 (1) of the Rules is to comply with Annex 2-6. [See Rule] 	(1) The fiqued penetratic test of steel properties casting specified in 505. 8 (1) of the Rules is to comply with Annex 2-6. Magnetic particle testing may be used in lieu of liquid pene- trant testing for examination of martensitic stainless steels castings. Magnetic particle testing procedure is to be sub- mitted to the Society and is to be in accordance with ISO 9934-1:2016 or a recognized standard. The acceptance cri- teria is accordance with Annex 2-6. [See Rule]	W27(Rev.2 July 2020)
(2) The division of severity zones of steel propeller casting specified in 505. 8 (2) is to comply with the Figs. 1 and 2 of Annex 2-6. [See Rule]	specifica in 303. 0 (2) is to comply with the FIGS. I and Z	

Repair of defects In application to 505. 9 (4) of the Rules, the repair welding procedure is to comply with the followings [See Rule]	3. Repair of defects In application to 505. 9 (4) of the Rules, the repair welding	
	In application to 505. 9 (4) of the Rules, the repair welding	
	procedure is to comply with the followings [See Rule]	
 (1) The limits of repair welding are to comply with Anney 2-6, 3 (2) to (4). (2) Repair welding procedure 	 (1) The limits of repair welding are to comply with Annex 2-6, 3 (2) to (4). (2) Repair welding procedure 	
When steel propeller casting is repaired by welding in ac cordance with the previous (1), the following requirements	When steel propeller casting is repaired by welding in ac-	
apply.	apply.	
(A) Before welding is started, a detailed welding procedure		* Request for
specification is to be submitted covering the weld prepa		
ration, welding positions, welding parameters, welding	covering the weld preparation, welding positions, weld-	Classification Technical R (MRD4800-110-2020)
consumables, preheating, post weld heat treatment and in		(MRD4000 110 2020)
spection procedures to the Society. The welding procedure		
qualification tests are to carried out in accordance with		
following (3).		W27(Rev.2 July 2020)
(B) All weld repairs are to be made by welders qualified as		
deemed appropriate by the Society.	qualified procedures, and, by welders who are qualified to	
	a recognized standard. Welding Procedure Qualification	
	Tests are to be carried out in accordance with following	
	(3) and witnessed by the Surveyor.	
$(C) \sim (E) \leq New >$	(C) Defects to be repaired by welding are to be ground to	
	sound material according to 505. 10. of the Rules.	
	(D) The welding grooves are to be prepared in such a man-	
	ner which will allow a good fusion of the groove	
	bottom.	
	(E) The resulting ground areas are to be examined in the	
	presence of the Surveyor by liquid penetrant testing in	
	order to verify the complete elimination of defective	
(C) (C) $< Consistent$	material.	
$(C) \sim (G)$ <omitted></omitted>	$(C) \sim (G)$ <same as="" guidance="" present="" the=""></same>	

Present	Amendment	reason
(3) Welding procedure qualification test	(3) Welding procedure qualification tests for repair of cast	
(A) Preparation of test sample	steel propeller	
The test sample is to be as shown Fig 2.1.6 of the	(A) General	* Request for
Guidance. The edge preparation, in principle, to be	(a) For the welding procedure approval the welding pro-	Establishment/Revision of
V-shape and bevel angle is to be not less than 60°.	cedure qualification tests are to be carried out with	
(B) Non-destructive testing	satisfactory results. The qualification tests are to be	(MRD4800-110-2020)
The test sample is to be visually inspected and liquid	carried out with the same welding process, filler met- al, preheating and stress-relieving treatment as those	
penetrant tested.	intended applied by the actual repair work. Welding	- To reflect IACS UR
(C) Macro-structure examination	procedure specification is to refer to the test results	W27(Rev 2 July 2020)
Two macro-sections shall be prepared. No pores greater	achieved during welding procedure qualification	
than 3 mm and cracks in welded sections is permitted.	testing.	
	(b) Welding procedures qualified at a manufacturer are	
min. 300 <i>mm</i>	valid for welding in workshops under the same tech- nical and quality management.	
	(B) Test piece and welding of sample	
Discard	(a) The test assembly, consisting of cast samples, is to	
	be of a size sufficient to ensure a reasonable heat	
Macro specimen	distribution and according to Fig 2.1.6 with the mini-	
Tensile test specimen	mum dimensions.	
Bend test specimen	1	
CVN test specimens min. 400 mm		
Bend test specimen		
Tensile test specimen		
Macro specimen		
Discard		
	Note) 1 : Joint preparation and fit-up as detailed in the preliminary Welding	
[min. 30 mm	Procedure Specification	
	<u>a : minimum value 150mm</u>	
Fig 2.1.6 Test Sample for Butt Welding Test	<u>b</u> : minimum value 350mm t : material thickness	
	Fig 2.1.6 Test piece for welding repair procedure	

Present		Amendment	reason
 (D) Tensile testing Two flat transverse tensile test specimens shall be prepared. The tensile strength shall meet the specified minimum value of the base material. The location of fracture is to be reported, i.e. weld metal, HAZ or base material. (E) Bend testing Two transverse side bend test specimens shall be prepared. The former diameter shall be 4 x thickness ex- 	ried out i repair wel (c) Welding specimens (C) Examinations (a) Test assen and destr and Fig 2.	nbly is are to be examined non-destructively uctively in accordance with Table 2.1.17 . 1.7 .	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-110-2020)
cept for austenitic steels, in which case the former diam-	Table 2.1.17 Type of test	s and extent of testing	····· ··· ··· ····
eter shall be 3 x thickness.	<u>Type of test</u>	Extent of testing	
The test specimen, when visually inspected after bending, shall show no surface imperfections greater than 2 mm in	<u>Visual testing</u>	100% as per article (b)	
length. (F) Impact testing	Liquid penetrant testing ⁽¹⁾	100% as per article (b)	
Impact test is not required, except where the base materi- al is impact tested. Two sets shall be taken, one set with the notch positioned in the center of the weld and	<u>Transverse tensile test</u>	Two specimens as per article (c)	
one set with the notch positioned in the fusion line, respectively. The test temperature, and impact energy	Bend test ⁽²⁾	Two root and two face specimens as per article (d)	
shall comply with the requirement specified for the base	Macro examination	Three specimens as per article (e)	
material. (G) Hardness testing	Impact test	$\frac{\text{Two sets of three specimens as per article}}{(\underline{f})}$	
One of the macro-sections shall be used for Hv5 hard-	<u>Hardness test</u>	As per article (g)	
ness testing. At least three individual indentations in the weld metal, the HAZ (both sides) and in the base material. The values are to be reported for information.	testing for martensitic s	ng may be used in lieu of liquid penetrant tainless steels. and root bend may be substituted by 4 side	

Present	Amendment	reason
	<figure></figure>	 * Request for Establishment/Revision of Classification Technical Rules (MRD4800-110-2020) - To reflect IACS UR W27(Rev.2 July 2020)

specificit. In case, that any post-weid field treat ment is required or specified, non-destructive test- ing is to be performed after heat treatment. (ii) No cracks are permitted. Imperfections detected by liquid penetrant testing, or magnetic particle testing if applicable, are to be assessed in accord- ance with Annex 2-6 . (c) Tensile test	Present	Amendment	reason
 (1) Iwo flat transverse tensile test specimens shall be prepared. Testing procedures shall be in accordance with Pt2. Ch1, 203. of the Rules. Alternatively tensile test specimens according to recognized standards acceptable to the Society may be used. (ii) The tensile strength shall meet the specified minimum value of the base material. The location of fracture is to be reported, i.e. weld metal, HAZ or base material. (d) Bend test (i) Transverse bend tests for butt joints are to be in accordance with Pt2. Ch2, 204. of the Rules, or, according to a recognized standard. The mandrel diameter shall be 4 x thickness except for austenitic stels, in which case the mandrel diameter shall be 3 x thickness. (ii) The bending angle is to be 180°. After testing, the test specimen are not to reveal any open defects in any direction greater than 3 mm. Defects appecing at the corners of a test specimen during testing are to be investigated case by case. (iii) Two root and two face bend specimens are to be tested. For thickness I2 mm and over, four side bend specimens may alternatively be tested. 	≤New>	 (i) Test assembly is to be examined by visual and liquid penetrant testing, or magnetic particle testing if applicable, prior to the cutting of test specimen. In case, that any post-weld heat treatment is required or specified, non-destructive testing is to be performed after heat treatment. (ii) No cracks are permitted. Imperfections detected by liquid penetrant testing, or magnetic particle testing if applicable, are to be assessed in accordance with Annex 2-6. (c) Tensile test (i) Two flat transverse tensile test specimens shall be prepared. Testing procedures shall be in accordance with Pt2, Ch1, 203. of the Rules. Alternatively tensile test specimens according to recognized standards acceptable to the Society may be used. (ii) The tensile strength shall meet the specified minimum value of the base material. The location of fracture is to be reported, i.e. weld metal, HAZ or base material. (d) Bend test (i) Transverse bend tests for butt joints are to be in according to a recognized standard. The mandrel diameter shall be 3 x thickness. (ii) The bending angle is to be 180°. After testing, the test specimens are not to reveal any open defects in any direction greater than 3 mm. Defects appearing at the corners of a test specime during the testing are to be investigated case by case. (iii) Two root and two face bend specimens are to be tested. For thickness 12 mm and over, four 	 * Request for Establishment/Revision of Classification Technical Rule (MRD4800-110-2020) - To reflect IACS UR W27(Rev.2 July 2020)

permitted. Classification Tech	Amendment reason	Present
shall be in accordance with Fuz. For Fuz. 50. For Fuz. 2 July 20 the notch positioned in the center of the weld and one set with the notch positioned in the HAZ (i.e. the mid-point of the notch shall be at 1 mm to 2 mm from the fusion line), respectively. (ii) The test temperature, and impact energy shall comply with the requirement specified for the base material. (e) Hardness test (f) Hardness test (e) Hardness testing Indentations shall be used for HV 10 hardness testing. Indentations shall traverse 2 mm below the surface. At least three individual indentations are to be reported for information. (f) Re-testing (g) Re-testing<	macro-sections shall be prepared and etched on ide to clearly reveal the weld metal, the fusion and the heat affected zone. Cracks and lack of are not permitted. Imperfections such as slag ions, and pores greater than 3 mm are not ted. test Impact test is required, where the base material impact tested. Charpy V-notch test specimens nall be in accordance with Pt2 , Ch1 , 202 . 3 . of e Rules. Two sets shall be taken, one set with be notch positioned in the center of the weld d one set with the notch positioned in the AZ (i.e. the mid-point of the notch shall be at mm to 2 mm from the fusion line), respectively. The test temperature, and impact energy shall omply with the requirement specified for the use material. ess test macro-section representing the start of welding be used for HV 10 hardness testing. Indentations traverse 2 mm below the surface. At least three dual indentations are to be made in the weld the HAZ(both sides) and in the base met- h sides). The values are to be reported for nation. ting test piece fails to comply with any of the re- ments of this Appendix, reference is made to procedures given in Pt2 , Ch2 , 406 . 1 . of the the tradentions for test assemblies and test results	<u>≤New></u>

Present	Amendment	reason
<u>≤New></u>	 (b) A statement of the results of assessing each test piece, including repeat tests, is to be made for each welding procedure qualification records. The relevant items listed for the WPS are to be included. (c) The welding procedure qualification record is to be signed by the Surveyor witnessing the test and is to include the Society's identification. (E) Range of approval (a) General (i) All the conditions of validity stated below are to be met independently of each other. Changes outside of the ranges specified are to require a new welding procedure test. (ii) A qualification of a WPS obtained by a manufacturer is valid for welding in workshops or sites under the same technical and quality control of that manufacturer. (b) Base metal (c) Thickness The qualification of a WPS carried out on a weld assembly of thickness t is valid for the thickness range given in Table 2.1.8. 	 * Request for Establishment/Revision of Classification Technical Rules (MRD4800-110-2020) - To reflect IACS UR W27(Rev.2 July 2020)
	Table 2.1.18 Range of qualification for thickness	
	Thickness of the test piece, t (mm) Range of approval(mm)	
	$\frac{15 \langle t \le 30}{2 - 10^{-10}} \qquad \frac{3 \le T \le 2t}{2 - 10^{-10}}$	
	$\frac{30 \langle t}{12} \qquad \qquad \frac{0.5t \leq T \leq 2t \text{ or } 200 \text{ mm(whichever})}{\text{is the greater}}$	

Present	Amendment	reason
<pre>Sof. ~ 507. <omitted> Section 6 ~ Section 8 <omitted> CHAPTER 2 WELDING <omitted></omitted></omitted></omitted></pre>	 (d) Welding position Approval for a test made in any position is restricted to that position. (e) Welding process The approval is only valid for the welding process used in the welding procedure test. Single run is not qualified by multi-run butt weld test. (f) Filler metal The approval is only valid for the filler metal used in the welding procedure test. (g) Heat input The upper limit of heat input approved is 15% great- er than that used in welding the test piece. The low- er limit of heat input approved is 15% lower than that used in welding the test piece. (h) Preheating and interpass temperature The minimum preheating temperature is not to be less than that used in the qualification test. The maximum interpass temperature is not to be higher than that used in the qualification test. (i) Post-weld heat treatment The heat treatment used in the qualification test is to be specified in pWPS. Holding time may be adjusted as a function of thickness. 506. ~ 507. <same as="" guidance="" present="" the=""> CHAPTER 2 WELDING <same as="" present<br="" the="">Guidance></same></same> 	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-110-2020) - To reflect IACS UR W27(Rev.2 July 2020)

Present	Amendment	reason
Present Annex 2-1 <omitted> Annex 1-2 Guidance for non-destructive examination of marine steel castings . Application (1) The requirements in this Guidance is intended to give general guidance on the extent, methods and recommended quality levels applicable to the non-destructive examinations (NDE), of marine steel castings(hereinafter referred to as "castings") specified in Pt 2, Ch 1, 501. 8 and 10 of the Rules, except in those cases where alternative criteria have been otherwise approved or specified. (2) Although no detailed Guidance are given for machinery components, the requirements in this Guidance may apply correspondingly considering their materials, kinds, shapes and stress conditions being subjected. (3) ~ (6) <new></new></omitted>	 Annex 2-1 <same as="" guidance="" present="" the=""></same> Annex 2-2 Guidance for non-destructive testing of marine steel castings 1. Application The requirements in this Guidance is intended to give general guidance on the extent, methods and recommended quality levels applicable to the non-destructive testing (NDT), of marine steel castings(hereinafter referred to as "castings") specified in Pt 2, Ch 1, 501. 8 and 10 of the Rules, except in those cases where alternative criteria have been otherwise approved or specified. Although no detailed Guidance are given for machinery components, the requirements in this Guidance may apply corre- 	* Request for Establishment/Revision of Classification Technical Rul (MRD4800-181-2020) - To reflect IACS Rec69(Rev.2 Oct 2020)

Present	Amendment	reason
 2. Personnel Requirements Personnel carrying out NDE are generally to be qualified and certification to Level II of a recognised certification scheme such as KS B ISO 9712, SNT-TC-IA, EN 473, ASNT Central Certification Program (ACCP) or equivalent. Personnel responsible for the NDE activity including approval of procedures should be qualified and certified to Level III. Personnel qualifications are to be verified by certification. 	 2. Personnel Requirements Personnel engaged in visual examination are to have sufficient knowledge and experience, however, may be exempted from formal qualifications specified in this Recommendation. Personnel carrying out NDT should be certified to a recognised national or international certification scheme, e.g. ISO 9712:2012, or an employer based scheme such as SNT-TC-1A:2016, or ANSI/ASNT CP-189:2016. Where employer based schemes are applied, personnel qualification to these schemes may be accepted if the written practice is reviewed and found acceptable by the Society. The written practice should align with the main requirements with those of ISO 9712 (apart from the impartiality requirements of a certification body). Personnel responsible for the NDT activity including approval of procedures should be qualified and certified to Level III. The NDT personnel's certificates and competence should comprise all industrial sectors and techniques being applied by the manufacturer or its subcontractors. Certificates should be made available to the Society for verification, when requested. The operator carrying out the NDT and interpreting indications, should as a minimum, be qualified and certified to Level II in the NDT method(s) concerned. However, operators only undertaking the gathering of data using any NDT method and not performing data interpretation or data analysis may be qualified and certified as appropriate, at level I. The operator should have adequate knowledge of materials, weld, structures or components, NDT equipment and limitations that are sufficient to apply the relevant NDT method for each application appropriately. 	Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS Rec69(Rev.2 Oct 2020)

Present	Amendment	reason
3. Casting Condition	3. Casting Condition	
 Non-destructive <u>examinations</u> applied for acceptance purposes should be made after the final heat treatment of the casting. Where intermediate inspections have been performed the manufacturer <u>shall furnish the documentation</u> of the results upon request of the Surveyor. Castings <u>are to</u> be examined in the final delivery condition free from any material such as scale, dirt, grease or paint that might affect the <u>efficacy</u> of the inspection. A thin coating of contrast paint is permissible when using magnetic particle techniques. Unless otherwise specified in the order, magnetic particle test shall be carried out within 0.3 mm of the final machined surface condition for <i>AC</i> techniques or within 0.8 mm for <i>DC</i> techniques. Ultrasonic testing <u>is to</u> be carried out after the castings have been ground, machined or shot blasted to a suitable condition. The surfaces of castings to be examined should be such that adequate coupling can be established between the probe and the casting and that excessive wear of the probe is avoided. 	 <u>support final casting certification</u> should be made after the final heat treatment of the casting. Where intermediate inspections have been performed the manufacturer <u>should provide reports</u> of the results upon request of the Surveyor. (2) Castings <u>should</u> be examined in the final delivery condition free from any material such as scale, dirt, grease or paint that might affect the <u>effectiveness</u> of the inspection. A thin coating of contrast paint is permissible when using magnetic particle techniques. For surface inspection NDT methods, the <u>surface quality should be a minimum value of Ra≤6.3 µm.</u> (3) Ultrasonic testing <u>should</u> be carried out after the castings have been ground, machined or shot blasted to a suitable condition, with a minimum value surface quality of Ra≤12,5 µm. The surfaces of castings to be examined should be such 	 * Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS Rec69(Rev.2 Oct 2020)

Present	Amendment	reason
4. Extent of Examinations	4. Extent of Inspections	
 (1) Castings to be examined (2astings to be examined by NDE methods are identified in Fig 1 to Fig 3 of this Guidance. Criteria for the examination of other castings not identified in Fig 1 to Fig 3 of this Guidance will be subject to agreement. (2) Zones to be examined (A) Zones to be examined in nominated castings are identified in Fig 1 to Fig 3 of this Guidance. Examinations are to be made in accordance with an inspection plan approved by the Society. The plan should specify the extent of the examination, the examination procedure, the quality level or, if necessary, level for different locations of the castings. (B) In addition to the areas identified in Fig 1 and Fig 2 of this Guidance, surface inspections shall be carried out in the following locations: (a) at all accessible fillets and changes of section, (b) in way of fabrication weld preparation, for a band width of 30mm, (c) in way of chaplets, (d) in way of weld repairs, (e) at positions where surplus metal has been removed by flame cutting, scarifying or arc-air gouging. (C) Ultrasonic testing shall be carried out in the zones indicated in Fig 1 and Fig 3 of this Guidance and also at the following locations: (a) in way of all accessible fillets and at pronounced changes of section, (b) in way of all accessible fillets and at pronounced changes of section, (c) in way of fabrication weld preparations for a distance of 50 mm from the edge, (c) in way of weld repairs where the original defect was detected by ultrasonic testing. 	 (1) Castings to be examined Castings to be examined by NDT methods are identified in Fig 1 to Fig 3 of this Guidance. Criteria for the examination of other castings not identified in Fig 1 to Fig 3 of this Guidance will be subject to agreement. (2) Zones to be examined (A) Zones to be examined (A) Zones to be examined (A) Zones to be examined (B) In addition to the areas identified in Fig 1 and Fig 2 of this Guidance, surface inspections should be carried out in the following locations: (a) at all accessible fillets and changes of section, (b) in way of fabrication weld preparation, for a band width of 30mm, (c) in way of chaplets, (d) in way of all accessible fillets and at pronounced by fame cutting, scarifying or arc-air gouging. (C) Ultrasonic testing shall be carried out in the following locations: (a) in way of all accessible fillets and at pronounced by flame cutting, scarifying or arc-air gouging. (C) Ultrasonic testing shall be carried out in the following locations: (a) in way of all accessible fillets and at pronounced by flame cutting, scarifying or arc-air gouging. 	(MRD4800-181-2020) - To reflect IACS Rec69(Rev.2 Oct 2020)

Present	Amendment	reason
5. Examination Procedures	5. Examination Procedures	
 5. Examination Procedures (1) Visual Inspection Steel castings nominated for <u>NDE shall</u> be subjected to a 100% visual examination of all accessible surfaces by the Surveyor. <u>Lighting</u> conditions at the inspected surfaces <u>shall</u> be in accordance with a nationally or internationally recognised standard. Unless otherwise agreed, the visual and surface crack detection inspections <u>are to</u> be carried out in the presence of the Surveyor. (2) Surface <u>Crack Detection</u> (a) Magnetic particle inspection will be carried out in preference to liquid penetrant testing except in the following cases; (i) austenitic stainless steels, (ii) interpretation of open visual or magnetic particle indications, (iii) at the instruction of the Surveyor. (b) The testing procedures, apparatus and conditions of magnetic particle testing and liquid penetrant testing other than those specified in this Guidance are to comply with recognised national or international standards. (c) 	 (1) Visual Inspection Steel castings nominated for <u>NDT should</u> be subjected to a 100% visual examination of all accessible surfaces by the manufacturer and made available to the Surveyor. Viewing conditions at the inspected surfaces <u>should</u> be in accordance with a nationally or internationally recognised standard. Unless otherwise agreed, the visual and surface inspections <u>should</u> be carried out in the presence of the Surveyor. (2) Surface <u>Inspection</u> (a) Magnetic particle testing <u>is preferable to penetrant testing except in the following cases;</u> (i) austenitic stainless steels, (ii) interpretation of open visual or magnetic particle in- 	Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS Rec69(Rev.2 Oct 2020)
 (c) Magnetic particle testing is to be carried out along two directions so that magnetic field can be directed at an right angle each other by means of the wet prod methods or the yoke method. In making magnetization by the prod method, the distance between prods is to be 200~300 mm. The magnetizing current is to be DC 800~1200 A for the prod method. For the yoke method, lifting power is to be 4.5 kg for AC, 18 kg over for DC. (d) For magnetic particle testing attention is to be paid to the contact between the casting and the clamping devices of stationary magnetisation benches in order to avoid local overheating or burning damage in its surface. Prods shall not be permitted on finished machined items. Note that the use of solid copper at the prod tips must be avoided due to the risk of copper penetration. 	 power is to be 4.5 kg for AC, 18 kg over for DC. (d) For magnetic particle testing attention is to be paid to the contact between the casting and the clamping devices of stationary magnetisation benches in order to avoid local overheating or burning damage in its surface. Prods should not be permitted on finished machined items. Note 	

Present	Amendment	reason
 (e) When indications have been detected as a result of the surface inspection, acceptance or rejection is to be decided in accordance with Art 6. (3) <u>Ultrasonic testing</u> (a) Volumetric inspection in accordance with these guidance is to be carried out by ultrasonic testing using the contact method with <u>straight</u> beam and/or angle beam technique. The testing procedures, apparatus and conditions of ultrasonic testing <u>are to</u> comply with the recognised national or international standards. Radiographic testing may be carried out on the basis of prior agreement with the Society. (b) <new></new> 		Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS
(b) Only those areas shown in the agreed inspection plan need to be tested. The plan should include those loca- tions nominated in 4. (2), (c) together with the scanning zones identified for the relevant casting in Fig 1 to Fig 3.	A suitable quality level for marine castings would nor- mally be severity level 2 or 3 (of the above standards), depending on the location zone and type of casting. Other severity levels may be applied, and should be agreed with the Society. (c) Only those areas shown in the agreed inspection plan need to be tested, however, the inspections may reveal indications that require further evaluation, or an extension of testing. In such cases, this should be agreed with the Society. The plan should include those locations nomi- nated in 4 . (2), (c) together with the scanning zones identified for the relevant casting in Fig 1 to Fig 3 .	

Present	Amendment	reason
 (c) Ultrasonic scans are to be made using a normal probe of 1~4 MHz (usually 2 MHz) frequency. Whenever possible scanning is to be performed from both surfaces of the casting and from surfaces perpendicular to each other. (d) The back-wall echo obtained on parallel sections should be used to monitor variations in probe coupling and material attenuation. Any reduction in the amplitude of the back-wall echo without evidence of intervening defects should be corrected. Attenuation in excess of <u>30dB</u> could be indicative of an unsatisfactory annealing heat treatment. (e) Machined surfaces, especially those in the vicinity of riser locations and in the bores of stern boss castings, should also be subject to a near surface (25 mm) scan using a twin crystal 00 probe. Additional scans on machined surfaces are of particular importance in cases where bolt holes are to be drilled or where surplus material such as 'padding' has been removed by machining thus moving the scanning surface closer to possible areas of shrinkage. <u>Also, it is advisable</u> to examine the machined bores of castings using circumferential scans with 70° probes in order that axial radial planar flaws such as hot tears can be detected. Fillet radii should be examined using 45°, 60°, or 70° probes scanning from the surfaces/direction likely to give the best reflection. 	 (d) Ultrasonic scans_should be made using a normal probe of 1-4 MHz (usually 2 MHz) frequency, and angle probes, where required. Whenever possible scanning is to be performed from both surfaces of the casting and from surfaces perpendicular to each other. (e) The back-wall echo obtained on parallel sections should be used to monitor variations in probe coupling and material attenuation. Any reduction in the amplitude of the back-wall echo due to material properties should be corrected. Attenuation in excess of <u>30dB/m</u> could be indicative of an unsatisfactory annealing heat treatment, and may render the effectiveness of the testing as unsuitable. In such cases of excessive attenuation, this should be investigated, and suitable mitigation measures carried out for effective ultrasonic testing to continue, where possible. (f) Machined surfaces, especially those in the vicinity of riser locations and in the bores of stern boss castings, should also be subject to a near surface (approximately 25 mm) scan using a twin crystal 0° probe. Additional scans on machined surfaces are to be drilled or where surplus material such as 'padding' has been removed by machining thus moving the scanning surface closer to possible areas of shrinkage. Additionally it is good practice to examine the machined bores of castings using circumferential scans with 70° probes in order that axial radial planar flaws such as hot tears can be detected. Fillet radii should be examined using 45°, 60°, or 70° probes scanning from the surfaces/direction likely to give the best reflection, primarily to determine the presence of any cracks within the radiused areas, and as an additional scan to confirm any indications that may have been detected with 0° probe(s) within this area. 	 * Request for Establishment/Revision of Classification Technical Rule (MRD4800-181-2020) - To reflect IACS

Present	Amendment	reason
 (f) In the examinations of those zones nominated for ultrasonic examination the reference sensitivity is to be established against a 6mm diameter disk reflector. Sensitivity can be calibrated either against 6mm diameter flat bottomed hole(s) in a reference block (or series of blocks) corresponding to the thickness of the casting provided that a transfer correction is made, or, as a preferred alternative, by using the DGS (distance-gain-size) method. (h) <new></new> 	 probe should be established against a 6mm diameter disk reflector. Sensitivity can be calibrated either against 6mm diameter flat bottomed hole(s) in a reference block (or series of blocks) corresponding to the thickness of the casting provided that a transfer correction is made, using the DAC(distance-amplitude-correction) method, or, by using the DGS (distance-gain-size) method. (h) The reference sensitivity of angle probes (where required for testing) should be established against an appropriate 6mm reflector (e.g. reference reflectors angled perpendicular to the sound beam) for the DAC method, or equiv- 	Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS Rec69(Rev.2 Oct 2020)
The DGS diagrams issued by a probe manufacturer identi- fy the difference in dB between the amplitude of a back wall echo and that expected from a 6mm diameter disk reflector. By adding this difference to the sensitivity level initially set by adjusting a back wall echo to a reference height <u>eg</u> 80 %, the amended reference level will be rep- resentative of a 6mm diameter disk reflector. Similar cal- culations can be used for evaluation purposes to establish the difference in dB between a back wall reflector and disk reflectors of other diameters such as 12 or 15 mm.	<u>alent using the DGS method.</u> (i) The DGS diagrams issued by a probe manufacturer identi- fy the difference in dB between the amplitude of a back wall echo and that expected from a 6mm diameter disk reflector. By adding this difference to the sensitivity level initially set by adjusting a back wall echo to a reference height <u>e.g.</u> 80%, the amended reference level will be representative of a 6mm diameter disk reflector. Similar calculations can be used for evaluation purposes to estab- lish the difference in dB between a back wall reflector and disk reflectors of other diameters such as 12 or 15	
(g) Having made any necessary corrections for differences in attenuation or surface condition between the reference block and the casting any indications received from the nominated zones in the casting that exceed the 6mm reference level should be marked for evaluation against the criteria given in 6 . (3) below. Evaluation should include additional scans with angle probes in order that the full extent of the discontinuity can be plotted.	mm. (j) Having made any necessary corrections for differences in attenuation or surface condition between the reference block and the casting any indications received from the nominated zones in the casting that exceed the 6mm reference level should be marked for evaluation against the criteria given in 6 . (3) below. Evaluation should include additional scans with angle probes in order that the full extent of the discontinuity can be plotted.	

 6. Acceptance Criteria (1) Visual <u>Testing</u> (a) All castings <u>shall</u> be free of cracks, crack-like indications, hot tears, cold shuts or other <u>injurious</u> indications. Thickness of the remains of sprues or risers <u>is to</u> be within the casting dimensional tolerance. (b) Additional magnetic particle, dye penetrant or ultrasonic testing may be required for a more detailed evaluation of surface irregularities at the request of the Surveyor. (2) Surface Crack Detection (A) The following definitions relevant to indications apply: (a) Linear indication : <u>an indication of circular or elliptical shape with a length less than three times the width.</u> (b) Non-linear indication : three or more indications in a line, separated by 2 mm or less edge-to-edge. 6. Acceptance Criteria (1) Visual Inspection (a) All castings <u>should</u> be free of crack dications, hot tears, cold shuts or indications. Thickness of the remains of sprues or risers is to be within the casting dimensional tolerance. (b) Additional magnetic particle, dye penetrant or ultrasonic is at least three times the width. (b) Non-linear indication : <u>an indication of circular or elliptical shape with a length less than three times the width.</u> (c) Aligned indication : three or more indications in a line, separated by 2 mm or less edge-to-edge. (c) Aligned indication : three or more indications in a line, separated by 2 mm or less edge-to-edge.
 (a) All castings shall be free of cracks, crack-like indications, hot tears, cold shuts or other <u>injurious</u> indications. Thickness of the remains of sprues or risers <u>is to</u> be within the casting dimensional tolerance. (b) Additional magnetic particle, dye penetrant or ultrasonic testing may be required for a more detailed evaluation of surface irregularities at the request of the Surveyor. (2) Surface Crack Detection (A) The following definitions relevant to indications apply: (a) Linear indication : <u>an indication in which the length is at least three times the width.</u> (b) Non-linear indication : <u>an indication of circular or elliptical shape with a length less than three times the width.</u> (c) Aligned indication : three or more indications in a line, separated by 2 mm or less edge-to-edge. (a) All castings <u>should</u> be free of crack of the surveyor. (b) Non-linear indication : three or more indications in a line, separated by 2 mm or less edge-to-edge.
 alignment of indications is consider unique indication and its length is overall length of the alignment. (ii) Linear indications form an alig distance between two indications is length of the longest indication. (d) Open indication : an indication visible after removal of the magnetic particles or that canbe detected by the use of contrast dye penetrant. (e) Non-open indication : an indication that is not visu- ally detectable after removal of the magnetic particles or that cannot be detected by the use of contrast dye penetrant. (f) Relevant indication : an indication that is caused by a condition or type of discontinuity that requires

Present	Amendment	reason
 (B) For the purpose of evaluating indications, the surface is to be divided into reference band length of 150 mm for level MT1/PT1 and into reference areas of 225 cm² for level MT2/PT2. The band length and/or area shall be taken in the most unfavourable location relative to the indications being evaluated. (C) The following quality levels recommended for magnetic particle testing (MT) and/or liquid penetrant testing (PT) 	 (B) For the purpose of evaluating indications, the surface <u>should</u> be divided into reference band length of 150 mm for level MT1/PT1 and into reference areas of 225 cm² for level MT2/PT2. The band length and/or area <u>should</u> be taken in the most unfavourable location relative to the indications being evaluated. (C) The following quality levels recommended for magnetic particle testing (MT) and/or penetrant testing (PT) are; 	* Request for Establishment/Revision of Classification Technical Rule (MRD4800-181-2020)
are; Level MT1/PT1 - fabrication weld preparation and weld repairs. Level MT2/PT2 - other locations nominated for surface <u>crack detection</u> in Fig 1 and Fig 2	Level MT1/PT1 - fabrication weld preparation and weld repairs. Level MT2/PT2 - other locations nominated for surface inspection in Fig 1 and Fig 2	Rec69(Rev.2 Oct 2020)
The allowable numbers and sizes of indications in the reference band length and/or area are given in Table 1 . The required quality level should be shown on the manufacturer's inspection plan. Cracks and hot tears are not acceptable.	The allowable numbers and sizes of indications in the reference band length and/or area are given in Table 1 . The required quality level should be shown on the manufacturer's inspection plan. Cracks and hot tears <u>should not be accepted</u> .	
Table 1 Allowable number and size of indications in a ref- erence band length/area	Table 1 Allowable number and size of indications in a ref- erence band length/area	

Quality Level	<u>Max.</u> number of indications	Type of indication	<u>Max.</u> number <u>for</u> each type	Max. dimension of single indication, (mm) ⁽²⁾		
MT1/PT 1	4 in 150 mm length	Non-linear Linear Aligned	$4^{(1)} \\ 4^{(1)} \\ 4^{(1)}$	5 3 3		
MT2/PT 2	20 in 22500 mm ² area	Non-linear Linear Aligned	10 6 8	7 5 5		
	Notes: (1) 30 mm <u>min.</u> between relevant indications. (2) In weld repairs, the maximum dimension is 2 mm.					

Quality Level	<u>Total</u> <u>maximum</u> number of <u>all</u> indications	Type of indication	Maximum number of each type of indication	Maximum dimension of single indication, (mm) ⁽²⁾
MT1/PT 1	4 in 150 mm length	Non-linear Linear Aligned	$4^{(1)} \\ 4^{(1)} \\ 4^{(1)}$	5 3 3
MT2/PT 20 in Non-linear 10 7 2 2500 mm² Linear 6 5 area Aligned 8 5				
Notes: (1) 30 mm <u>minimum(measured in any direction)</u> between relevant indications. (2) In weld repairs, the maximum dimension is 2 mm.				

	Pres	ent			Ameno	lment		reason
A) Accep Table quality <u>to</u> be quality Fig 1	2 as UT1 and levels applicable identified on a levels are nominand Fig 3 .	ultrasonic testing UT2. As stated in the to the zones to n inspection plan nated for the cast ance Criteria for s	n 4 (2), (a), the be examined <u>are</u> a. The following ings identified in	(A) Accep Table quality <u>should</u> quality Fig 1	2 as UT1 and levels applicable be identified on levels are nominand Fig 3 .	le to the zones	n 4 (2), (a), the to be examined in. The following ings identified in	Establishment/Revision of Classification Technical I (MRD4800-181-2020)
Quality Level	Allowable disc shape according to DGS ⁽¹⁾ (mm)	<u>Max.</u> number of indications to be registered ⁽²⁾	Allowable <u>length of linear</u> indications (mm) ⁽³⁾	Quality	Allowable disc shape according to DGS ⁽¹⁾ (mm)_or_	<u>Maximum</u> number of	Allowable <u>size</u> of all relevant	
UT1 UT2	> 6 12-15 > 15	0 5 0	0 50 0	Level	diameter of <u>FBH according</u> <u>to DAC⁽²⁾⁽³⁾</u> Curve(mm)	indications to be registered ⁽⁴⁾	indications (mm) ⁽⁵⁾⁽⁶⁾	
Notes:				UT1	> 6	0	0	
<u>(2)</u> gr	GS: distance-gain s ouped in an area r easured on the sca	measuring 300 x 30	0 mm	UT2	12-15 >15	5 0	50 0	
				(2) D (3) T reflec (4) gr (5) m (6) t	tors is at 100% DA ouped in an area r easured on the scat he measured indic	litude Correction DAC level to ea AC neasuring 300 x 30	0 mm as the longest	

Present	Amendment	reason
 (B) Level UT1 is applicable to: (a) fabrication weld preparations for a distance of 50 mm, (b) 50 mm depth from the final machined surface including bolt holes and fillet radii to a depth of 50 mm and within distance of 50 mm from the radius end, (c) castings subject to cyclic bending stresses e.g. rudder hom, rudder castings and rudder stocks - the outer one third of thickness in the zones nominated for volumetric examination by Fig 1 and Fig 3. (d) discontinuities within the examined zones interpreted to be cracks or hot tears. (C) Level UT2 is applicable to: (a) other locations nominated for ultrasonic testing in Fig 1 and Fig 3 or on the inspection plan. (b) positions outside locations nominated for level UT1 examination where feeders and gates have been removed (c) castings subject to cyclic bending stresses - at the central one third of thickness in the zones of nominated for volumetric inspection by Fig 1 and Fig 3. (D) (D) Ultrasonic acceptance criteria for other casting areas not nominated in Fig 1 and Fig 3 will be subject to special consideration based on the anticipated stress levels and the type, size and position of the discontinuity. 	 ing bolt holes and fillet radii to a depth of 50 mm and within distance of 50 mm from the radius end, (c) castings subject to cyclic bending stresses e.g. rudder horn, rudder castings and rudder stocks - the outer one third of thickness in the zones nominated for volumetric inspection by Fig 1 and Fig 3. (d) discontinuities within the examined zones interpreted to be cracks or hot tears. (C) Level UT2 is applicable to: (a) other locations nominated for ultrasonic testing in Fig 1 and Fig 3 or on the inspection plan. (b) positions outside locations nominated for level UT1 examination where feeders and gates have been removed 	 Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) To reflect IACS Rec69(Rev.2 Oct 2020)

Present	Amendment	reason
(F) ~ (L)_ <new≥< th=""><td> (F) DGS and DAC methods may be used for determining sensitivity. The DAC method for normal beam probes may be based on a 6.0 mm diameter reflector or flat bottomed hole (FBH). A DAC curve should be produced using reference blocks containing 6.0 mm FBH reflectors over a range representative of the inspection thickness, after adjustment for transfer and attenuation losses. (G) For quality level UT 1, any discontinuity producing a signal amplitude in excess of the 6.0 mm DAC curve is unacceptable. (H) For quality level UT2, the sensitivity may be based on actual size FBH (of 12 mm and 15 mm) or based on equivalent amplitudes, as described in (I). (I) For use of FBH of 6 mm for setting sensitivity, adjustment of signal amplitudes (measured in dB above 6 mm DAC) can be determined for 12 mm and 15 mm FBH reflectors: to be DAC + 12dB and DAC + 16dB (plus any compensation for transfer and attenuation losses). This is illustrated in Figure 1. The increase in dB to the indicated levels represent the equivalent FBH sizes (for 12 mm and 15 mm), and their respective corresponding ultrasonic response amplitudes. (J) The maximum number of indications to be registered and the maximum length of indications permissible for quality level UT 2, any discontinuity producing a signal amplitude in excess of the 15.0 mm DAC curve should be regarded as unacceptable. (L) Any signal between 12 + 15 curve should be evaluated for length of defect, and referred to Table 2 for acceptance </td><td>Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS</td></new≥<>	 (F) DGS and DAC methods may be used for determining sensitivity. The DAC method for normal beam probes may be based on a 6.0 mm diameter reflector or flat bottomed hole (FBH). A DAC curve should be produced using reference blocks containing 6.0 mm FBH reflectors over a range representative of the inspection thickness, after adjustment for transfer and attenuation losses. (G) For quality level UT 1, any discontinuity producing a signal amplitude in excess of the 6.0 mm DAC curve is unacceptable. (H) For quality level UT2, the sensitivity may be based on actual size FBH (of 12 mm and 15 mm) or based on equivalent amplitudes, as described in (I). (I) For use of FBH of 6 mm for setting sensitivity, adjustment of signal amplitudes (measured in dB above 6 mm DAC) can be determined for 12 mm and 15 mm FBH reflectors: to be DAC + 12dB and DAC + 16dB (plus any compensation for transfer and attenuation losses). This is illustrated in Figure 1. The increase in dB to the indicated levels represent the equivalent FBH sizes (for 12 mm and 15 mm), and their respective corresponding ultrasonic response amplitudes. (J) The maximum number of indications to be registered and the maximum length of indications permissible for quality level UT 2, any discontinuity producing a signal amplitude in excess of the 15.0 mm DAC curve should be regarded as unacceptable. (L) Any signal between 12 + 15 curve should be evaluated for length of defect, and referred to Table 2 for acceptance 	Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS

Present	Amendment	reason
<u>Fig 4_<new></new></u>	 (Notes) (1) The bottom curve (DAC) represents a sensitivity based on 6mm FBH, and the two additional curves (DAC + 12 and DAC + 16dB) above this represent the equivalent sensitivities converted for larger FBH's (12mm and 15mm). (2) When scanning using these curves, and applying Table 2 acceptance criteria, for UT2, any indication below DAC + 12mm should be disregarded, and any indication above DAC + 16mm should be rejected. (3) Any indication between these two curves should be evaluated according to its size, as per Table 2. Fig 4 DAC curve produced from 6.0 mm FBH reflector and DAC curves adjusted to represent equivalent 12.0 mm and 15.0 mm FBH reflectors 	

Present	Amendment	reason
7. Reporting	7. Reporting	
 7. Reporting All reports of non-destructive examinations should include the following items; Date of testing. Names_and qualification level of inspection personnel. (c) Type of casting. (d) Product number for identification. (e) Grade of steel. (f) Heat treatment. (g) Stage of testing. (h) Locations for testing. (i) Surface condition. (j) Test standards used. (k) Results. Statement of acceptance / non-acceptance. Locations of reportable indications. Details of weld repairs including sketches. (2) In addition to the items listed in 7 (1), reports of surface crack detection inspections are to include at least the following items: for liquid penetrant testing; the consumables used, (b) for magnetic particle testing: method of magnetising, test media and magnetic field strength. (c) ~ (e) <new></new> 	 (1) All reports of non-destructive examinations should include the following items; (a) Date of testing. (b) Name(s), signature(s) and qualification level of inspection personnel. (c) Type of casting. (d) Product number and unique identification. (e) Grade of steel. (f) Heat treatment. (g) Stage of testing. (h) Locations for testing. (i) Surface condition. (j) Test standards used including reference to the appropriate tables for acceptance purposes (k) Results including documentation regarding the repair and testing history(as appropriate); (l) Statement of acceptance / non-acceptance. (m) Locations of reportable indications. (n) Details of weld repairs including sketches(where applicable). (2) In addition to the items listed in 7 (1), reports of surface inspections should_include at least the following items: (a) for liquid penetrant testing; the penetrant system used, (b) for magnetic particle testing: method of magnetising, test 	* Request for Establishment/Revision of Classification Technical Rule (MRD4800-181-2020) - To reflect IACS Rec69(Rev.2 Oct 2020)
 (3) In addition to the items listed in 7 (1), reports of ultrasonic inspection should include at least the following items: (a) <u>flaw detector</u>, probes, calibration blocks and couplant <u>used</u>. 	 (d) testing details and procedure number (e) details of any test restrictions (3) In addition to the items listed in 7 (1), reports of ultrasonic inspection should include at least the following items: (a) flaw detector probe type, size, angle and frequency (and any adaptions to probes for curved surfaces), calibration and reference blocks, sensitivity method (including reflector size, transfer correction), maximum scanning rate (mm/s), and couplant. 	

Present	Amendment	reason
3. Rectification of Defects	8. Rectification of Defects	
(1) General	(1) General	* Request for
(a) Defects and unacceptable indications must be repaired as	(a) Indications that exceed the requirements of Table 1 and	Establishment/Revision of
indicated below.	Table 2, should be classed as defects, and should be re-	Classification Technical Ru (MRD4800-181-2020)
	paired or rejected as appropriate.	(MIND4000 101 2020)
(b) In either case where, after removing defects, the steel	(b) In either case where, after removing defects, the steel	
castings are used as they are or repair welding are car-	castings are used as they are or repair welding are car-	- To reflect IACS
ried out approval of the surveyor is to be obtained. In	ried out approval of the surveyor is to be obtained. In	Rec69(Rev.2 Oct 2020)
case where the depth of the recess after removing the de-	case where the depth of the recess after removing the de-	Rec03(Rev,2 Oct 2020)
fects is not larger than 15 mm (or 10% of the thickness	fects is not larger than 15 mm (or 10% of the thickness	
of the steel castings, whichever is smaller) and the length	of the steel castings, whichever is smaller) and the length	
is not more than 100 mm, the steel castings may be used	is not more than 100 mm, the steel castings may be used	
without repair welding. (c) <new></new>	without repair welding.	
	(c) Castings which are repaired should be examined by the same method as at initial inspection, as well as by any	
	additional methods as requested by the Surveyor.	
(2) Rectification of Defects	(2) Rectification of Defects	
Defective parts of material are to be completely removed ei-	Defective parts of material are to be completely removed ei-	
ther by grinding, or by chipping and grinding, or by arc	ther by grinding, or by chipping and grinding, or by arc	
air-gouging and grinding and to be repaired by either of the	air-gouging and grinding and to be repaired by either of the	
following methods. Thermal methods of metal removal should	following methods. Thermal methods of metal removal should	
only be allowed before the final heat treatment.	only be allowed before the final heat treatment. However, if	
	there is a track record used on the ship by repairing in a	
	different way, or if the Surveyor satisfies the repair method	
	according to national or international standards, the other re-	
	pair method may be acceptable.	
(A) In case of no repair welding being carried out	(A) In case of no repair welding being carried out	
The portions required no repair welding after removing	The portions required no repair welding after removing	
defects, are to be finished with a grinder etc. in accord- ance with the following:	defects, are to be finished with a grinder etc. in accord- ance with the following:	
(a) All grooves shall have a bottom radius of approx-	(a) All grooves shall have a bottom radius of approx-	
imately three times the groove depth.	imately three times the groove depth.	
(b) Grooves and their vicinity are to be finished smooth-	(b) Grooves and their vicinity are to be finished smooth-	
ly avoiding abrupt changes in configuration.	ly avoiding abrupt changes in configuration.	
(c) The portions where defects have been removed are to	(c) The portions where defects have been removed are to	
be verified that they are free from harmful defects by	be verified that they are free from harmful defects by	
liquid penetrant test or magnetic particle test after	liquid penetrant test or magnetic particle test after	
finishing of the surface configuration.	finishing of the surface configuration.	

Present	Amendment	reason
 (B) The portions required repair welding are to be suitably shaped and verified that they are free from harmful defects by nondestructive tests specified in (2) (A) (c) above and also repaired in accordance with the requirements in 3. of this Appendix. Weld repairs should be suitably classified as follows.; (a) <i>Major repairs</i> (i) where the depth is greater than 25 % of the wall thickness or 25 mm whichever is less, (ii) where the total weld area on a casting exceeds 2 % of the casting surface noting that where a distance between two welds is less than their average width, they are to be considered as one weld. (iii) Major repairs require the approval of the Society before the repair is carried out. The repair should be carried out before final furnace heat treatment. (b) <i>Minor repairs</i> (i) where the total weld area (length x width) exceeds 500 mm² (ii) Minor repairs do not usually require the approval of the Society but should be recorded on a weld repair sketch as a part of the manufacturing procedure documents. These repairs should be carried out before final furnace heat treatment. (c) <i>Cosmetic repairs</i> (i) Cosmetic repairs do not require the approval of the Society but should be recorded on a weld repair sketch. These repairs should be carried out after final furnace heat treatment. (a) <i>Cosmetic repairs</i> (b) <i>Cosmetic repairs</i> (c) <i>Cosmetic repairs</i> 	 (B) The portions required repair welding are to be suitably shaped and verified that they are free from harmful defects by nondestructive tests specified in (2) (A) (c) above and also repaired in accordance with the requirements in 3. of this Appendix. Weld repairs should be suitably classified as follows.; (a) Major repairs (i) where the depth is greater than 25 % of the wall thickness or 25 mm whichever is less, (ii) where the total weld area on a casting exceeds 2 % of the casting surface noting that where a distance between two welds is less than their average width, they are to be considered as one weld. (iii) Major repairs require the approval of the Society before the repair is carried out. The repair should be carried out before final furnace heat treatment. (b) Minor repairs do not usually require the approval of the Society but should be recorded on a weld repair sketch as a part of the manufacturing procedure documents. These repairs should be carried out before final furnace heat treatment. (c) Cosmetic repairs (i) all other welds. (ii) Cosmetic repairs do not require the approval of the Society but should be recorded on a weld repair sketch. These repairs may be carried out after final furnace heat treatment. (a) Cosmetic repairs do not require the approval of the Society but should be recorded on a weld repair sketch. These repairs may be carried out after final furnace heat treatment. (j) <<same as="" guidance="" present="" the=""></same> 	

Present	Amendment	reason
Annex 2-2 ~ Annex 2-5 <omitted></omitted>	Annex 2-2 \sim Annex 2-5 <same as="" guidance="" present="" the=""></same>	
Annex 2-6 Guidance for liquid penetrant inspection and repair of defects of copper alloy propeller castings	Annex 2–6 Guidance for liquid penetrant inspection and repair of defects of copper alloy propeller castings	* Request for Establishment/Revision of Classification Technical Rule (MRD4800-110-2020)
1. <omitted></omitted>	1. <same as="" guidance="" present="" the=""></same>	
 2. The liquid penetrant inspection Area of test (Severity zones) In order to relate the degree of inspection to the criticality of defects in propeller blades and to help reduce the risk of failure by fatigue cracking after repair, propeller blades are divided into the three zones designated A, B and C as shown in Fig 1 and Fig 2 The severity zones "A" are to be subjected to a dye penetrant inspection in the presence of the Surveyor. In zones "B" and "C" the dye penetrant inspection is to be performed by the manufacturer and may be witnessed by the Surveyor upon his request. If repairs have been made either by grinding or by welding the repaired areas are additionally to be subjected to the dye penetrant inspection independent of their location and/or severity zone. Methods of testing The methods of testing are to conform to the standard of KS B 0816 or equivalent. In the dye penetrant inspection an indication is the presence of detectable bleed-out of the penetrant liquid from the material discontinuities appearing at least 10 minutes after the developer has been applied. Where indications of defects appear, the type of defects and the size of the indications are to be recorded in detail. These records are to be presented to the Surveyor. For reference, the true size of the defects are also to be confirmed. 	 2. The liquid penetrant inspection Area of test (Severity zones) In order to relate the degree of inspection to the criticality of defects in propeller blades and to help reduce the risk of failure by fatigue cracking after repair, propeller blades are divided into the three severity zones designated A, B and C as shown in Fig 1 and Fig 2 The severity zones "A" are to be subjected to a dye penetrant inspection in the presence of the Surveyor. In zones "B" and "C" the dye penetrant inspection is to be performed by the manufacturer and may be witnessed by the Surveyor upon his request. If repairs have been made either by grinding, straightening_or by welding the repaired areas are additionally to be subjected to the dye penetrant inspection independent of their location and/or severity zone. (2) Methods of testing (a) Liquid penetrant testing procedure is to be submitted to the Society and is to be in accordance with ISO 3452-1:2013 or a recognized standard. The acceptance criteria are specified in (4). (b) <deleted></deleted> (b) Where indications of defects appear, the type of defects and the size of the indications are to be recorded in detail. These records are to be presented to the Surveyor. For reference, the true size of the defects are also to be confirmed.	

Present	Amendment	reason
 Present (3) Types of defects The defects detected by the liquid penetrant test are divided into following types of (A) to (D): (A) Cracks : the defects regarded as a crack. (B) Circular defects : the defects other than crack, in which the length is less than 3 times the width. (C) Linear defects : the defects other than crack, in which the length is equal to or greater than 3 times the width. (D) Aligned defects : Aligned defects consisting of two or more linear or circular defects which are almost aligned and the spacings between them do not exceed 2 mm. The length of an aligned defect is to be equal to the sum of the lengths of all individual defects and all spacings be- tween them. 	 (3) Definitions of liquid penetrant indications(refer to Fig 3) (A) Indication : In the liquid penetrant testing an indication is the presence of detectable bleed-out of the penetrant liquid from the material discontinuities appearing at least 10 minutes after the developer has been applied. (B) Relevant indication: Only indications which have any dimension greater than 1.5mm shall be considered relevant for the categorization of indications. (C) Non-linear indication: an indication with a largest dimension less than three times its smallest dimension (i.e. I≤3w). (D) Linear indications (a) Non-linear indications form an alignment when the distance between indications is less than 2 mm and at least three indications are aligned. An alignment. (b) Linear indications form an alignment when the distance between two indications is smaller than the length of the longest indication. 	* Request for Establishment/Revision of Classification Technical Rules
	<u>rengur of the fongest indication.</u>	

Present	Amendment	reason
<u>Fig 3 <new></new></u>	Non-linear Linear	
		* Request for Establishment/Revision of Classification Technical Rules (MRD4800-110-2020)
	$\frac{\ell}{w} < 3 \qquad \qquad \frac{\ell}{w} \ge 3$	- To reflect IACS UR W24(Rev.4 July 2020)
	Aligned	
	Alignement of non-linear indications	
	<i>ا</i> ر ا	
	Alignement of linear indications $0 \le d_1 \le 2 \text{ mm}$	
	<u>ار</u>	
	$\overbrace{\ell_1}^{\ell_1} \xrightarrow{\ell_2} \xrightarrow{d_1} \xrightarrow{\ell_1} \xrightarrow{\ell_1} \xrightarrow{\ell_n} \xrightarrow$	
	d, ≤ Max[ℓ]	Ē
	Fig 3 Shape of indications	

		Pres	ent				Ame	ndment		reason	
A) Wh cept pene ance	ance criter	or other ia given the defe requireme	in Table 1 exts are to be ents in 3. .	do not meet the ac- are detected by the repaired in accord-	(A)	ceptance cr penetrant to	cks or oth riteria giv est, the c he require	ren in Table	ch do not meet the ac- 1 are detected by the be repaired in accord-		
			Acceptance	Criteria				Acceptance	Criteria		
	Type of	Max.	defects	_of same type		Type of	Max.	Indicatio	ns of same type		
Are of test	<u>Defect</u> (excludin g crack)	total number of all defects(I)	Max. number of each type(II)	Max. size for each indication(III) (mm)	Are of test	Indication (excluding crack)	total number of <u>indicatio</u> <u>ns(I)</u>	Max. number of each type(II)	Max. size for each indication(III) (mm)	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-110-2020)	
	<u>Circular</u>		5	4		Non-linear		5	4	- To reflect IACS UR	
Zone A	e Linear	7	2	3	Zone A	Linear	7	2	3	W24(Rev.4 July 2020)	
	Aligned		2	3		Aligned		2	3		
	<u>Circular</u>		10	6		Non-linear		10	6		
Zone B	Linear	14	4	6	Zone B	Linear	14	4	6		
_	Aligned		4	6		Aligned		4	6		
	Circular		14	8		Non-linear		14	8		
Zone C	Linear	20	6	6	Zone C	Linear	Linear	20	6	6	
L	Aligned		6	6		Aligned		6	6		
(2) 1 at b (3) 5 (3) 5 at (4) 7	r more crite The counting the most eing evaluat m ² Singular <u>cir</u> nd less than Where only	ria of (I) g of the r unfavoural ed. The a <u>cular</u> indi <u>3 mm fo</u> <u>circular</u>	through (III) in number of <u>defec</u> ole location rela rea of a referen cations less that r other zones m	they do not meet one this table. ts is to be conducted tive to the indication ce zone is to be 100 n 2 mm for zone A ay be disregarded. etected, all defects(I)	$\begin{array}{c} \text{or} \\ (2) \text{ T} \\ \text{at} \\ \text{in} \\ \underline{\text{Ea}} \\ \text{jo} \\ (3) \text{ S} \\ \text{les} \\ (4) \end{array}$	more criteri he counting the most u g evaluated. ach reference r dimension ingular <u>non-</u> ss than 3 mr Where only	a of (I) th of the nu nfavourable <u>The area may</u> not exceed <u>linear</u> indic n for other <u>non-linea</u>	rough (III) in the mber of <u>indication</u> e location relative <u>of a reference</u> <u>be square or re- ling 250 mm.</u> cations less than e zones are not co	$\frac{\text{ons}}{\text{one}}$ is to be conducted e to the indication be- zone is to be 100 cm^2 . extangular with the ma- 2 mm for zone A and considered relevant. were detected, all <u>in</u> -		

Present	Amendment	reason
(B) \sim (C) <omitted></omitted>	(B) \sim (C) <same as="" guidance="" present="" the=""></same>	
3. Repair of defects	3. Repair of defects	
 (1) Repair procedures (A) In general, the repairs are to be carried out by mechanical means, e. g. by grinding, chipping or milling. After milling or chipping, grinding is to be applied for such defects. (B) The contour of the ground depression is as smooth as possible in order to avoid stress concentrations or to minimize cavitation corrosion. (C) <new></new> (2) Repair of defects in zone A (a) In zone A of Fig 1 and Fig 2, repair welding will generally not be allowed unless specially approved by the Society. (b) Grinding may be carried out to an extent which maintains the blade thickness of the approved drawing. (c) The possible repair of defects which are deeper than those referred to above is to be considered by the Society. 	 (1) Repair procedures (A) In general, the repairs are to be carried out by mechanical means, e. g. by grinding, chipping or milling. After milling or chipping, grinding is to be applied for such defects. 	Establishment/Revision of Classification Technical Rul (MRD4800-110-2020) - To reflect IACS UR W24(Rev.4 July 2020)
 (3) Repair of defects in zone B (a) In zone B of Fig 1 and Fig 2, defects that are not deeper than dB = (t/40) mm (t = min. local thickness in mm according to the Rules) or 2 mm (whichever is greatest) below min. local thickness according to the Rules should be removed by grinding. (b) Those defects that are deeper than allowable for removal by grinding may be repaired by welding. (c) Where the propellers in zone B in accordance with the requirements specified in previous (b) are repaired by welding, the limits of the repair welding are to be as shown in Table 2. (4) Repair of defects in zone C In zone C of Fig 1 and Fig 2, repair welds are generally permitted. 	 2, is not deeper than dB(dB=t/40 mm, t=Min. local thickness in mm according to the Rules) or 2 mm, whichever is greater, those defects may be removed by grinding in accordance with the previous 3. (1). (b) For defects that are deeper than those allowable in previous 3. (2) (b), upon the approval of the Society, repair welding is possible in accordance with Para 4. (c) Where the propellers in zone B in accordance with the requirements specified in previous (b) are repaired by welding, the limits of the repair welding are to be as shown in Table 2. 	

Present	Amendment	reason
. Repair Welding	4. Repair Welding	
Repair welding which permitted in accordance with the require-	Repair welding which permitted in accordance with the require-	
ments in 3 (3) and (4) above is to comply with the following;	ments in 3 (3) and (4) above is to comply with the following;	
(1) General	(1) General	
(a) Companies wishing to carry out welding work on pro-	(a) Before welding is started, manufacturer shall submit to	* Request for
pellers must have at their disposal the necessary work-	the Society a detailed welding procedure specification	Establishment/Revision of
shops, lifting gear, welding equipment, preheating and,	covering the weld preparation, welding parameters, inter	Classification Technical R
where necessary, annealing facilities, testing devices.	metals, preheating and post weld heat treatment and in-	(MRD4800-110-2020)
	spection procedures.	
$\underline{(b)} \leq New >$	(b) All weld repairs are to be carried out in accordance with	- To reflect IACS UR
	qualified procedures, and, by welders who are qualified to	
	a recognized standard. Welding Procedure Qualification	W24(Rev.4 July 2020)
	Tests are to be carried out in accordance with (5) and witnessed by the Surveyor.	
(b) All welding work is to be carried out preferably in the		
shop free from draughts and influence of the weather.	shop free from draughts and influence of the weather.	
(2) Welder	(2) Welder	
The welders are to have qualifications deemed appropriate by	The welders are to have qualifications deemed appropriate by	
the Society.	the Society.	
(3) Edge preparation	(3) Edge preparation	
(a) Defects to be repaired by welding are to be ground to	(a) Defects to be repaired by welding are to be ground to	
sound material according to the requirements as given un-	sound material according to the requirements as given un-	
der para 3 (1). To ensure complete removal of the de-	der para 3 (1). The resulting ground areas are to be ex-	
fects the ground areas are to be examined by dye pene-	amined in the presence of the Surveyor by liquid pene-	
trant methods in the presence of the Surveyor.	trant testing in order to verify the complete elimination	
	of defective material.	
$(b) \leq New \geq$	(b) The welding grooves are to be prepared in such a man-	
	ner which will allow a good fusion of the groove bottom.	
(b) The edge preparation for repair welding after removing		
the defects is to be as shown in Fig 3 and 4 .	the defects is to be as shown in Fig 3 and 4 .	

Present	Amendment	reason
 4) Welding repair procedure (a) <new></new> (a) Arc welding with coated electrodes and gas-shielded metal arc process (<i>GMAW</i>) are generally to be applied. Argon-shielded tungsten welding (<i>GTAW</i>) should be used with care due to the higher specific heat input of this process. (b) For material thickness less than 30 mm, gas welding may give a satisfactory weldment for <i>CU</i> 1 and <i>CU</i> 2 materials. (c) Recommended filler metals, pre-heating and stress relieving temperatures are listed in Table 3. However, the welding consumables are to be approved by the approval tests for welding procedure specified in (5). (d) All propeller alloys are generally to be welded in down-hand (flat) position. Where this cannot be done, gas-shielded metal arc welding should be carried out. (e) The section to be welded is to be clean and dry. Flux-coated electrodes are to be dried before welding according to the maker's instructions. (f) Adequate pre-heating is to be carried out with care to avoid local overheating, c.f. Table 3. (g) ~ (j) <omitted></omitted> 	 (4) Welding repair procedure (a) Metal arc welding is to be used for all types of welding repair on cast copper alloy propellers. (b) Arc welding with coated electrodes and gas-shielded metal arc process (<i>GMAW</i>) are generally to be applied. Argon-shielded tungsten welding (<i>GTAW</i>) should be used with care due to the higher specific heat input of this process. (b) arc plate b 	* Request for Establishment/Revision of Classification Technical Rul

Present	Amendment	reason
 (3) Welding procedure qualification test The manufacturer of propellers intending to carry out repair welding in zone B and zone C is to pass the welding proce- dure qualification test as shown below. The qualification test is also to be in accordance with the requirements specified in Pt 2, Ch 2, Sec 4 of the Rules, in addition to the follow- ing requirements: (A) <new> (a) <i>Tests for butt welding</i> (i) Test assembly The test assembly as specified in Fig 5 is to be pre- pared by means of butt welding. The edge preparation is, in principle, to be either the V shape or an appro- printe shape and the bevel angle is to be not less than <u>60°.</u> </new> 	 (5) Welding procedure qualification test The manufacturer of propellers intending to carry out repair welding in zone B and zone C is to pass the welding proc- dure qualification test as shown below. The qualification test is also to be in accordance with the requirements specified in Pt 2, Ch 2, Sec 4 of the Rules, in addition to the follow- ing requirements: (A) General (a) For the welding procedure approval the welding pro- cedure qualification tests are to be carried out with satisfactory results. The qualification tests are to be carried out with the same welding process, filler met- al, preheating and stress-relieving treatment as those intended applied by the actual repair work. Welding procedure specification (WPS) is to refer to the test results achieved during welding procedure qual- ification testing. (b) Welding procedures qualified at a manufacturer are valid for welding in workshops under the same tech- nical and quality management. (B) Tests for butt welding (a) Test assembly (i) The test assembly, consisting of cast samples, is to be of a size sufficient to ensure a reasonable heat distribution and according to Fig5 with the minimum dimensions. (ii) A test sample of minimum 30 mm thickness is to be used. (iii) Preparation and welding of test pieces are to be carried out in accordance with the general con- dition of repair welding work which it represents. (iv) Welding of the test assemblies and testing of test specimens are to be witnessed by the Surveyor. 	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-110-2020) - To reflect IACS UR W24(Rev.4 July 2020)

Present	Amendment	reason
Fig 4 _ <new> (ii) Welding procedure The welding procedures are to comply with the re- quirements in (5) above. (c) _ <new></new></new>	(Notes) 1 : Joint preparation and fit-up as detailed in the preliminary welding procedure specification a : minimum value 150 mm b : minimum value 300 mm t : material thickness Fig 4 Test piece for welding repair procedure (b) Welding procedure	

Present	A	Amendment		
	Table 5 Type of tests and	Table 5 Type of tests and extent of testing		
Table 5 <new></new>	Type of test(1)	Extent of testing		
	Visual inspection	<u>100% as per (d)</u>		
	Liquid penetrant testing	<u>100% as per (f)</u>	* Request for Establishment/Revision of Classification Technical Ru	
	Transverse tensile test	<u>Two specimens as per (e)</u>	(MRD4800-110-2020) - To reflect IACS UR	
	Macro examination	Three specimens as per (g)	W24(Rev.4 July 2020)	
	(Notes) (1) Bend or fracture test are	e at the discretion of the Society.		
Image: constructure of the second		- 300 mm Discard acro specimen ile test specimen acro specimen Discard Discard t t Test Specimen		

Prese	ent	Ameno	dment	reason
(iii) Visual inspection The welded surface free from harmful undercuts. (iv) Tensile test Tensile tests are to specimens taken in values obtained are <u>Table 5</u> . The form of ply with <u>Fig 6</u> . • The welded surface is to be base	is to be regular and uniform and defects such as cracks and be carried out using the two test accordance with Fig 5 , and the to be less than those given in of the test specimens are to com- 0 or more $I_{R=50 \text{ or more } Approx 30}$ reground or machined flush with metal. est Specimen (Unit : mm)	 (d) Visual inspection The welded surface free from harmfu undercuts. <u>Test asso</u> inspection prior to case, that any post specified, visual in heat treatment. (e) Tensile test Tensile tests are to specimens taken in values obtained are <u>Table 6</u>. The form ply with <u>Fig 7</u>. <u>A</u> according to recog Society may be use 10 or more <u>10 or more</u> 	e is to be regular and uniform and al defects such as cracks and embly is to be examined by visual the cutting of test specimen. In -weld heat treatment is required or ispection is to be performed after to be carried out using the two test a accordance with Fig 6 , and the e to be less than those given in of the test specimens are to com- Alternatively tensile test specimens paized standards acceptable to the	* Request for Establishment/Revision of Classification Technical Rule (MRD4800-110-2020) - To reflect IACS UR W24(Rev.4 July 2020)
Table 5 Tensile Test Requiremer	nts for Approval Test	<u>Table 6</u> Tensile Test Requirem	ents for Approval Test	
Material	Tensile Strength (N/mm ²)	Material	Tensile Strength (N/mm ²)	
CU 1 CU 2 CU 3	370 min. 410 min. 500 min. 550 min.	CU 1 CU 2 CU 3 CU 4	370 min. 410 min. 500 min. 550 min.	

Present	Amendment	reason
(v) Non-destructive inspection Welded joint is to be tested for the whole length by liquid penetrant test, and is to show that there are no crack and other injurious defects.		Establishment/Revision of Classification Technical Rules
 (vi) Macro-structure inspection (2017) Macro etched test specimen is to be prepared as shown in Fig 5. Pores greater than 3 mm and cracks not permitted. A suitable etchant for this purpose is : 5 g iron(III) chloride 30 ml hydrochloric acid (cone) 100 ml water 	with 2 . (4). No cracks are permitted. (g) Macro-structure examination (2017) Three test specimens are to be prepared and etched	- To reflect IACS UR W24(Rev.4 July 2020)
(b) ~ (c) <omitted> (E) <new></new></omitted>	 (c) ~ (D) <same 3="" alfected="" and="" are="" as="" cracks="" fusion="" greater="" imperfections="" in="" inclusions,="" lack="" li="" metal="" mm="" near="" not="" of="" or="" permitted.="" permitted.<="" pores,="" present="" slag="" such="" than="" the="" weid="" zone.=""> (c) ~ (D) <same as="" guidance="" present="" the=""></same> (e) Range of approval (f) All the conditions of validity stated below are to be met independently of each other. Changes outside of the ranges specified are to require a new welding procedure test. </same>	
	(ii) A qualification of a WPS obtained by a manu- facturer is valid for welding in workshops or sites under the same technical and quality control of that manufacturer. (b) Base metal The range of qualification related to base metal is given in Table 7 .	

Present	Amendment	reason
	Table 7 Range of qualification for base metal	
	Copper alloy material grade used for qualificationRange of approval	
	<u>CU1</u> <u>CU1</u>	* Request for Establishment/Revision of
	<u>CU 2</u> <u>CU 1, CU 2</u>	Classification Technical Rule
	<u>CU 3</u> <u>CU 3</u>	(MRD4800-110-2020)
	<u>CU 4</u> <u>CU 4</u>	– To reflect IACS UR
		W24(Rev.4 July 2020)
	(c) Thickness <u>The qualification of a WPS carried out on a w</u> <u>sembly of thickness t is valid for the thickness</u> <u>given in Table 8.</u>	
	Table 8 Range of qualification for thickness	
	Thickness of the test piece, t(mm)Range of approval, T(m	<u>m)</u>
	$30 \le t \qquad 3 \le T$	
	 (d) Welding position Approval for a test made in any position is reto that position. (e) Welding process The approval is only valid for the welding used in the welding procedure test. Single run qualified by multi-run butt weld test used. (f) Filler metal The approval is only valid for the filler metal the welding procedure test. (g) Heat input The upper limit of heat input approved is 25% er than that used in welding the test piece. The relimit of heat input approved is 25% lower that used in welding the test piece. 	process is not used in o great- ne low-

Present	Amendment	reason
5. Straightening (1) Hot straightening (a) <new≥ (a) ~ (d) <omitted> (2) ~ (3) <omitted></omitted></omitted></new≥ 	(i) Post-weld heat treatment The heat treatment used in the qualification test is to be specified in pWPS. Soaking time may be adjusted	Establishment/Revision of Classification Technical Rules (MRD4800-110-2020)

				Ρ	rese	ent										Am	end	men	t					reason
	Aı	nnex 2	-7	~ A	nne	x 2-	10 <	<omi< th=""><th>tted></th><th>></th><th></th><th colspan="5">Annex 2–7 \sim Annex 2–10 <same as="" guidance="" present="" the=""></same></th><th>nt</th><th></th></omi<>	tted>	>		Annex 2–7 \sim Annex 2–10 <same as="" guidance="" present="" the=""></same>					nt							
Ar	Annex 2-11 High manganese austenitic steels							ls	Aı	Annex 2-11 High manganese austenitic steels							ls							
1.	~ 2.	<omitte< th=""><th>d></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th colspan="7">1. \sim 2. <same as="" guidance="" present="" the=""></same></th><th></th><th></th></omitte<>	d>									1. \sim 2. <same as="" guidance="" present="" the=""></same>												
3. I	/lanufa	cturing	proc	ess								3. 1	Manufa	cturing	proc	ess								
· · · ·	factu thick the of th to 4. 2) The posit 1 .	grade, t ion are	n the approf factur hickn to co	e con coval 5 as ing p ess, c mply	ntinuo is to standa process deoxid with	us ca be o ard. H s, the lation the r	asting determi Howeve roll 1 practic requirer	slabs, ined, er, up ratio e and nents	, the as a on co may d che give	max rule, onside be re mical n in	kimum , with eration educed com- Table	(factu thick the of th to 4. 2) The posit 1 .	grade, th tion are t	of the approved actur nickn o co	e co roval 6 as ing j ess, o mply	ntinuo is to stand proces deoxio with	bus ca be of ard. H s, the lation the r	isting determ loweve roll f practic equire	slabs, ined, er, up ratio ce and nents	, the as a oon co may d chen given	max rule, onside be re- mical n in	imum with ration duced com- Table	
Table Comp	1 G osition Thick	arade, T	hickn	ess,			on Pra			Che	mical		1 Gosition	Grade, T	nickn	iess,			on Pra			Chei	mical	
Grad e	ness, t(mm)	Deoxid ation Practice	C	Si ⁽	Mn	P	S	Cu	Cr	N	В	Grad e	$\begin{array}{c} \text{ness,} \\ t(\text{mm}) \end{array}$	Deoxid ation Practice	C	Si ⁽	Mn	P	S	Cu	Cr	Ν	В	- To reflect IMO interim
HMN 40	$6 \le t \le \frac{30}{2}$	Killed and Fine grain treated	~	~	22.50 ~ 25.50	0.030 max.	0.010 max.	~	~	0.05 0 max.	0.00 5 max.	HMN 40	$6 \le t \le \frac{40}{2}$	Killed and Fine grain treated	~	~	22.50 ~ 25.50	0.030 max.	0.010 max.	~	3.00 ~ 4.00	0	5	guideline
NOTE (1)	Silicon	n(Si) may or highe) Silicon	n(Si) may o or highe	be r, or	less provi	than (ded a).10 %, cid sol	provic uble al	led to uminu	otal al m is (uminu 0.025 9	m is % or	
4. ⁻	~ 7.	<omitte< td=""><td>d></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.</td><td>~ 7.</td><td><same a<="" td=""><td>as th</td><td>ne pi</td><td>resen</td><td>t Gui</td><td>dance</td><td>></td><td></td><td></td><td></td><td></td></same></td></omitte<>	d>									4.	~ 7.	<same a<="" td=""><td>as th</td><td>ne pi</td><td>resen</td><td>t Gui</td><td>dance</td><td>></td><td></td><td></td><td></td><td></td></same>	as th	ne pi	resen	t Gui	dance	>				

			Pr	eser	It						Amendment	reason
 8. Welding consumables for high manganese austenitic steel ~ (3) <omitted></omitted> (4) Deposited metal test (A) Chemical composition Deposited metals of welding consumables for flux cored wire welding and submerged arc welding are to have the chemical composition given in Table 5 and Table 6 respectively. (b) TIG welding consumables are to have the chemical composition of ladle analysis value complied with the requirements as given in Table 7. Table 5 Chemical Composition of Deposited Metal for Flux Cored Wire Welding 											 8. Welding consumables for high manganese austenitic steel (1) ~ (3) <omitted></omitted> (4) Deposited metal test (a) ~ (b) <deleted></deleted> 	 * Request for Establishment/Revision of Classification Technical Rule (MET4800-732-2020) - To reflect Technical Committee's opinion
						2/1				Table 5 <deleted></deleted>	: The requirement for	
Grade	e	Si	Mn		Ť	-Ni	-70) Cr	Mo	N	Othe rs		Chemical Composition is n necessary.
<i>R₩</i> - HMN	0.2~0. 5	θ.2~1 θ	. 18.0~2 6.0	2 0.0 2 2m ax.	15 ma	5.0 ma x.	5.0 ma x.	2.5- ma x.	0.1 ma x.			
able_6 ∖rc_Wel	Chemic ding	al Co i	nposition	of D	eposi	ted N	letal	for S	Subm	nerged	Table 6 <deleted></deleted>	
Grade			Chem	ical co	mposit	tion (%)			0.1		
Ulauc	e	Si	Mn	P	$\cdot S$	Ni	- Cr	Mo	N	Othe rs		
RU HMN	0.2~0.6	1.5 ma x.	18.0∼2 6 .0	0.0 20 ma x.	0.0 15 ma x.	3.0 ma x.	5.0 ma x.	2.5 ma x.	θ.1 θ- ma x.			

Present											Amendment	reason
Fable 7 Chemical Composition of Deposited Metal for TIG Electrodes										r TIG		
	Chemical composition (%)											
Grade	C Si Mn P S Ni Cr Mo N $Othe rs$							Mo	N		Table 7 <deleted></deleted>	
RY HMN	0.2~ 0.5	0.1∼1 .0	18.0~ 26.0	0.02 0ma x.	0.0 15 ma x.	5.0 ma x.		2.5 ma x.	θ.1 θ- ma x.	_		
<her< td=""><td>æafter,</td><td>omitted></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><hereafter, as="" guidance="" present="" same="" the=""></hereafter,></td><td></td></her<>	æafter,	omitted>									<hereafter, as="" guidance="" present="" same="" the=""></hereafter,>	

GUIDANCE RELATING TO THE RULES FOR THE CLASSIFICATION OF STEEL SHIPS

(Guidance Part 2 Materials and Welding)

- For external opinion inquiries -

2021. 01.

Machinery Rule Development Team

- Main Amendments -

(1) Enter into force on 1 July 2021 (the contract date for ship construction)

• To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)

• To reflect IACS UR W34(New Dec 2019 & Rev.1 May 2020)

Present	Amendment	reason
Annex 2-7 Guidance for non-destructive testing of ship hull steel welds	Annex 2-7 Guidance for non-destructive testing of ship hull steel welds	
General	1. General	
 (1) Application (A) This Guidance applies to the Non-destructive inspection for all hull welds of ships whose, in general, length exceeds 30 m to confirm the quality of the hull welds. Effective date of this Guidance is the date of contract for construction. (B) In ships of less than 30m in length, the range of the inspection, the members to be inspected and the number of checkpoints are to be determined by the Surveyor based on consultation with the manufacturer. (C) The quality levels given in this Guidance refer to production quality and not to fitness for-purpose of the welds examined. (D) The non-destructive testing is normally to be performed by the Shipbuilder or its subcontractors in accordance with this Guidance. Surveyor may require to witness some testing. (E) It should be the Shipbuilder's responsibility to assure that testing specifications and procedures are adhered to during the construction and the report is made available to the Society on the findings made by the NDT. (F) <new></new> 	 (1) Application (A) This Guidance applies to the Non-destructive inspection for all hull welds of ships whose, in general, length exceeds 30 m to confirm the quality of the hull welds. Effective date of this Guidance is the date of contract for construction. (B) In ships of less than 30m in length, the range of the inspection, the members to be inspected and the number of checkpoints are to be determined by the Surveyor based on consultation with the manufacturer. (C) The quality levels given in this Guidance refer to production quality and not to fitness for-purpose of the welds examined. (D) The non-destructive testing is normally to be performed by the Shipbuilder or its subcontractors in accordance with this Guidance. Surveyor may require to witness some testing. (E) It should be the Shipbuilder's responsibility to assure that testing specifications and procedures are adhered to during the construction and the report is made available to the Society on the findings made by the NDT. (F) The extent of testing and the number of checkpoints are to be agreed between the Shipbuilder and the Society. For criticality of structure reference is to be made to Pt3 Ch1 Sec4 of the Rules of Structural Member Categories 	(MRD4800-181-2020 - To reflect IACS UR W33(New Dec 2019 & Re May 2020)
(F) This Guidance is intented to apply to welds of irons and nonferrous metals. Other marine structures may be applied subject to the approval by the Society. However, in case of ultrasonic inspection, the transducer design and calibra- tion block material used are appropriate to the material under inspection.	 and Pt13 of the Rules. (G) This Guidance is intented to apply to welds of irons and nonferrous metals. Other marine structures may be applied subject to the approval by the Society. However, in case of ultrasonic inspection, the transducer design and calibration block material used are appropriate to the material under inspection. 	

Present	Amendment	reason
<u>(F) <new></new></u>	(H) These requirements cover conventional NDT methods. Advanced non-destructive testing (ANDT) methods such as phased array ultrasonic testing (PAUT), time of flight diffraction (TOFD), digital radiography (RT-D), radio- scopic testing (RT-S), and computed radiography (RT-CR)	Establishment/Revision of Classification Technical Rules (MRD4800-181-2020)
(2) ~ (4) _ <new></new>	 (2) Terms and definitions The following terms and definitions apply for these requirements. (A) NDT(Non-Destructive Testing) - the development and application of technical methods to examine materials or components in ways that do not impair their future usefulness and serviceability, in order to measure geometrical characteristics and to detect, locate, measure and evaluate flaws. NDT is also known as non-destructive examination (NDE), non-destructive inspection (NDI) and non-destructive evaluation(NDE). (B) RT - Radiographic Testing (C) UT - Ultrasonic Testing (D) MT - Magnetic Particle Testing (E) PT - Dye or Liquid Penetrant Testing (F) PWHT - Post Weld Heat Treatment (G) VT - Visual Testing (3) Welding processes These requirements apply to fusion welds made using manual metal arc welding (shielded metal arc welding, 111), gas-shielded metal arc welding (12x), electro-slag welding (72x) and electro-gas welding rocesses (73). Terms and numbers according to <i>ISO 4063:2009</i> ("x" indicates that relevant subgroups are included). These requirements may also be applied to welding processes other than the above at the discretion of the Society. (4) Weld joints These requirements apply to butt welds with full penetration, and fillet welds. 	- To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)

	Present		An	nendment		reason		
(2) Means of Non-dest (A) Applicable metho weld joints are gi	ods for testing of the	ne different types of	(5) Means of Non-dest (A) Applicable metho weld joints are gi	ne different types of	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020)			
Table 1 Applicable methods	for testing of weld	joints	Table 1 Applicable methods	joints				
Weld Joint	Parent material thickness(mm)	Applicable testing methods	Weld Joint	Parent material thickness(mm)	Applicable testing methods	- To reflect IACS UR W33(New Dec 2019 & Rev.1		
Butt welds with full penetration	$\underline{t \leq 8}$	VT, PT, MT, RT	Butt welds with full	$\underline{t \leq 8^{(1)}}$	VT, PT, MT, RT	May 2020)		
	<u>t > 8</u>	VT, PT, MT, UT, RT	penetration	<u>t≥8</u>	VT, PT, MT, UT, RT			
Tee joints, corner joints and cruciform joints with full	$\underline{t \le 10}$	VT, PT, MT	Tee joints, corner joints and cruciform joints with full penetration	$\underline{t \leq 8^{(1)}}$	VT, PT, MT, <u>RT⁽³⁾</u>			
penetration Tee joints, corner joints and cruciform joints without full penetration and fillet welds	<u>t > 10</u>	VT, PT, MT, UT VT, PT, MT,		<u>t≥8</u>	VT, PT, MT, UT, $\underline{RT}^{(3)}$			
	All	UT ⁽¹⁾	Tee joints, corner joints and cruciform joints without full penetration and fillet welds	All	VT, PT, MT, UT ^{(2),} RT ⁽³⁾			
ciple, to be mag	be subject to visus the Shipyard. inspection for detect Id joints of hull con netic particle testing penetrant testing ca	al testing by person-	by personnel desi exempted from th (7). (C) As far as practic vestigating the ou mediate weld pass sequent passes de romagnetic materi the Society. Surfa joints, using an	tiate advanced UT met itor the extent of pend- his requirement is to ever there will be limit heir full length are gnated by the Shiph he qualification requ- able, PT or MT shat tter surface of welds ses and back-gouged position. MT shall ials welds unless of acce inspection of im	thod. etration in tee, corner <u>be agreed with the</u> tations to be subject to VT puilder, who may be uirements defined in all be used when in- be, checking the inter- l joints prior to sub- be performed in fer- therwise agreed with portant tee or corner T method, shall be			

Present	Amendment	reason
(D) Non-destructive inspection for detection of internal imperfections is, in principle, to be radiographic inspection specified in 3 . However, for larger thickness over 30 mm, ultrasonic inspection specified in 4 is to be used as the primary inspection method.	specified in 3 . However, if the following (E) is satisfied, methods to be used shall be agreed with the Society. The method used shall be suited for the detection of particular types and orientations of discontinuities. RT and UT are used for detection of internal discontinuities, and in es- sence they supplement and complement each other. RT is generally most effective in detecting volumetric dis- continuities (e.g. porosity and slag) whilst UT is more ef- fective for detecting planar discontinuities (e.g. lami- nations, lack of fusion and cracks). Although one method may not be directly relatable to the other, either one	Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev 1
 (E) For welded joints of hull construction in thickness of 8 mm and above, a part or all of radiographic inspection may be replaced by the ultrasonic inspection based on the requirements given in 4, in case that the shipyard submitting ultrasonic testing specifications containing information on the items mentioned below (a) Approval of inspection manual Prior to carrying out the inspection, the shipyard has to submit the inspection manual containing the items mentioned below, and have the manual approved by the Society. (i) Type of ultrasonic detector and kind of probe (nominal frequency and material, dimension, type and nominal angle of refraction of transducer), and the applicable range of the testing (thickness, welding process, etc.) (ii) Calibration block and reference block for calibration (iii) Kind of ultrasonic test process (Angle beam technique is to be of standard one), and extent of the measurements and method for sensitivity adjustment for the process (iv) Judgement criteria for ultrasonic test (The criteria for angle beam technique test is to be in accordance with Table 11. For the other kind of ultrasonic test process, judgement criteria are to be described in detail.) (v) Record of the results of ultrasonic test 	 submitting ultrasonic testing specifications containing information on the items mentioned below (a) Approval of inspection manual Prior to carrying out the inspection, the shipyard has to submit the inspection manual containing the items mentioned below, and have the manual approved by the Society. (i) Type of ultrasonic detector and kind of probe (nominal frequency and material, dimension, type and nominal angle of refraction of transducer), and the applicable range of the testing (thickness, welding process, etc.) (ii) Calibration block and reference block for calibration (iii) Kind of ultrasonic test process (Angle beam technique is to be of standard one), and extent of the measurements and method for sensitivity adjustment for the process (iv) Judgement criteria for ultrasonic test (The criteria for angle beam technique test is to be in accordance with Table 11. For the other kind of 	

Present	Amendment	reason
 (b) The capability of shipyard The capability of shipyard about the reliability of the test methods is to judged by the items mentioned below. (i) Qualification of engineers (ii) Quality control conditions (iii) Reliability (iv) Keeping the Standards and their application abil- ity (v) Documents for type, extent and repair of defects (c) Confirmation by radiographic inspection (i) When the initial ultrasonic inspection is carried out according to this Guidance, ultrasonic testing for 1/10 of welds to be subject, based on the in- structions of the Surveyor, to radiographic testing of at least three ships to confirm that the results match those of (a) (iv) and is approved by the Society for the consistence. However the con- firmation by radiographic inspection can be waived for the shipyard which has the records to carry out confirmation inspection more than 3 ships. (F) Where a yard desires to use ultrasonic inspection as the primary inspection method according to (E), following re- quirements to be complied. (a) a reasonable amount of checkpoints are to be exam- ined by the radiography or alternative means ap- proved by the Society. The amount examined together with the area covered are to be agreed and marked on the NDE plan specified in (5). (b) Radiographic inspection may be required at random in important locations at the discretion of the Surveyor. 	 (i) Qualification of engineers (ii) Quality control conditions (iii) Reliability (iv) Keeping the Standards and their application abil- 	Classification Technical Rule (MRD4800-181-2020) - To reflect IACS UR

Present	Amendment	reason
 Present (G) Alternative means to the radiographic inspection (a) In case where shipyard intend to apply the new advanced NDT technologies such as Phased array UT (PAUT) or Time of Flight Diffraction (TOFD) in lieu of radiographic inspection, the shipyard has to submit the inspection manual as specified above (E), (a) and have the manual approved by the Society. (b) Additional test and/or data for comparison of alternative means with radiographic inspection may be required when deemed necessary by the Society. (H) ~ (M) <new></new> 	 (G) In case where shipyard intend to apply the new advanced NDT technologies such as Phased array UT (PAUT) or Time of Flight Diffraction (TOFD) in lieu of radiographic inspection, it is to be accordance with Annex 2–12. (H) Where the surveyor becomes aware that an NDT location has been repaired without a record of the original defect, the shipyard is to carry out additional examinations on adjacent areas to the repaired area to the satisfaction of the attending surveyor. Reference is to be made to Pt1, Annex 1–12 of the Guidance. (I) Welds in thick steels (>50 mm) used in container carrier, deck and hatch coaming areas are to be inspected in accordance with the additional requirements in Pt7, Annex 7–8 of the Guidance. (J) The testing method, equipment and conditions shall comply with recognized National or International standards, or other documents to the satisfaction of the Society. (K) Sufficient details shall be given in a written procedure 	* Request for Establishment/Revision of Classification Technical Rules
(H) The additional non-destructive inspection required for workmanship control of welded joints of hull is to be in accordance with the requirements specified in 3 (2), (C).	 (K) Sufficient details shall be given in a written procedure for each NDT technique submitted to the Society for acceptance. (L) The testing volume shall be the zone which include the weld and parent material for at least 10 mm each side of the weld, or the width of the heat affected zone(HAZ), whichever is greater. In all cases inspection shall cover the whole testing volume. (M) Provision is to be made for the surveyor to verify the inspection, reports and records(e.g. radiographs) on request. (N) The additional non-destructive inspection required for workmanship control of welded joints of hull is to be in accordance with the requirements specified in 3 (2), (C). 	

Present	Amendment	reason
 (3) Testing apparatus The testing apparatus of radiographic and ultrasonic Inspection are to be calibrated and/or corrected in accordance with the recognised national or international standards. (4) Personnel requirements (a) Personnel carrying out non-destructive inspection are generally to be qualified and certified to Level II or above in (KS B) ISO 9712, SNT-TC-1A, ASNT Central Certification Program (ACCP) or equivalent. However, the personnel qualified to Level I can engage in the testing under supervision of those qualified for Level II or above. (b) Personnel responsible for the radiographic and/or ultrasonic Inspection activity including approval of procedures should be qualified and certified to Level III. (c) Periodic re-evaluations of test personnel are to be conducted in accordance with (KS B) ISO 9712 or equivalent to verify that such capability is maintained. (d) ~ (g) <new></new>	Inspection are to be calibrated and/or corrected in accordance with the recognised national or international standards. (7) Personnel requirements (a) The Shipbuilder or its subcontractors is responsible for the qualification and preferably 3rd party certification of its supervisors and operators to a recognised certification	- TO TEHECT IACS UK

Present	Amendment	reason
	 (e) The supervisor shall be directly involved in review and acceptance of NDT Procedures, NDT reports, calibration of NDT equipment and tools. The supervisor shall on behalf of the Shipbuilder or its subcontractors re-evaluate the qualification of the operators annually. (f) The operator carrying out the NDT and interpreting indications, shall as a minimum, be qualified and certified to Level 2 in the NDT method(s) concerned and as described in (a) ~ (c) above. However, operators only undertaking the gathering of data using any NDT method and not performing data interpretation or data analysis may be qualified and certified as appropriate, at level 1. (g) The operator shall have adequate knowledge of materials, welding, structures or components, NDT equipment and limitations that are sufficient to apply the relevant NDT method for each application appropriately. 	Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)

Present	Amendment	reason
 (5) NDE plan (a) The Shipbuilder should submit a plan for approval by the Society, specifying the areas to be examined and the extent of testing with reference to the NDT procedures to be used according to the ship design, ship type and welding processes used. Particular attention should be paid to highly stressed areas. (b) The plan should only be released to the personnel in charge of the NDT and its supervision. (c) The identification system should identify the exact locations of the lengths of weld examined. 	 (8) NDT plan (A) The extent of testing and the associated quality levels are to be planned by the Shipbuilder according to the ship design, ship type and welding processes used. For new construction survey reference is to be made to the NDT requirements of Pt1, Annex 1-12 of the Guidance and Appendices. (B) For each construction, the Shipbuilder shall submit a plan for approval by the Society, specifying the areas to be examined and the extent of testing and the quality levels, with reference to the NDT procedures to be used. Particular attention is to be paid to inspecting welds in highly stressed areas and welds in primary and special structure indicated in Pt3, Ch 1, Sec 4 of the Rules. The NDT procedure(s) shall meet the requirements of the Society. The plan shall only be released to the personnel in charge of the NDT and its supervision. (a) In selecting checkpoints, emphasis shall be given to the following inspection locations: Welds in high stressed areas Fatigue sensitive areas Other important structural elements Welds which are inaccessible or very difficult to inspect in service Field erected welds Suspected problem areas (b) Block construction welds performed in the yards, or at subcontracted yards/facilities, are to be considered in selecting checkpoints. (c) For other marine and offshore structures the extent is to be agreed by the Society. 	Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)

Present	Amendment	reason
(d) Welded connections of large cast or forged components (stern frame, stern boss, rudder parts, shaft brackets) should be tested over their full length using MT or PT and at agreed locations using RT or UT.	(D) Welded connections of large cast or forged components (e.g. stern frame, stern boss, rudder parts, shaft brackets) are to be tested over their full length using MT (MT is the preferred method) or PT, (PT is to be applied for non-ferrous metals) and at agreed locations using RT or UT.	Establishment/Revision of Classification Technical Rules
(e) All start/stop points in welds made using automatic (mechanised) welding processes should be examined using <u>RT or UT except for internal members where the extent</u> of testing should be agreed.	 (E) In general start/stop points in welds made using automatic (mechanized) welding processes are to be examined using RT or UT, except for internal members where the extent of testing is to be agreed with the attending surveyor. 	- To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)
 (f) Tee joints with full penetration between corrugated bulkheads and inner bottom without lower stools should be tested minimum 10% for the number of corner part of corrugation. The 200 mm of corner part from side to side is to be examined by MT or PT and at agreed locations are to be examined by RT or UT. The surveyor may request the additional non-destructive testing according to the quality of workmanship of the shipyard. (2017) (6) Timing of NDT (a) NDT should be conducted after welds have cooled to ambient temperature and after post weld heat treatment where applicable. (b) For steels with specified minimum yield stress of 420 N/mm² and above, NDT should not be carried out before 48 hours after completion of welding. Where post weld heat treatment (PWHT) is carried out or consistent low failure rate of delayed cracking has been documented for the materials and welding consumables in question, the requirement for testing after 48 hours may upon agreement be reduced. (c) ~ (e) <new></new> 	 (F) Tee joints with full penetration between corrugated bulkheads and inner bottom without lower stools should be tested minimum 10% for the number of corner part of corrugation. The 200 mm of corner part from side to side is to be examined by MT or PT and at agreed locations are to be examined by RT or UT. The surveyor may request the additional non-destructive testing according to the quality of workmanship of the shipyard. (2017) (9) Timing of NDT (a) NDT shall be conducted after welds have cooled to ambient temperature and after post weld heat treatment where applicable. (b) For high strength steels for welded structure with specified minimum yield stress in the range of 420 N/mm² to 690 N/mm², NDT shall not be carried out before 48 hours after completion of welding. For steel with specified minimum yield greater than 690 N/mm², NDT shall not be carried out before 72 hours after completion of welding. Regardless of yield strength consideration is to be given to requiring a delayed inspection where evidence of delayed cracking has been observed in production welds. (c) At the discretion of the surveyor, a longer interval and/or additional random inspection at a later period may be required, (for example in case of high thickness welds). 	

Present	Amendment	reason
	(d) At the discretion of the surveyor, the 72 hour interval	
	may be reduced to 48 hours for RT or UT inspection,	Establishment/Revision of
	provided there is no indication of delayed cracking, and a	Classification Technical Rule
	complete visual and random MT or PT inspection to the	(MRD4800-181-2020)
	satisfaction of the surveyor is conducted 72 hours after	
	welds have been completed and cooled to ambient	
	temperature.	- To reflect IACS UR
	(e) Where PWHT is carried out the requirement for testing	W33(New Dec 2019 & Rev.
	after a delay period may be relaxed, at the discretion of	M 9090)
	the surveyor.	May 2020)
Performance and responsibility	(10) Performance and responsibility	
(a) The non-destructive testing is normally to be performed	(a) The non-destructive testing is normally to be performed	
by the Shipbuilder or its subcontractors in accordance	by the Shipbuilder or its subcontractors in accordance	
with inspection manual and NDE plan approved by the	with inspection manual and NDE plan approved by the	
Society. The Surveyor may require to witness some	Society. The Surveyor may require to witness some	
testing.	testing.	
(b) It should be the Shipbuilder's responsibility to assure that	(b) It should be the Shipbuilder's responsibility to assure that	
testing specifications and procedures are adhered to during	testing specifications and procedures are adhered to during	
the construction and the report is made available to the	the construction and the report is made available to the	
Society on the findings made by the NDT.	Society on the findings made by the NDT.	
) Surface inspections	(11) Surface inspections	
(a) <new></new>	(a) Areas to be examined shall be free from scale, slag,	
	loose rust, weld spatter, oil, grease, dirt or paint that	
	might affect the sensitivity of the testing method.	
(a) Surface increations shall be corriad out as bellows	(b) Preparation and cleaning of welds for subsequent NDT	
(a) Surface inspections shall be carried out as bellows;		
	are to be in accordance with the accepted NDT proce-	
	dures, and are to be to the satisfaction of the surveyor.	
	Surface conditions that prevent proper interpretation may	
	be cause for rejection of the weld area of interest. $()$	
(b) The surface of welds to be radiographed are to be suffi-	(c) The surface of welds to be radiographed are to be suffi-	
ciently free from irregularities that may mask or interfere	ciently free from irregularities that may mask or interfere	
with interpretation	with interpretation	
(c) The test surface (within I skip distance from welds edge)	(d) The test surface (within I skip distance from welds edge)	
to be ultrasonic tested are free from spatter, floating	to be ultrasonic tested are free from spatter, floating	
scales, painting film, remarkable rust which prevent trans-	scales, painting film, remarkable rust which prevent trans-	
mission of ultrasonic wave and the likes. They are re-	mission of ultrasonic wave and the likes. They are re-	
moved if existed.	moved if existed.	

	Present	Amendment	reason
 Visual testing (a) The welds exam (b) Acceptance crite Table 2 Acceptance 	surface imperfections nined should be clean and free from paint. eria are given in Table 2. criteria for visual testing, magnetic par- uid penetrant testing	2. Visual testing The personnel in charge of VT is to confirm that the surface condition is acceptable prior to carrying out the inspection. VT shall be carried out in accordance with standards agreed between the Shipbuilder and the Society.	(MRD4800-181-2020)
Surface discontinuity	Acceptance criteria for visual testing		May 2020)
Crack	not accepted	Table 2 <deleted></deleted>	
Lack of fusion	not accepted		
Incomplete root pene- tration in butt joints welded from one side	not accepted		
Surface pore	Single pore diameter $d \le 0.25t(1)$ for butt welds ($d \le 0.25a(1)$ for fillet welds) with maximum diameter 3mm; 2.5d as minimum distance to adjacent pore.		
Undercut in butt welds	depth ≤ 0.5mm whatever is the length depth ≤ 0.8mm with a maximum- continuous(2) length of 90mm		
Undercut in fillet welds	depth ≤ 0.8mm whatever is the length		
throat of the fille (2) Adjacent undercu	thickness of the thinnest plate and "a" is the t-weld. ats separated by a distance shorter than the should be regarded as a single continuous		

Present	Amendment	reason
 (2) Magnetic particle testing (a) Methods of inspection not specified in this Guidance are to comply with the KS B ISO 9934-1 or other recognized standard subject to the approval by the Society. (b) The Shipbuilder should submit a procedure for approval by the Surveyor, specifying the surface preparation, magnetizing equipment, calibration methods, detection media and application, viewing conditions and post demagnetization. (c) The surface to be examined should be free from scale, weld spatter, oil, grease, dirt or paint and should be clean and dry. (d) When using current flow equipment with prods, care shall be taken to avoid local damage to the material. Copper prod tips must not be used. The prod tips should be lead, steel, aluminium or aluminium-copper braid. (e) To ensure detection of discontinuities of any orientation, the welds are magnetized in two directions approximately perpendicular to each other with a maximum deviation of 30°. Adequate overlapping shall ensure testing of the whole zone. (f) Continuous wet particle method should be used as far as practicable: (g) magnetic particle testing should cover a minimum weld length of 500 mm. (h) Acceptance criteria are given in Table 2. Only the in- 	 Amendment 3. Magnetic particle testing(MT) (1) MT shall be carried out in accordance to ISO 17638:2016 or a recognized accepted standard by the Society. (2) The Shipbuilder shall submit a procedure for approval by the Surveyor, specifying the surface preparation, magnetizing equipment, calibration methods, detection media and application, viewing conditions and post demagnetization. (3) The surface to be examined shall be free from scale, weld spatter, oil, grease, dirt or paint and shall be clean and dry. In general, the inside and outside of the welds to be inspected need to be sufficiently free from irregularities that may mask or interfere with interpretation. (4) The extent of MT shall be in accordance to the plans agreed with the attending surveyor and to the satisfaction of the surveyor. (5) To ensure detection of discontinuities of any orientation, the welds are magnetized in two directions approximately perpendicular to each other with a maximum deviation of 30°. Adequate overlapping shall ensure testing of the whole zone. (6) Magnetic particle testing should cover a minimum weld length of 500 mm. 	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)
 (e) To ensure detection of discontinuities of any orientation, the welds are magnetized in two directions approximately perpendicular to each other with a maximum deviation of 30°. Adequate overlapping shall ensure testing of the whole zone. (f) Continuous wet particle method should be used as far as practicable. (g) magnetic particle testing should cover a minimum weld length of 500 mm. 	 (5) To ensure detection of discontinuities of any orientation, the welds are magnetized in two directions approximately perpendicular to each other with a maximum deviation of 30°. Adequate overlapping shall ensure testing of the whole zone. (6) Magnetic particle testing should cover a minimum weld length 	

Present	Amendment	reason
 (3) Liquid penetrant testing (a) Methods of inspection not specified in this Guidance are to comply with the KS B ISO 3452 or other recognized standard subject to the approval by the Society. (b) The Shipbuilder should submit a procedure for approval by the Surveyor, specifying the calibration equipment, surface preparation, cleaning and drying prior to testing, temperature range, type of penetrant, cleaner and developer used, penetrant application and removal, penetration time, developer application and development time and lighting conditions during testing. (c) The surface to be examined should be clean and free from scale, oil, grease, dirt or paint and should include the weld bead and base metal for at least 10 mm on each side of the weld, or the width of the heat affected zone, whichever is greater. (d) The temperature of parts examined should be typically between 5°C and 50°C, outside this temperature range special low/high temperature penetrant and reference comparator blocks should be used. (e) The penetration time should not be less than 10 minutes and in accordance with the manufacturer's specification. The development time should not be less than 10 minutes and in accordance with the manufacturer's specification, normally between 10~30 minutes. (f) magnetic particle testing should cover a minimum weld length of 500 mm. (g) Acceptance criteria are given in Table 2. Only the indications which have any dimension greater than 2 mm should require evaluation. 	 (1) PT shall be carried out in accordance to <i>ISO 3452-1:2013</i> or a recognized accepted standard by the Society. (2) The Shipbuilder should submit a procedure for approval by the Surveyor, specifying the calibration equipment, surface prepara- 	(MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1

Present	Amendment	reason
 (4) Survey records (A) In addition to generic items, reports of magnetic particle testing should include the following specific items and their records are to be filed to compare the inspection locations with their results. (a) type of magnetization (b) magnetic field strength (c) detection media (d) viewing conditions (e) demagnetization, if required (B) In addition to generic items, reports of liquid penetrant testing should include the following specific items and their records are to be filed to compare the inspection locations with their results. (a) type of magnetization, if required 	(4) <deleted></deleted>	 * Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)
3. Radiographic Inspection	5. Radiographic Testing(RT)	
 (1) Methods of radiography (A) Methods of inspection not specified in this Guidance are to comply with the KS B 0845(Methods of radiographic examination for welded joints in steel) or other recognized standard subject to the approval by the Society. (B) Test range of radiographic inspection is to be not less than 250 mm or overall length of the welds inspected, whichever is smaller. (C) <new></new> (C) Processed films should display hull no., frame no., weld boundary indicators, Port/Starboard, location (or film serial number) and date as radiographic image. 	 (1) Methods of radiography (A) <u>RT shall be carried out in accordance to ISO 17636-1:2013 or an accepted recognized standard by the Society</u> (B) <u>Test range of RT is to be not less than 250 mm or overall length of the welds inspected, whichever is smaller. However, For hull welds the minimum length inspected by RT is typically 300 mm. The minimum inspected weld length for each checkpoint is to be specified in the approved NDT plan.</u> (C) The extent of RT shall be in accordance to the approved plans in accordance with (2) and to the satisfaction of the surveyor. (D) Processed films should display hull no., frame no., weld boundary indicators, Port/Starboard, location (or film serial number) and date as radiographic image. 	

Present	Amendment	reason
(<u>E) <new></new></u> (<u>F) <new></new></u>	 (E) Consideration may be given for reduction of inspection frequency for automated welds where quality assurance techniques indicate consistent satisfactory quality. The number of checkpoints is to be increased if the pro- portion of non-conforming indications is abnormally high. (F) The inside and outside surfaces of the welds to be radio- graphed are to be sufficiently free from irregularities that may mask or interfere with interpretation. Surface con- ditions that prevent proper interpretation of radiographs may be cause for rejection of the weld area of interest. 	Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1
(D) Film density Film density through the area of interest shall be within 1.8 to 4.0 except for the defect images:	(D) <deleted></deleted>	

Present			Amendment	reason	
(a) (b) (c) (d)	indicator specified or equivalent. The penetrameters perceptible diamete and near the both radiation source. H nation is less that trameter, only one center of the weld Minimum percepti on the radiographic ue specified in Tal When using IQI's	in the KS B ISC including wire r are to be plac edge (end) of th owever, if the k n three times th penetrameter m length. ble wire diamet films are to be of a. of wire type, th ble on the film 10 mm is clearly	er of penetrameter er of penetrameter less than the val- e image of a wire 1 if a continuous		* Request for Establishment/Revision of Classification Technical Rule (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev. May 2020)
Table 3 Minin	-	-	of penetrameter		
Thickness of base metal	Minimum- perceptible wire- diameter of- penetrameter (mm)	Thickness of base metal	Minimum- perceptible wire- diameter of- penetrameter (mm)		
t ≤ 4.0	0.10	$\frac{32.0 < t \leq}{40.0}$	0.63		
$4.0 < t \le 6.3$	0.16	$\frac{40.0 < t \leq}{63.0}$	0.80		
$6.3 < t \le 10.0$	0.20	$\frac{63.0 < t \leq}{80.0}$	1.00		
$\frac{10.0 < t \leq}{12.5}$	0.25	$80.0 < t \le 125$	1.25		
$\frac{12.5 < t \leq}{16.0}$	0.32	$\frac{125}{5} < t \le 200$	1.60		
$\frac{16.0 < t \leq}{20.0}$	0.40	$200 < t \le 320$	2.00		
20.0 < t ≤ 32.0	0.50	320 < t	2.50	- 19 -	

Present	Amendment	reason
(2) Extent of survey (A) Survey of welded joints of the shell and deck plating in ships (a) The number of checkpoints The minimum number of radiographic check points for the welded joints of the shell and deck plating in ships is to be governed by the following equation or the same as the length of the ship(m), (round off), whichever is the greater. $N = \frac{L(B+D)}{46.5}$ where, N = minimum number of checkpoints L = length specified in Pt 3, Ch 1, 102. of the Rules (m) B = breadth specified in Pt 3, Ch 1, 104. of the Rules (m) D = depth specified in Pt 3, Ch 1, 106. of the Rules (m) (b) Survey location and distribution of checkpoints are to comply with the requirements in <u>Table 4</u> . These inspection spots are not to adjoin each other. (ii) In the distribution of checkpoints, the selection of inspection locations is to be considered the followings and carried out by the field Surveyor. (1) Welds in high stressed areas (2) Welds which are inaccessible or very difficult to inspection in service (3) Intersections of field erected welds (iii) If the welds to be inspected can not be in- spected because of the structure, other possible welds in the vicinity of that weld are to be sub-	 (2) Extent of survey (A) Survey of welded joints of the shell and deck plating in ships (a) The number of checkpoints The minimum number of radiographic check points for the welded joints of the shell and deck plating in ships is to be governed by the following equation or the same as the length of the ship(m), (round off), relationships in the surverse. 	 * Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)

the welded joints of the shell and deck plating in shipsThe Welded joints of the shell and deck plating in shipsClassification Technica (MRD4800-181-20)Survey locationButt welds within $0.6 L$ midshipButt welds outside $0.6 L$ midshipButt welds outside $0.6 L$ midshipClassification Technica (MRD4800-181-20)Classification Technica (MRD4800-181-20)(1) Strength deck(excluding the area within hatch side lines) (2) Sheer strake, (3) Side shell plating, (including flat plate keel.) (6) Hatch side coaming(including the top plate)(1) $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{0}N$ $N^{(2)}$ $\frac{1}{0}N$ $N^{(2)}$ $\frac{1}{0}N$ $N^{(2)}$ $\frac{1}{0}N$ $N^{(2)}$ $\frac{1}{0}N$	Index 2 survey location and distribution of checkpoints for the welded joints of the shell and deck plating in shipsIndex 2 survey location and distribution of checkpoints for the welded joints of the shell and deck plating in shipsIndex 2 survey location and distribution of checkpoints for the welded joints of the shell and deck plating in shipsEstablishment/Revision of Classification Technical Ru (MRD4800-181-2020)Index 2 survey locationdistribution of checkpointsEstablishment/Revision of classification Technical Ru (MRD4800-181-2020)Survey locationdistribution of checkpointsButt welds within 0.6 L midshipButt welds outside 0.6 L midshipStrength deck(excluding the area within hatch side lines) () Sheer strake, 0) bide strakeN(2) $\frac{1}{10}N$ N(2) $\frac{1}{10}N$ Establishment/Revision of Classification Technical Ru (MRD4800-181-2020)Ote (1) Butt joints of the hatch side coaming exceeding 0.15L in length.Note (1) Butt joints of the hatch side coaming exceeding 0.15L in length.Note (1) Butt joints of the hatch side coaming exceeding 0.15L in length.	Table 4 Survey location and distribution of checkpoints for the welded joints of the shell and deck plating in shipsTable 4 Survey location and distribution of checkpoints for the welded joints of the shell and deck plating in shipsEstablishment/Revision of Classification Technical F (MRD4800-181-2020) $N(2)$ A B <th>Prese</th> <th>nt</th> <th></th> <th>Ame</th> <th>endment</th> <th></th> <th>reason</th>	Prese	nt		Ame	endment		reason
Survey locationdistribution of checkpointsButt welds within 0.6 L midshipButt welds outside 0.6 L midshipConstraintsConstraintsConstraints(1) Strength deck(excluding the area within hatch side lines) (2) Sheer strake, (3) Side shell plating, (including flat plate keel.) (6) Hatch side coaming(including the top plate)(1)N(2) $\frac{1}{10}N$ N(2) $\frac{1}{10}N$ N(2) $\frac{1}{10}N$	distribution of checkpointsSurvey location $\begin{array}{ c c c c } \hline \\ \hline $	distribution of checkpointsSurvey locationdistribution of checkpointsButt welds within 0.6 L midshipButt welds outside 0.6 L midshipButt welds outside 0.6 L midshipButt welds outside 0.6 L midshipButt welds within 0.6 L midshipButt welds outside 0.6 L midshipButt welds outside 0.6 L midshipButt welds outside 0.6 L midshipButt welds outside 0.6 L midshipColspan="4">- To reflect IACS UR(1) Strength deck(excluding the area within hatch side lines) (2) Sheer strake, (3) Side shell plating, (including flat plate keel.) (6) Hatch side coaming(including the top plate)(1)N(2) $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ Note (1) Butt joints of the hatch side coaming exceeding 0.15L in length. (2) one-third of the number of checkpoints is to be the inter- $N^{(2)}$ $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$	the welded joints of			the welded joints of			Establishment/Revision of Classification Technical Ru
Survey locationBuilt werds withinBuilt werds outsideBuilt werds outsideBuilt werds 	Survey locationBuilt withis outside $0.6 L$ midshipBuilt withis outside $0.6 L$ midshipSurvey locationwithin $0.6 L$ midshipOutside $0.6 L$ midshipWithin $0.6 L$ midshipOutside $0.6 L$ midshipWithin $0.6 L$ midshipOutside $0.6 L$ midshipWithin $0.6 L$ midshipOutside $0.6 L$ midshipWithin $0.6 L$ midshipOutside $0.6 L$ midshipW33(New Dec 2019 & Rev May 2020)) Strength deck(excluding the area within hatch side lines) () Side shell plating, () bilge strake $N^{(2)}$ $\frac{1}{10}N$ (1) Strength deck(excluding the area within hatch side lines) (2) Sheer strake, (3) Side shell plating, (including flat plate keel.) (6) Hatch side coaming(including the top plate)(1) $N^{(2)}$ $\frac{1}{10}N$ W33(New Dec 2019 & Rev Way 2020)0 $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ $N^{(2)}$ $\frac{1}{10}N$ 0bill ge strake (b) Butt joints of the hatch side coaming exceeding 0.15L in length. (2) one-third of the number of checkpoints is to be the inter-Note(1) Butt joints of the hatch side coaming exceeding 0.15L in length. (2) one-third of the number of checkpoints is to be the inter-Note	Survey locationBuilt weaks withinBuilt weaks outsideBuilt weaks outsid		distribution of	of checkpoints		distribution o	of checkpoints	(MRD4000 101 2020)
(1) Strength deck(excluding the area within hatch side lines)(1) Strength deck(excluding the area within hatch side lines)(2) Sheer strake, (3) Side shell plating, (4) bilge strake $N^{(2)}$ (4) bilge strake (5) Bottom shell plating, (including flat plate keel.) (6) Hatch side coaming(including the top plate)(1) $N^{(2)}$ (5) Bottom shell plating, (including flat plate keel.) (6) Hatch side coaming(including the top plate)(1) $N^{(2)}$ (1) Strength deck(excluding the area within hatch side lines) (5) Bottom shell plating, (including flat plate keel.) (6) Hatch side coaming(including the top plate)(1) $N^{(2)}$) Strength deck(excluding the area within hatch side lines)(1) Strength deck(excluding the area within hatch side lines)) Sheer strake, () Sheer strake, () Bidge strake $N^{(2)}$ $\frac{1}{10}N$ (1) Strength deck(excluding the area within hatch side lines) $N^{(2)}$ $\frac{1}{10}N$ (2) Sheer strake, (3) Side shell plating, (cluding flat plate keel.) $N^{(2)}$ $\frac{1}{10}N$ (4) bilge strake (5) Bottom shell plating, (including flat plate keel.) $N^{(2)}$ $\frac{1}{10}N$ (6) Hatch side coaming(including te top plate)(1)Note $Note$ (1) Butt joints of the hatch side coaming exceeding $0.15L$ in length. (2) one-third of the number of checkpoints is to be the inter-Note	(1) Strength deck(excluding the area within hatch side lines)(1) Strength deck(excluding the area within hatch side lines)(2) Sheer strake, (3) Side shell plating, (including flat plate keel.) $N^{(2)}$ $\frac{1}{10}N$ (3) Bottom shell plating, (including flat plate keel.) $N^{(2)}$ $\frac{1}{10}N$ (6) Hatch side coaming(including the top plate)(1) $N^{(2)}$ $\frac{1}{10}N$ Note (1) Butt joints of the hatch side coaming exceeding $0.15L$ in length. (2) one-third of the number of checkpoints is to be the inter-Note(1) Butt joints of the number of checkpoints is to be the inter-(1) Butt joints of the number of checkpoints is to be the inter-	Survey location	within	outside	Survey location	within	outside	W33(New Dec 2019 & Rev
Note	 (1) Butt joints of the hatch side coaming exceeding 0.15L in length. (2) one-third of the number of checkpoints is to be the inter- (1) Butt joints of the hatch side coaming exceeding 0.15L in length. (2) one-third of the number of checkpoints is to be the inter- 	 (1) Butt joints of the hatch side coaming exceeding 0.15L in length. (2) one-third of the number of checkpoints is to be the inter- (2) one-third of the number of checkpoints is to be the inter- (3) (1) Butt joints of the hatch side coaming exceeding 0.15L in length. (2) one-third of the number of checkpoints is to be the inter- 	 area within hatch side lines) (2) Sheer strake, (3) Side shell plating, (4) bilge strake (5) Bottom shell plating, (including flat plate keel.) (6) Hatch side coaming(including 	$N^{(2)}$	$\frac{1}{10}N$	area within hatch side lines) (2) Sheer strake, (3) Side shell plating, (4) bilge strake (5) Bottom shell plating, (including flat plate keel.) (6) Hatch side coaming(including	$N^{(2)}$	$\frac{1}{10}N$	
 (1) Butt joints of the hatch side coaming exceeding 0.15L in length. (2) one-third of the number of checkpoints is to be the inter- (1) Butt joints of the hatch side coaming exceeding 0.15L in length. (2) one-third of the number of checkpoints is to be the inter- 			 Butt joints of the hatch length. one-third of the number of 	-	-	(1) Butt joints of the hatch selength.(2) one-third of the number of	-	-	

Present		Amendme	nt		reason	
 (B) Survey of welded joints of ships (a) Survey location and dist comply with <u>Table 5</u>. (b) Distribution of checkpo (2), (A), (b), (ii) <u>Table 5</u> Survey location and distribut welded joints of internal struct 	ribution of che These inspectio ints is to be ion of check	eckpoints are to on spots are not as specified in points for the	ships (a) Survey location and dist comply with <u>Table 3</u> . T to adjoin each other.	ribution of ch These inspection ints is to be ion of check	eckpoints are to on spots are no as specified ir points for the	Establishment/Revision of Classification Technical Rules t (MRD4800-181-2020)
	distribu	ution of ints(1)(2)			ution of ints(1)(2)	
Survey location	within 0.6L midship	outside 0.6L midship	Survey location	within 0.6L midship	outside 0.6L midship	
	Butt welds			Butt	welds	
(1) Web and face plates of longitudinal members on the strength deck (deck longitudinal, girders under deck and above deck).(longitudinal on the deck within the side lines of a cargo hatch opening are excluded.)	$\frac{1}{8}L$		 (1) Web and face plates of longitudinal members on the strength deck (deck longitudinal, girders under deck and above deck).(longitudinal on the deck within the side lines of a cargo hatch opening are excluded.) 	$\frac{1}{8}L$	$\frac{1}{40}L$	
(2) Uppermost steel plate of longitudinal bulkheads.	$\frac{1}{8}L$		(2) Uppermost steel plate of longitudinal bulkheads.	$\frac{1}{8}L$	$\frac{1}{40}L$	
(3) Lowermost plate of the longitudinal bulkhead.	$\frac{1}{16}L$	$\frac{1}{40}L$	(3) Lowermost plate of the longitudinal bulkhead.	$\frac{1}{16}L$	$\frac{1}{40}L$	
(4) Web and face plates of longitudinal members (longitudinal frames, center- line girder plate, etc.) on sheer strake, shell plating, turn of bilge strake and keel plate.	$\frac{1}{16}L$		 (4) Web and face plates of longitudinal members (longitudinal frames, center- line girder plate, etc.) on sheer strake, shell plating, turn of bilge strake and keel plate. 	$\frac{1}{16}L$	$\frac{\frac{1}{40}L}{L}$	
(5) Web and face plates of transverse and horizontal girders.	$\frac{1}{16}L$		(5) Web and face plates of transverse and horizontal girders.	$\frac{1}{16}L$	$\frac{1}{40}L$	
Note (1) Number of inspections is to round u each members subject to inspections. (2) Distribution of number of inspection of the type of ship, structural arra rangement of joints, etc.	s may change	in consideration	Note (1) Number of inspections is to round u each members subject to inspections. (2) Distribution of number of inspection of the type of ship, structural array rangement of joints, etc.	s may change	in consideration	

Present	Amendment	reason
 (C) Workmanship control of welded joints of hull (a) In addition to preceding (A) and (B), non-destructive testing may be required additionally for parts of start, interrupted and end points of automatic welded joints, welded joints of hatch comer, connections of stern frame or rudder horn made of casting steel to rolled steels for hull, welded joints in the vicinity of parts where stress is concentrated. (b) In addition to (a) above, non-destructive testing may be required additionally for the areas where welding workmanship is suspect, the areas where meeding methods have been adopted, the areas where defects are liable to occur easily, the welds which are inaccessible or very difficult to inspect in service and other appropriate areas deemed necessary by the Surveyor to encourage good welding work. (c) The locations of and the number of joints to be inspected additionally decided by the Surveyor according to the actual status of workmanship of the shipyard. (D) Addition/Reduction in the number of checkpoints (a) If it is deemed necessary in considering the results of visual inspection for welds of the members, the Surveyor may require, additional non-destructive inspections for welds other than those subject to non-destructive inspection, or alteration of non-destructive inspection procedure. (b) If the survey results (before repair) of a previously constructed ship show that the number of checkpoints is to be a minimum of twice the number required. (c) If automatic welding has been carried out at joints to be surveyed and the results of the survey verify that the quality of the welding procedure is consistent satisfactory quality, the number of checkpoints may appropriately be reduced. 	interrupted and end points of automatic welded joints, welded joints of hatch corner, connections of stern frame or rudder horn made of casting steel to rolled steels for hull, welded joints of insert plate for work- ing holes and welded joints in the vicinity of parts	- To reflect IACS UR

autom	Present	Amendment	reason
amour in (c) checkp period stable (e) For s locatio reduce (3) Acceptable In radiographi not the result in 3. (5) The the shipbuilde of its judgem necessary by the ship are t (A) Classifica	Criteria of Radiographic Inspections ic testing, the Surveyor is to decide whether or is are acceptable when the test records specified judgement may be required to the engineers of er (personnel with qualifications) but the results ent frequently are to be verified. Where deemed the society, all radiographic films related with to be submitted. <i>Attion of Defects</i> ification of defects is to be as given in Table	 (d) If a weld that needs to be repaired is found fr automatically welded joints whose number has b reduced in accordance with (c), additional radiogra amounting to the number of checkpoints as prescriin (c), are to be taken immediately. The number checkpoints is not to be reduced until an appropr period has elapsed and the quality is verified to stable and satisfactory. (e) For ships whose length 120 m or under, the sur locations and the number of checkpoints can reduced. 	en Establishment/Revision of Classification Technical Rule ed (MRD4800-181-2020) of technical Rule (MRD4800-181-2020) of W33(New Dec 2019 & Rev. ey May 2020)
Types of defects	Kind of defects		
Type 1	Porosity(blow hole) and similar defects		
Type 2	Elongated slag inclusion, pipe, incomplete pene- tration, incomplete fusion, and similar defects		
Type 3	Crack and similar defects		

	Pre	sent			
type 2; are acc (c) In case ferent taken. (B) Defect of 1 (a) Size o score a field vi from ra size ex maximut the test of visio (b) The sc type 1 Table 1 ameter The score shall be	pe 2, classi and then eptable. of butt we thickness, <i>type 1</i> f defect of nd maximu- sion specifi adiographic cists and m. Where field of v n shall be- ore of defe- shall be- 7 according of the defe	f type 1 in thickness f type 1 im length ied in T so that the sum the flaw ision, the included eet in the determine to the c to the c for two of	tive defect whether of the between of the is to be n of the able 8 in the defe of size falls on part outs for measu case of d by usi limension	ts into ty r not the n plates v thinner defect. T s to be cts of m of def the boun ide the to rement. single d ng the v of the m defect of	pe 1 or results vith dif- plate is nted by Fhe test selected aximum fects is idary of est field efect of value in najor di- type 1
Table 7 Score of defec	4			Linit	s : mm
Major Up to Over	- Over-	Over - 3.0, up	Over - 4.0, up	Over - 6.0, up -	Over-
of flaw incl. incl.	to and	to and incl. 4.0	to and incl. 6.0	to and incl. 8.0	8.0
$\begin{array}{c c} (mm) & 1.0 & 2.0 \end{array}$		6	10	15	

	Pres	sent			
abla 0	(c) The defects of type if the size of the ceptable criteria spe Acceptance criteria for ty	defects e ecified in	xceeds Table 8	the val	
	Thickness of base metal- t(mm)			25 < t ≤50	$\frac{50 < t \leq}{100}$
	Test field of vision	10 mm mn		10 mm	× 20 mm
ccepta ce cri-	Maximum size of single- defect (mm)	4	5	t/5	10
teria	Total score of defect	6	+2	24	30
tila	n 0.7 mm may be ignored.		, the der	ects of	not more
	n 0.7 mm may be ignored.			ects of	not more
tila	n 0.7 mm may be ignored.			ects of	not more
uia	n 0.7 mm may be ignored.			ects of	not more
una	n 0.7 mm may be ignored.			ects of	not more

Present	Amendment	reason
(4) Repair and Treatment after the Repair		* Request for
(A) Unacceptable indications should be eliminated and re-		Establishment/Revision of
paired where necessary. The repair welds should be ex-		Classification Technical Rul
amined on their full length using ultrasonic or radio-		0
graphic testing method.		
(B) When unacceptable indications are found, additional areas		
of the same weld length should be examined unless the		- To reflect IACS UR
indication is judged isolated without any doubt. In case		W33(New Dec 2019 & Rev
of automatic welded joints, additional NDT should be ex-		
tended to all areas of the same weld length. Same weld		May 2020)
length mean the locations where, for manual and semi-au-		
tomatic welding, identical person, identical postures and		
identical time and, for automatic welding, identical weld-		
ing method, and identical time.		
(C) The extent of testing can be extended at the surveyor's		
discretion when repeated nonacceptable discontinuities are		
found.		
(D) The Shipbuilder should take appropriate actions to mon-		
itor and improve the quality of welds to the required		
level. The repair rate at which corrective action is to be		
instigated should be identified in the builder"s QA		
system.		
(5) Survey records		
(A) The survey results are to be recorded to the survey re-		
cords such as followings and their records are to be filed		
to compare the inspection locations with their results.		
(a) Radiation source, type and focal spot size		
(b) Geometry of radiographic setup		
(c) Film type		
(d) Intensifying screens		
(e) Film coverage		
(f) Image quality indicators		
(g) Film identification marking		
(h) Exposure conditions		
(i) Film processing		
(j) Film density		
(k) Film viewing conditions		
(1) The result of judgement for acceptance		
(m) Name of personnel performed the radiographic inspection		
\ / · · · · · · · · · · · · · · · · · ·		I I I I I I I I I I I I I I I I I I I

Present	Amendment	reason
(B) The Society may require to duplicate some radiographs in order that some processed films are handed over to the Society together with testing reports. Alternative method to duplicate the processed film can be agreed with the Society.		* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020)
4. Ultrasonic Inspection	6. Ultrasonic Testing(UT)	- To reflect IACS UR
 (1) Methods of ultrasonic inspection (A) General (a) The inspection methods other than those specified in this Guidance are to comply with KS B 0896 (Method for ultrasonic examination for welds of ferritic steel) except in those cases where alternative criteria have been otherwise approved or specified. (B) <new></new> (C) <new></new> (b) In general, the scanning of weld is performed by using angle beam technique. However, normal beam technique is appled to the place where the application of angle beam technique is difficult or the place specially specified as that where the other technique are more suitable than angle beam technique for detecting a discontinuity. (c) The stage of the test is the time when the final heat treatment is completed, in the case where heat treatment or the like after completion of weld has been specified in the document. (d) The test of parent materials of the part through which ultrasonic waves pass when angle beam technique is performed, are previously tested normal technique to detect a discontinuity such as lamination etc. 	 (1) Methods of ultrasonic testing (A) UT shall be carried out according to procedure based on ISO 17640:2018(testing procedure), ISO 23279:2017 (characterization) and ISO 11666:2018(acceptance levels) or accepted standards by the Society. (B) The minimum inspected weld length for each checkpoint is to be specified in the approved NDT plan in accordance with (2). (C) The extent of UT shall be in accordance to the approved plans in accordance with (2) and to the satisfaction of the surveyor. (D) In general, the scanning of weld is performed by using angle beam technique. However, normal beam technique is appled to the place where the application of angle beam technique is difficult or the place specially specified as that where the other technique are more suitable than angle beam technique for detecting a discontinuity. (E) The stage of the test is the time when the final heat treatment is completed, in the case where heat treatment or the like after completion of weld has been specified in the document. (F) The test of parent materials of the part through which ultrasonic waves pass when angle beam technique is performed technique is performed. 	W33(New Dec 2019 & Rev.1 May 2020)

Present	Amendment	reason
 (c) The probes may be affixed to suitable wedges designed to induce beam waves in the material under test at the selected angles. (f) The couplant, in general, is to be used the glycerine-water solution of 75 % or more. The kinds and temperature of the couplant used for test are to be equivalent to those used for calibration of ultrasonic test instrument. (g) The weld reinforcement is adequately finished in case where its form affects the results of the test. (B) Checking the overall performance characteristics of ultrasonic equipment (a) The vertical linearity is to be checked in accordance with the 4.1 of the KS B 0534 (Method for Assessing the Overall Performance Characteristics of Ultrasonic pulse echo instrument) and the result is to be within ±3% of full scale: (b) The linearity of the time base is to be measured in accordance with the 4.2 of the KS B 0534 and the result is to be within ±1% of full scale. (c) A margin of gain control is to be measured in accordance with the 4.3 of the KS B 0534 and the result is to be not less than 40dB. (d) Periodical checks of ultrasonic test instrument are to be performed not less once every year. However, The check of the test instrument immediately is to be performed in the case that the repair relating to the performance characteristics of the ultrasonic test instrument was performed within this period. 	 (H) The couplant, in general, is to be used the glycer- ine-water solution of 75 % or more. The kinds and tem- perature of the couplant used for test are to be equivalent to those used for calibration of ultrasonic test instrument. (I) The weld reinforcement is adequately finished in case where its form offsets the results of the test 	Establishment/Revision of Classification Technical Rule: (MRD4800-181-2020) - To reflect IACS UR

Prese	ent
ing probes of angle normal probe is used the <i>KS B</i> 0896. (b) The frequency to b is in accordance with quency lower than may be used for the able ultrasonic atter	ning of weld is performed by us beam technique. In case when d, the standard is to comply with e used for angle beam technique ith Table 10. However, the free the value specified in Table 14 e test of test object with remark muation and the frequency highe ified in Table 10 may be used solution.
may be used for the able ultrasonic atter than the value spec for improving the re	e test of test object with mation and the frequence ified in Table 10 may
chnique	
Plate thickness of percent materials (mm	Naminal fragman (MIL)
Plate thickness of parent materials (mm	Nominal frequency (MHz)
Plate thickness of parent materials (mm 75 or less	Nominal frequency (MHz) 5 or 2
- · ·	
75 or less over 75 (c) The refraction angle ply with Table 11 rent materials. Wh	5 or 2 2 of probe to be used is to com- according to the thickness of pa- ere deemed appropriate by the
75 or less over 75 (c) The refraction angle ply with Table 11 rent materials. Wh Society, the differer be used.	5 or 2 2 of probe to be used is to com- according to the thickness of pa- ere deemed appropriate by the tt refraction angle of probe may
75 or less over 75 (c) The refraction angle ply with Table 11 rent materials. Wh Society, the differer	5 or 2 2 of probe to be used is to com- according to the thickness of pa- ere deemed appropriate by the tt refraction angle of probe may
75 or less over 75 (c) The refraction angle ply with Table 11 rent materials. Wh Society, the differer be used. Table 11 Nominal Refraction Angle Plate thickness of parent materials	5 or 2 2 of probe to be used is to com- according to the thickness of pa- ere deemed appropriate by the tt refraction angle of probe may of Probe used
75 or less over 75 (c) The refraction angle ply with Table 11 rent materials. Wh Society, the differer be used. Table 11 Nominal Refraction Angle Plate thickness of parent materials (mm)	5 or 2 2 of probe to be used is to com- according to the thickness of pa- ere deemed appropriate by the trefraction angle of probe may of Probe used Nominal refraction angle

Present	Amendment	reason
 (D) Adjustment of ultrasonic test instrument (a) Measurement of probe index The probe index is measured by using A1 calibration block or A3 calibration block specified in KS B 0831. The probe index is measured in precision of ±1% and to be indicated on the both sides of probe. (b) Measurement of refraction angle Refraction angle is measured in unit of 0.5° by using A1 calibration block or A3 calibration block (c) Adjustment of time base range and correction of the starting point 		reason * Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)
 The adjustment of time base range is performed in precision of ±1% by using A1 calibration block or A3 calibration block and the starting point is corrected. (d) The equipment (instrument and probes) should be verified by the use of appropriate standard calibration blocks at suitable time intervals. (E) Making of curve for dividing echo height (a) Curve for dividing echo height (b) The height for evaluation of the depth is made for four regions specified in Fig 2. The positions of probe for making the curves for dividing echo height using the distance amplitude characteristic curve are to comply with Fig 1. 		
(b) Determination of H line, M line and L line The curve for dividing echo height by working sensi- tivity of (d) is selected to take it as H line, and the curve for dividing echo height lower than H line by 6 dB is taken as M line and the curve lower than H line by 12 dB is taken as L line. H line is of over 40%.		

Present	Amendment	reason
(c) Regions The regions divided by II, M and L line are des- ignated as given in Table 12 and the examples of regional division are indicated as given in Fig 2 .		* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020)
		- To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)
Fig 1 Position of Probe for making the Curves for Dividing Echo- Height		
Fig 2 Examples for Drawing Curves for Dividing Echo Height		

Pres	ent	Amendment	reason
ble 12 Designation of Regional	Division of Echo Height		* Request for
Range of echo height	Region of echo height		Establishment/Revision of Classification Technical R
L line or less	Ŧ		(MRD4800-181-2020)
Over L to M line incl.	Ħ		To reflect LACS LID
Over M to H line incl.	Ħ		- To reflect IACS UR W33(New Dec 2019 & Re
Over II line	₩		May 2020)
or 70°, the gain of echo height of the agrees with H line. fraction angle of 4 creased by 6 dB af height of the stand with H line. In bo by Society, sensitive ing to Annex of K3 (b) Using the RB-4 ref The gain of instru- height of the standa (c) Where deemed a blocks considered a (a) and (b) may be (d) The range and sense	instrument is adjusted so that the standard hole of ϕ 4 x 4 mm In the case of using nominal re- 5° , the gain of instrument is in- ter it is adjusted so that the echo lard hole of ϕ 4 x 4 mm agrees th case, where deemed appropriate ity compensation calculated accord- $5^{\circ}B$ 0896 to be added. erence block ment is adjusted so that the echo ard hole agrees with H line. ppropriate by the Society, other s equivalent for block specified in used. sitivity should be set prior to each d at regular intervals as per the		

		Present	
	a) In genera ing angle comply v the type welds in probe is	e beam technique ar with the Table 13 ar of joints and plate which the surfaces placed on the weld su axis with the sound	eld is performed by us- nd scanning method is nd Fig 3 depending on thickness. However, for have been ground, the urface and moved along beam directed parallel
13 Pos	Plate-	irection of scanning	
Joints	thickness- (mm)	tion of scanning	Scanning methods
	t ≤ 100	both side of single face	Directed and 1 skip- reflected.
outt joints –	t > 100	both side of both- face	Directed
F joints,	t <u>≤ 60</u>	single side of single face	Directed and 1 skip- reflected.
joints	t > 60	single side of both face	Directed
		۲	<u>م</u>
	R		
			Scanning of T and corner joint
	nning of butt jo Fig 3 Posi	tion and Direction of	

Present	Amendment	reason
(b) The scanning technique should be determined to al-		* Request for
low the testing of the entire volume of the weld		Establishment/Revision of
bead and base metal for at least 10 mm on each side		Classification Technical Rules
of the weld, or the width of the heat affected zone,		(MRD4800-181-2020)
whichever is greater.		
(H) Ultrasonic discontinuity length and presentation of loca- tion of discontinuity		- To reflect IACS UR
		W33(New Dec 2019 & Rev.1
(a) Ultrasonic discontinuity length		
(i) The position indicating the maximum echo height		May 2020)
is taken as center of scanning, the transference		
distance of the probe in the range where the		
echo height exceeds L line is measured by scan-		
ning its circumference is taken as the ultrasonic		
discontinuity length. The measurement is per-		
formed by unit of 1 mm.		
(ii) In the case where the plate thickness of part		
where the probe is contacted is not less than 75		
mm, nominal frequency is 2 MH_Z and the probe		
with transducer size of 20 x 20 mm is used, the		
transference distance of the probe in the range		
where the echo height exceeds one half of the		
height of the maximum echo is taken as the ul-		
trasonic discontinuity length.		
(b) Presentation of location of discontinuity		
The discontinuity location in the transverse section		
[depth(d) and distance(k) from weld centerline] is pre-		
sented by the probe location(Xp) where the maximum		
echo can obtain. The discontinuity location in the		
plane is presented by both ends((Xs and Xe) of ultra-		
sonic discontinuity length(l)		

Present	Amendment	reason
 Fig 4 Presentation of location of discontinuity (2) Extent of survey (A) Survey of welded joints of the shell and deck plating in ships (a) The survey location and distribution of checkpoints of ultrasonic inspection are to comply with the requirements given in (A) of 3 (2). (b) Test range of ultrasonic inspection is entire length of the joint or 750 mm, whichever is smaller. (B) Survey of welded joints of internal structural members of ships (a) The survey location and distribution of checkpoints of ultrasonic inspection are to comply with the requirements given in (B) of 3 (2). (b) Test range of ultrasonic inspection is entire length of the joint or 300 mm, whichever is smaller. (C) Workmanship control of welded joints of hull 	 (2) Extent of survey (A) Survey of welded joints of the shell and deck plating in ships (a) The survey location and distribution of checkpoints of ultrasonic inspection are to comply with the requirements given in (A) of 3 (2). (b) Test range of ultrasonic inspection is entire length of the joint or 750 mm, whichever is smaller. (B) Survey of welded joints of internal structural members of ships (a) The survey location and distribution of checkpoints of ultrasonic inspection are to comply with the requirements given in (B) of 3 (2). (b) Test range of ultrasonic inspection is entire length of ultrasonic inspection are to comply with the requirements given in (B) of 3 (2). (b) Test range of ultrasonic inspection is entire length of the joint or 300 mm, whichever is smaller. (C) Workmanship control of welded joints of hull 	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)
 (C) Workmanship control of welded joints of hull (a) The survey location and distribution of checkpoints of ultrasonic inspection for workmanship control of welded joints of hull are to comply with the requirements given in (C) of 3 (2). (b) Test range of ultrasonic inspection is to comply with the requirements given in (B) above. 	(a) The survey location and distribution of checkpoints of	
 (D) Addition/Reduction in the number of checkpoints Addition/reduction in the number of checkpoints is to comply with the requirements given in (D) of 3 (2). 	(D) Addition/Reduction in the number of checkpoints Addition/reduction in the number of checkpoints is to comply with the requirements given in (D) of 3 (2).	

	Prese	ent			
 (3) Acceptance Criteria of ultrasonic inspections (A) Defects detected by ultrasonic inspection are to be judged in accordance with Table 14 Fable 14 Acceptance criteria for defects detected by ultrasonic in- 					
tance cr	criteria for de	etects de	etected b	y ultras	onic in
	xness of base - tal t (mm)	t ≤- 50	50 < t	$t \leq 50$	50 <
-	1 of maximum ho heights	H at	nd III	-	EV-
ength of	of defect (mm)	t or less	50 or less	t/2 or less	25 or less
what + ;-	ia aloto thisland				
e. Howev	is plate thickness wever, in the cass the parents mater	se of but	tt joint w	eld with	differer
	ble, in the case			-	
smaller	er or equal to the case of the case of the second s	he length	n of the	discontin	uity wit
scontinuit continuou	nuities are regard nous discontinuit	led as sai ty includ	me discon ling such	ntinuity g distance	roup an . In th
e distaned of the b	nce between disc both ultrasonic	continuiti c discont	i es is long tinuity le	ger than ngths, tł	the larg rese dis
straddle	rded as independ lle scanning, para	allel scar	nning by	slanted p	robe an
	; on the weld lir en the parties co			1 accorda	nce wit

Present	Amendment	reason
(B) Where kind of defect is considered as cracks from weld- ing process, location of defects, etc., the defects are to be judged unacceptable.		* Request for Establishment/Revision of Classification Technical Rules
(4) Repair and Treatment after the Repair		(MRD4800-181-2020)
Repair and treatment after the repair is to comply with the		
requirements given in 3 (4).		- To reflect IACS UR
(5) Records		
(A) Making the records		W33(New Dec 2019 & Rev.1
The records after test are to be made.		May 2020)
(B) Items of Records		
The records are to be included the followings.		
(a) Name of the work and manufacturer		
(b) Number and name of ship		
(c) Name and qualification of personnel engaged in the		
test-		
(d) Date of the test (e) Calibration and reference blocks used		
(f) Performance of test instrument (identity, probe type,		
size, frequency, angle etc)		
(g) Unusual condition of weld bead		
(h) Method of welding and form of groove		
(i) Materials and dimension		
(i) Location and length of the welds inspected		
(k) Length and location of discontinuity		
(i) Classification		
(m) Kind of couplant		
(n) Working sensitivity		
(o) Other items(designated items, subject of discussion,		
witness, sampling method etc.)		
(C) Evaluation of records		
The ultrasonic test reports is to be made under condition		
of rigid quality control and is to be to the satisfaction of		
the Surveyor.		
5. Improvement of qualification		
Where the faulty welds are more than 10% of the number of in- spection specified in Table 4 or 5 , the results of investigation on the substantial cause and the measures to improve the quality are to be submitted to the Surveyor. \downarrow	(movement)	

Present		Amen	dment		reason
<u><new></new></u>	 7. Acceptance Levels(criterian (1) General (A) This requirement de sessment of the NE VT, MT, PT, RT an (B) As far as necessary assessment of indicat (C) The assessment of indicat (C) The assessment of in accordance with ance criteria can be established. (D) The general accepted and Table 5 for sur ISO 17635:2016. Table 4 Method for det 	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)			
	welds including fillet w Materials				
	<u>Ferritic Steel</u>				
	joints with full penetrat	ion)	<u>8≤t≤40</u>	·	
	Ferritic T-joints $\underline{UT^{(1)} \text{ or } RT^{(2)}}$ $\underline{UT \text{ or } RT^{(2)}}$ $\underline{UT \text{ or } RT^{(2)}}$				
	Note: (1) Below 8mm the advanced UT methor (2) RT may be applied	<u>d.</u>	ay consider application of the second s	of an appropriate	

Present	Amendment	reason
< <u>New></u>	(2) Quality Levels	* Request for
	(A) Testing requirements follows the designation of a particular quality level of	Establishment/Revision of
	imperfections in fusion-welded joints in accordance with ISO 5817:2014.	Classification Technical Rul
	Three quality levels (B, C and D) are specified.	(MRD4800-181-2020)
	(B) In general Quality level C is to be applied for hull structure.	
	(C) Quality level B corresponds to the highest requirement on the finished	- To reflect IACS UR
	weld, and may be applied on critical welds.	W32(Now Doc 2010 & Por
	(D) This standard applies to steel materials with thickness above 0.5 mm. ISO	W35(New Dec 2019 & Rev
	5817:2014 Table 1 provides the requirements on the limits of imperfections for each quality level. <i>ISO</i> 5817:2014 Annex A also provides examples for	May 2020)
	the determination of percentage of imperfections(number of pores in surface	
	percent).	
	(E) All levels (B,C and D) refer to production quality and not to the fitness	
	for purpose (ability of product, process or service to serve a defined pur-	
	pose under specific conditions). The correlation between the quality levels	
	defined in ISO 5817:2014, testing levels/techniques and acceptance levels (for	
	each NDT technique) will serve to define the purpose under specific	
	conditions. The acceptance level required for examination shall be agreed	
	with the Society. This will determine the quality level required in accord-	
	ance with the non-destructive technique selected. Refer to Tables 6 to 11.	
	(3) Testing Levels	
	(A) The testing coverage and thus the probability of detection increases from	
	testing level A to testing level C. The testing level shall be agreed with the	
	Society. Testing level D is intended for special applications, this can only	
	be used when defined by specification. ISO 17640:2018 Annex A tables A.1	
	to A.7 provide guidance on the selection of testing levels for all type of joints in relation to the thickness of parent material and inspection	
	requirements.	
	(B) The testing technique used for the assessment of indications shall also be	
	specified.	
	(4) Acceptance Levels	
	(A) The acceptance levels are specified for each testing technique used for per-	
	forming the inspection. The criteria applied is to comply with each standard	
	identified in Tables 6 to 11 (or any recognized acceptable standard agreed	
	with the Society).	
	(B) Probability of detection (POD) indicates the probability that a testing techni-	
	que will detect a given flaw.	

Present	Amendment	reason
<u><new></new></u>	(C) Visual testing(VT) The acceptance levels and required quality levels for VT are provide IACS Rec 47 and Table 6 below. Table 6 Visual testing	* Request for Establishment/Revision of Classification Technical Rul (MRD4800-181-2020)
	Quality Levels (ISO 5817:2014 applies)(1)Testing Techniques/ levels (ISO 17637:2016 applies)(1)Acceptance levels(1)	- To reflect IACS UR W33(New Dec 2019 & Rev
	<u>B</u> <u>B</u>	May 2020)
	<u>C</u> <u>Level not specified</u> <u>C</u>	
	<u>D</u> <u>D</u>	
	<u>of ISO 5817:2014</u> (D) Liquid Penetrant testing(PT) The acceptance levels and required quality levels for PT are provide Table 7 below. Table 7 Liquid Penetrant Testing	ed in
	$\frac{\text{Quality Levels}}{(\text{ISO 5817:2014 applies})^{(1)}} \qquad \frac{\text{Testing Techniques/ levels}}{(\text{ISO 3452-1:2013 applies})^{(1)}} \qquad \frac{\text{Acceptance levels}}{(\text{ISO 23277:2015})} \\ \frac{\text{Acceptance levels}}{(\text{ISO 23277:2015})^{(1)}} \\ \frac{\text{Acceptance levels}}{(\text{ISO 23277)^{(1)}} \\ \text{Acceptance level$	-
	<u>B</u> <u>2X</u>	
	$\underline{\underline{C}} \qquad \underline{\underline{Level not specified}} \qquad \underline{\underline{2X}}$	
	<u>D</u> <u>3X</u>	
	<u>Note:</u> (1) Or any recognized standard agreed with the Society and demonstrated to <u>acceptable</u>	<u>be</u>
	acceptable	

Present		Amendment		reason			
<u><new></new></u>	(E) Magnetic Particle tes The acceptance levels Table 8 below.	(E) Magnetic Particle testing(MT) The acceptance levels and required quality levels for MT is provided in Table 8 below.					
	Table 8 Magnetic Particle	Testing					
	Quality Levels (ISO 5817:2014 applies) ⁽¹⁾	<u>Testing</u> Techniques/ levels (ISO 17638:2016 applies) ⁽¹⁾	$\frac{\text{Acceptance levels}}{(\text{ISO 23278:2015})}$ <u>applies</u>) ⁽¹⁾	- To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)			
	B		<u>2X</u>	IVIA y 2020)			
	<u>C</u>	Level not specified	<u>2X</u>				
	D		<u>3X</u>				
	(F) Radiographic testing The acceptance levels Table 9 below. Refer	and required quality levels ence radiographs for the a ovided in accordance to <i>ISC</i> reed with the Society.	for RT are provided in assessment of weld im	-			
	Quality Levels (ISO 5817:2014 applies) ⁽¹⁾	Testing Techniques/ levels (ISO 17636-1:2013 applies) ⁽¹⁾	Acceptance levels (ISO 10675-1:2016 applies) ⁽¹⁾				
	<u>B</u>	<u>B(class)</u>	<u>1</u>				
	<u><u> </u></u>	<u>B⁽²⁾(class)</u>	2				
	<u>D</u>	At least A (class)	<u>3</u>				
	<u>acceptable</u> (2) For circumferential	tandard agreed with the Society weld testing, the minimum n irements of ISO 17636-1:2013, o	umber of exposures may				

Present	Amendment	reason
<u><new></new></u>	(a) The acceptance levels and required quality levels for UT are provided in Tables 10 and 11 below.	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020)
	applies) ⁽¹⁾⁽²⁾ $(100 \text{ applies})^{(1)}$ applies) ⁽¹⁾	- To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)
	<u>B</u> <u>at least B</u> <u>2</u>	May 2020)
	<u>C</u> <u>at least A</u> <u>3</u>	
	$\underline{D} \qquad \underline{at \ least \ A} \qquad \underline{3^{(3)}}$	
	be acceptable (2) When characterization of indications is required, ISO 23279:2017 is to be applied (3) UT is not recommended but can be defined in a specification with same requirement as Quality Level C	

Present	Ameno	dment	reason
<u><new></new></u>	Table 11 Recommended Testing and	Quality Levels (ISO 17640)	* Request for Establishment/Revision of
	<u>Testing Level⁽¹⁾⁽²⁾⁽³⁾</u> (ISO 17640:2018 applies)	Quality Level (ISO 5817:2014 applies)	Classification Technical Rule (MRD4800-181-2020)
	<u>A</u>	<u>C, D</u>	
	<u>B</u>	B	- To reflect IACS UR
	<u><u>C</u></u>	By agreement	W33(New Dec 2019 & Rev.] May 2020)
	<u>D</u>	Special application	May 2020)
		cation shall be agreed with the Society levels A to C, are provided for various	
	ritic steel welds, with thick frequency of probes used Examination procedures for above 100 mm and examina consideration of the Society. (c) The acceptance levels for U to ISO 11666:2018 requirem agreed with the Society. Th 3 for full penetration welde quality levels B and C (Refe (d) Sensitivity settings and le The sensitivity levels are set b (i) Technique 1: based on (ii) Technique 2: based on bottom holes (diskshaped (iii) Technique 3: using a a rectangular notch of 1n	by the following techniques. <u>3mm diameter side- drilled holes</u> n distance gain size (DGS) curves for <u>1 reflectors</u>) <u>distance-amplitude-corrected (DAC) curv</u> <u>mm depth and 1mm width</u> tandem technique with reference to a 6	<u>flat</u>

Present		Amendment	reason
<u><new></new></u> <this from="" guidance="" is="" present=""></this>	 ISO 11666:2018 Am (5) Acceptance criteria when (A) If the acceptance level level is not specified, th (B) Acceptance criteria for en in Table 12. Only require evaluation for M 	n no quality level is specified el cannot be determined pursuant to (4) above because the quality hese requirements can be followed. visual testing, magnetic particle and liquid penetrant testing are giv- the indications which have any dimension greater than 2 mm should	Establishment/Revision of Classification Technical Rules (MRD4800-181-2020)
	Surface discontinuity	Acceptance criteria for visual testing	
	Crack	not accepted	
	Lack of fusion	not accepted	
	Incomplete root penetration in butt joints welded from one side	not accepted	
	Surface pore	Single pore diameter $d \le 0.25t(1)$ for butt welds ($d \le 0.25a(1)$ for fillet welds) with maximum diameter 3mm; 2.5d as minimum distance to adjacent pore.	
	Undercut in butt welds	depth \leq 0.5mm whatever is the length depth \leq 0.8mm with a maximum continuous(2) length of 90mm	
	Undercut in fillet welds	depth \leq 0.8mm whatever is the length	
		the thinnest plate and "a" is the throat of the fillet weld. by a distance shorter than the shortest undercut should be regarded as	

Present	Amendment						reason		
<u><this from="" guidance="" is="" present=""></this></u>	 (C) Acceptance criteria for RT (a) <i>Classification of Defects</i> (i) Classification of defects is to be as given in Table 13. 							* Request for Establishment/Revision of Classification Technical Rule (MRD4800-181-2020)	
	Table 13 Classification of defects							(MIL)+000 101 2020)	
	Турея	Types of defects Kind of defects						- To reflect IACS UR	
	,	Гуре 1	Poros	sity(blow hole)	and similar d	efects			W33(New Dec 2019 & Rev.
	,	Type 2Elongated slag inclusion, pipe, incomplete penetration, incomplete fusion, and similar defectsM						May 2020)	
		Гуре 3	Cracl	c and similar c	lefects				
	(b) Table 14 Sc	the thin Defect of 2 (i) Size the def graphic is max part ou (ii) The using t the de grand t	nner plate is <i>Type 1</i> of defect of ect. The test so that the imum. When the test the test score of det the value in fect. The s total of the	s taken. of type 1 is st field vision e defects of p re the flaw f st field of vis fect in the ca a Table 14 a core of defea	to be represe specified in maximum siz falls on the l sion shall be se of single according to ct for two c	ented by scor Table 15 is e exists and boundary of t included for defect of typ the dimensior	te and maxin to be select the sum of the test field measurement e 1 shall be n of the maj ct of type 1 of vision.	num length of red from radio size of defect of vision, the determined be for diameter of l shall be the Units : mm	of o- ts ee y of
	Major	Up to	Over 1.0,	Over 2.0,	Over 3.0,	Over 4.0,	Over 6.0,		
	wiajoi	and incl.	up to and	up to and	up to and	up to and incl. 6.0	up to and incl. 8.0	Over 8.0	
	diameter of flaw (mm)	1.0	incl. 2.0	incl. 3.0	incl. 4.0	Incl. 0.0	IIICI. 0.0		

Present		Amendment					
<this from="" guidance="" is="" present=""></this>		 (iii) The defects of type 1 are to be judged unacceptable, if the size of the defects exceeds the value of acceptable criteria specified in Table 15. Table 15 Acceptance criteria for type 1 defect 					
	Table 15 Ac						
		Thickness of base metal t(mm)	$t \leq 10$	$10 < t \leq 2$	25 $25 < t \le 5$	50 $50 < t \le 100$	- To reflect IACS UR
		Test field of vision	10 mm	× 10 mm	10 m	m × 20 mm	W33(New Dec 2019 & Rev.
	Acceptance	Maximum size of single defect (mm)	4	5	t/5	10	May 2020)
	criteria	Total score of defect	6	12	24	30	
	(c) l	 ay be ignored. Where the thickness of b han 0.7 mm may be ignored. Defect of Type 2 (i) Size of defect of type 2 is to fects are present in a row and exceed the length of larger defect tween the mutual defects is to be (ii) The defects of type 2 are to exceeds the value of acceptable c (iii) Incomplete root penetration is n cceptance criteria for type 2 defect 	be represe the distan- t, the size considere be judged riteria spe	nted by l ce betwee s of all c d as the unaccept cified in	ength of the in the mutua lefects includ length of the able, if the Table 16 .	e defect. Where al defects does ding the spaces e defect. length of a d	e de- 5 not 5 be- lefect
		Thickness of base metal t (mm) t -	≤ 12	$12 < t \le 50$	50 < t	
	Acceptance c	riteria Sum of size of defect (mm)	6 or	under t/	2 or under	24 or under	
	(e) 1	Defect of Type 3 Any defect of type 3 is to be judged In Case of Coexistence of Defects of Where two or more types of defect acceptable, provided the size of defect specified in Table 15 and Table 16	Type 1 as are coex ects of ea	nd Type aistent, th ch type a	e defects are		

Present	Amendment	reason
Second	(D) Acceptance criteria for UT	* Request for Establishment/Revision of Classification Technical Rule (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev. May 2020)

Present	Ame	endment	reason
This is from present Guidance>			* Request for Establishment/Revision of Classification Technical R (MRD4800-181-2020
			- To reflect IACS UR
			W33(New Dec 2019 & Re
			May 2020)
	Fig 2 Examples for Drawing Cur	ves for Dividing Echo Height	
	Table 17 Designation of Regional Divis	ion of Echo Height	
	Table 17 Designation of Regional Divis Range of echo height	tion of Echo Height Region of echo height	
	Table 17 Designation of Regional Divis	ion of Echo Height	
	Table 17 Designation of Regional Divis Range of echo height L line or less	ion of Echo Height Region of echo height I	

Present	Amendment					reason	
<this from="" guidance="" is="" present=""></this>	(i) Ta (ii) de	tance Criteria Defects detected by ultrasonic i able 18. Where kind of defect is conside efects, etc., the defects are to be	red as crac judged unac	eks from we ecceptable.	elding proces		Classification Technical Rules of (MRD4800-181-2020) - To reflect IACS UR
		Thickness of base metal t (mm)	$t \leq 50$	50 < t	$t \leq 50$	50 < t	W33(New Dec 2019 & Rev.1
		Region of maximum echo heights		nd III	Г	V	May 2020)
	Acceptance Criteria	length of defect (mm)	t or less	50 or less	t/2 or less	25 or less	
	same, these discor continuity includin the larger one out dependent from ea	continuity with longer ultrasonic disc ntinuities are regarded as same disc g such distance. In the case where t of the both ultrasonic discontinuity ach other. The examination results dinal scanning on the weld line are concerned.	continuity gr the distance lengths, th of straddle	oup and trea between disc ese discontinu scanning, par	ted as a con continuities is uities are rega allel scanning	tinuous dis- longer than arded as in- g by slanted	

Present	Amendment	reason
<u>≤New></u>	 8. Reporting (1) Reports of NDT required shall be prepared by the Shipbuilder and shall be made available to the Society. (2) Reports of NDT shall include the following generic items: (A) Date of testing (B) Hull number, location and length of weld inspected (C) Names qualification level and signature of personnel that have performed 	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W33(New Dec 2019 & Rev.1 May 2020)

Present	Amendment	reason
<u><new></new></u>	 (A) Type and size of radiation source (width of radiation source), X-ray voltage (B) Type of film/designation and number of film in each film holder/cassette (C) Number of radiographs (exposures) (D) Type of intensifying screens (E) Exposure technique, time of exposure and source-to-film distance as per be- low: (E) Distance from radiation courses to world 	Establishment/Revision of

<u><new></new></u> 9	. Unacceptable indications and repairs	
Where the faulty welds are more than 10% of the number of inspection specified in Table 4	 (1) Unacceptable indications shall be eliminated and repaired where necessary. The repair welds are to be examined on their full length using appropriate NDT method at the discretion of the Surveyor. (2) When unacceptable indications are found, additional areas of the same weld length shall be examined unless it is agreed with the surveyor and fabricator that the indication is isolated without any doubt. In case of automatic welded ioints additional NDT shall be extended to all areas of the same weld length 	(MRD4800-181-2020) - To reflect IACS UR

Present	Amendment	reason
Annex 2-8 ~ Annex 2-11 <omitted> Annex 2-12 <new></new></omitted>	Annex 2-8 \sim Annex 2-11 <same as="" guidance="" present="" the=""> Annex 2-12 Guidance for advanced non-destructive testing of materials and welds</same>	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020)
	1. General	
	(1) Application	- To reflect IACS UR
	(A) This requirements gives minimum requirements on the methods and quality levels that are to be adopted for the advanced non-destructive testing (ANDT) of materials and welds during new building of ships. The ANDT	W34(New Dec 2019)
	is to be performed by the shipbuilder, manufacturer or its subcontractors in accordance with these requirements. The Society's surveyor may require witnessing testing.	
	(B) It is the shipbuilder's or manufacturer's responsibility to ensure that testing specifications and procedures are adhered to during the construction, and the	
	report is to be made available to the Society on the findings made by the <u>ANDT</u> . (C) The extent and method of testing, and the number of checkpoints are nor-	
	mally agreed between the shipyard and the Society.	
	(2) Terms and definitions The following terms and definitions apply for this document.	
	(A) ANDT : Advanced non-destructive testing	
	(B) RT-D : Digital Radiography	
	 (C) RT-S : Radioscopic testing with digital image acquisition(dynamic≥12bit) (D) RT-CR : Testing with computed radiography using storage phosphor imag- inc related 	
	<u>ing plates</u> (E) PAUT : Phased Array Ultrasonic Testing (F) TOFD : Time of Flight Diffraction	
	(G) AUT : Automated Ultrasonic Examinations. A technique of ultrasonic ex-	
	amination performed with equipment and search units that are mechanically mounted and guided, remotely operated, and motor-controlled (driven) with-	
	out adjustments by the technician. The equipment used to perform the ex-	
	aminations is capable of recording the ultrasonic response data, including	
	the scanning positions, by means of integral encoding devices such that	
	imaging of the acquired data can be performed.	

		Amendment		reason		
<u> ≪New></u>	examinationically momanuallyaminationthe scanneimaging co(3) MaterialsANT shouldmaterials, the(4) Welding procThese requirewelding procSociety.	 ANT should be applied to the materials in Pt 2, Ch 1 of the Rules. For other materials, the application is as recognized by the Society. (4) Welding processes These requirements apply to welding processes specified in Table 1. ANDT of welding process unspecified in Table 1 is to be to the satisfaction of the Society. 				
		Table 1 Applicable welding process Welding process]		
	Manual welding	Shield Metal Arc Welding(SMAW)	111			
	Resistance welding	Flash welding(FW)	24			
	Semi-automatic welding	 Metal Inert Gas welding(MIG) Metal Active Gas welding(MAG) Flux Cored Arc Welding(FCAW) 	131 135, 138 136			
	TIG welding	Gas Tungsten Arc Welding(GTAW)	141			
	Automatic	(1) Submerged Arc Welding(SAW)(2) Electro-gas Welding(EGW)	12 73			

Present	Amendment	reason
	 (5) Welding joints These requirements apply to butt welds with full penetration. Variations of joint design, for example, tee, corner and cruciform joints (with or without full penetration) can be tested using PAUT. The constraints of joint design with respect to testing are to be recognized, documented, and agreed with the Society before application. (6) Timing of ANDT (A) ANDT are to be conducted after welds have cooled to ambient temperature and after post weld heat treatment where applicable. (B) Timing of ANDT on ship hull welds on steels with specified minimum yield stress in the range of 420 N/nm² to 690 N/nm² shall be in accordance with 1. (9) of Annex 2-7. (7) Testing methods (A) The methods mentioned in this Annex for detection of imperfections are PAUT(only automated / semi-automated PAUT), TOFD, RT-D. (B) Applicable methods for testing of the different types of materials and weld joints are given in Table 2.	Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR

Present	Amendr	nent		reason
< <u>New></u>	Table 2 Applicable methods for testing of materials ar	* Request for Establishment/Revision of		
	MATERIALS AND WELD JOINTS	<u>PARENT MATERIAL</u> <u>THICKNESS(t)</u>	<u>APPLICABLE</u> <u>METHODS</u>	Classification Technical Rules (MRD4800-181-2020)
		<u>t < 6 mm</u>	<u>RT-D</u>	- To reflect IACS UR
	Ferritic butt welds with full penetration	$\underline{6 \text{ mm} \leq t \leq 40 \text{ mm}}$	PAUT, TOFD, RT-D	W34(New Dec 2019)
		<u>t > 40 mm</u>	PAUT, TOFD, RT-D ⁽¹⁾	
	Ferritic tee joints and corner joints with full penetration	$\underline{t \ge 6 \text{ mm}}$	PAUT, RT-D ⁽¹⁾	
	Ferritic cruciform joints with full penetration	$\underline{t \ge 6 \text{ mm}}$	PAUT ⁽¹⁾	
		<u>t < 6 mm</u>	<u>RT-D</u>	
	Austenitic stainless steel butt welds with full penetration ⁽²⁾	$\underline{6 \text{ mm} \leq t \leq 40 \text{ mm}}$	<u>RT-D, PAUT⁽¹⁾</u>	
		<u>t > 40 mm</u>	<u>PAUT⁽¹⁾, RT-D⁽¹⁾</u>	
	Austenitic stainless steel tee joints, corner joints with full penetration ⁽²⁾	$\underline{t \ge 6 \text{ mm}}$	$\underline{PAUT^{(1)}, RT-D^{(1)}}$	
	Aluminum tee joints and corner joints with full penetration	$t \ge 6 \text{ mm}$	$\underline{PAUT^{(1)}, RT-D^{(1)}}$	
	Aluminum cruciform joints with full penetration	$\underline{t \ge 6 \text{ mm}}$	PAUT ⁽¹⁾	
		<u>t < 6 mm</u>	<u>RT-D</u>	
	Aluminum butt welds with full penetration	$\underline{6 \text{ mm}} \leq t \leq 40 \text{ mm}$	RT-D, TOFD, PAUT	
		<u>t > 40 mm</u>	TOFD, PAUT, RT-D ⁽¹⁾	
	Cast Copper Alloy	All	PAUT, RT-D ⁽¹⁾	
	Steel forgings	All	PAUT, RT-D ⁽¹⁾	
	Steel castings	All	PAUT, RT-D ⁽¹⁾	
		<u>t < 6 mm</u>	<u>RT-D</u>	
	Base materials/Rolled steels, Wrought Aluminum Alloys	$\underline{6 \text{ mm}} \le t \le 40 \text{ mm}$	PAUT, TOFD, RT-D	
		<u>t > 40 mm</u>	PAUT, TOFD, RT-D ⁽¹⁾	
	Note: (1) Only applicable with limitations, need special qualificati (2) The ultrasonic testing of anisotropic material using techniques. Additionally, the use of complementary techni gle compression waves, and/or creep wave probes 56r detection	advanced methods will required and equipment may also and equipment may also addresses and equipment may also addresses and equipment may also addresses address	uire specific procedures and so be required, e.g. using an-	

Present	Amendment	reason
< <u>New></u>	2. Qualification of personnel involved in ANDT	* Request for Establishment/Revision of
	Qualification of personnel is to be accordance with 1. (7) of Annex 2-7.	Classification Technical Ru
		(MRD4800-181-2020)
	3. Technique and procedure qualification	
	(1) General The shipbuilder or manufacturer has to submit to the Society the following documentation for review.	- To reflect IACS UR
	(A) The technical documentation of the ANDT	W34(New Dec 2019)
	(B) The operating methodology and procedure of the ANDT according to 8.	
	(C) Result of software simulation, when applicable	
	(2) Software simulation Software simulation may be required by the Society, when applicable for PAUT or TOFD techniques.	
	The simulation may include initial test set-up, scan plan, volume coverage, result image of artificial	
	flaw etc In some circumstances, artificial defect modeling/simulation may be needed or required by the	
	project.	
	(3) Procedure qualification test	
	The procedure qualification for ANDT system shall include the following steps. (A) Review of available performance data for the inspection system (detection abilities and defect siz-	
	ing accuracy)	
	(B) Identification and evaluation of significant parameters and their variability	
	(C) Planning and execution of a repeatability and reliability test programme which including onsite	
	(D) Documentation of results from the repeatability and reliability test programs	
	(4) The data from the repeatability and reliability test program specified in (3) (C) above is to be ana-	
	lyzed with respect to comparative qualification block test report and onsite demonstration. The qual-	
	ification block shall be in accordance with ASME V Article 14 MANDATORY APPENDIX II UT	
	PERFORMANCE DEMONSTRATION CRITERIA or agreed by the Society, and at least the inter-	
	mediate level qualification blocks shall be used. The high level qualification blocks shall be used when sizing error distributions and an accurate POD need to be evaluated. The demonstration process onsite	
	shall be witnessed by the Society's surveyor.	
	4. Procedure approval	
	The testing procedure is to be evaluated based upon the qualification results, if satisfactory the procedure	
	can be considered approved.	

Present	Amendment	reason
<u>≤New></u>	 5. Onsite review (1) For the test welds, supplementary NDT shall be performed on an agreed proportion of welds to be cross checked with other methods. Alternatively, other documented reference techniques may be applied to compare with ANDT results. (2) Data analyses shall be performed in accordance with the above activities. Probability of Detection (PoD) and sizing accuracy shall be established when applicable. (3) When the result of inspection review does not conform to the approved procedure, the inspection shall be suspended immediately. Additional procedure review qualification and demonstration shall be undertaken to account for any nonconformity. (4) When a significant nonconformity is found, the Society has the right to reject the results of such activities. 6. Surface condition (1) Area to be examined shall be free from scale, loose rust, weld spatter, oil, grease, dirt or paint that might affect the sensitivity of the testing method. (2) Where there is a requirement to carry out PAUT or TOFD through paint, the suitability and sensitivity of the test shall be confirmed through an appropriate transfer correction method defined in the procedure. In all cases, if transfer losses exceed 12 dB, the reason shall be considered and further preparation of the scanning surfaces shall be carried out, if applicable. If esting is done through paint, then the procedure shall be qualified on a painted surface. (3) The requirement for acceptable test surface finish is to ensure accurate and reliable detection of defects. For the testing of welds, where the test surface is irregular or has other features likely to interfere with the interpretation of NDT results, the weld is to be ground or machined. 7. General plan of testing: NDT method selection The extent of testing shall be planned by the shipbuilder or manufacturer according to the ship design, ship or equipment type and welding processes use	(MRD4800-181-2020) - To reflect IACS UR

Present	Amendment	reason
<u><new></new></u>	 8. Testing requirements (1) General (A) The shipyard or manufacturer is to ensure that personnel carrying out NDT or interpreting the results of NDT are qualified to the appropriate level as detailed in 2 (B) Procedures (a) All NDT are to be carried out to a procedure that is representative of the item under inspection. (b) Procedures are to identify the component to be examined, the NDT method, equipment to be used and the full extent of the examinations including any test restrictions. (c) Procedures are to include the requirement for components to be positively identified and for a datum system or marking system to be applied to ensure repeatability of inspections. (d) Procedures are to include the method and requirements for equipment calibrations and functional checks, together with specific technique sheets/scan plans, for the component under test. (e) Procedures are to be approved by personnel qualified to Level III in the appropriate technique in accordance with a recognised standard. (f) Procedures are to be reviewed by the Society's Surveyor. (C) The methods considered within the application defined in 1. (7). (D) PAUT techniques shall conform as a minimum to (2). Depending on the complexity of the item under test and the access to surfaces, there may be a requirement for additional scans and/or complementary NDT techniques to ensure that full coverage of the item is achieved. (f) RT-D techniques shall conform as a minimum to (3). Depending on the complexity of the item under test and the access to surfaces, there may be a requirement for additional scans and/or complementary NDT techniques to ensure that full coverage of the item is achieved. (f) RT-D techniques shall conform as a minimum to (4). RT-D comprises of two main RT methods; RT-S and RT-CR. Other methods may be included (e.g., radioscopy systems), however, then must conform to this Annex as applicable	- To reflect IACS UR W34(New Dec 2019)

Present	Amendment	reason
<u><</u> New≥	Amendment 2) PAUT PAUT shall be carried out according to procedures based on ISO 13588:2019, ISO 18563-1:2015, ISO 18563-3:2017 and ISO 19283:2017 or recognized standards and the specific requirements of the Society. (A) Information required prior to testing A procedure shall be written and include the following information as in minimum shown in Table 3. When an essential variable in Table 3 is to change from the specified value, or range of values, the written procedure shall require requalification. When a nonessential variable is to change from the specified value, or range of values, requalification of the written procedure is not required. All changes of essential or nonessential variables from the value, or range of values, specified by the written procedure shall require revision of, or an addendum to, the written procedure.	* Request for Establishment/Revision of Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W34(New Dec 2019)

<New>

Table 3 Requirements of a PAUT Procedure

Requirement		Nonessential
<u>requirement</u>	<u>Variable</u>	<u>Variable</u>
Material types or weld configurations to be examined, including thickness	$\underline{}$	
dimensions and material product form (castings, forgings, pipe, plate, etc.)	<u>_v</u>	
The surfaces from which the examination shall be performed	<u>√</u>	
Technique(s) (straight beam, angle beam, contact, and/or immersion)	<u>√</u>	
Angle(s) and mode(s) of wave propagation in the material	$\underline{\checkmark}$	
Search unit type, frequency, element size and number, pitch and gap dimensions, and shape		
Focal range(identify plane, depth, or sound path)	<u>√</u>	
Virtual aperture size(i.e., number of elements, effective height(1), and element width)	<u>√</u>	
Focal laws for E-scan and S-scan (i.e., range of element numbers used, angular range used, element or angle increment change)	4	
Special search units, wedges, shoes, or saddles, when used	<u>√</u>	
Ultrasonic instrument(s)	<u>√</u>	
Calibration [calibration block(s) and technique(s)]	<u>√</u>	
Directions and extent of scanning	<u>√</u>	
Scanning(manual vs. automatic)	<u>√</u>	
Method for sizing indications and discriminating geometric from flaw indications	<u>√</u>	
Computer enhanced data acquisition, when used	<u>√</u>	
Scan overlap(decrease only)	<u>√</u>	
Personnel performance requirements, when required	<u>√</u>	
Testing levels, acceptance levels and/or recording levels	<u>√</u>	
Personnel qualification requirements		<u>√</u>
Surface condition(examination surface, calibration block)		<u>√</u>
Couplant(brand name or type)		<u>√</u>
Post-examination cleaning technique		<u>√</u>
Automatic alarm and/or recording equipment, when applicable		<u>√</u>
Records, including minimum calibration data to be recorded (e.g., instrument settings)		<u>√</u>
Environmental and safety issues		<u>√</u>
Note: (1) Effective height is the distance from the outside edge of the first to last element	t used in the	focal law.

Present	Amendment	reason
<new></new>	(B) Testing	* Request for
	(a) Testing levels	Establishment/Revision of
	The testing levels specified in the testing procedure shall be in accord	-Classification Technical Ru
	ance with recognized standards accepted by the Society. Four testin	\mathbf{g} (MRD4800-181-2020)
	levels are specified in ISO 13588:2019, each corresponding to a different	<u>nt</u>
	probability of detection of imperfections.	- To reflect IACS UR
	(b) Weld Examinations	
	The weld examinations shall in accordance with ISO 13588:2019 and the	<u>e</u> W34(New Dec 2019)
	additional special requirements of this Annex.	
	(c) Material Examinations	
	Material examinations shall conform to 1. (3) as a minimum.	
	(d) Volume to be inspected	
	(i) The purpose of the testing shall be defined by the testin	g
	procedure. Based on this, the volume to be inspected shall b	e
	determined.	
	(ii) A scan plan shall be provided. The scan plan shall show the	e
	beam coverage, the weld thickness and the weld geometry.	
	(iii) If the evaluation of the indications is based on amplitude only,	it
	is a requirement that an 'E' scan (or linear scan) shall be utilize	d
	to scan the fusion faces of welds, so that the sound beam is per	-
	pendicular to the fusion face \pm 5°. This requirement may be omitte	
	if an 'S' (or sectorial) scan can be demonstrated to verify that dis	5-
	continuities at the fusion face can be detected and sized, using the	e
	stated procedure (note, this demonstration shall utilize reference	
	blocks containing suitable reflectors in location of fusion zone).	_
	(e) Reference blocks	
	Depending on the testing level, a reference block shall be used to de	-
	termine the adequacy of the testing (e.g. coverage, sensitivity setting	
	The design and manufacture of reference blocks shall be in accordance	
	with ISO 13588:2019 or recognized quivalent standards and the specifi	
	requirements of the Society.	_
	(f) Indication assessment	
	Indications detected when applying testing procedure shall be evaluate	d
	either by length and height or by length and maximum amplitude	
	Indication assessment shall be in accordance with ISO 19285:2017 of	
	recognized standards and the specific requirements of the Society. The	
	sizing techniques include reference levels, Time Corrected Gain(TCG	
	Distance Gain Size(DGS) and 6 dB drop. 6 dB drop method shall onl	
	be used for measuring the indications larger than the beam width.	<u> </u>

Present	Amendment	reason
≤New≥	 (3) TOFD TOFD shall be carried out according to procedure based on ISO 10863:2011, and ISO 15626:2018 or recognized standards and the specific requirements of the Society. (A) Information required prior to testing A procedure shall be written and include the following information as shown in Table 4. When an essential variable in Table 4 is to change from the specified value, or range of values, the written procedure shall require required. All changes of essential or nonessential variables from the specified values, specified by the written procedure shall require required. All changes of essential or nonessential variables from the value, or range of values, specified by the written procedure shall require revision of, or an addendum to, the written procedure. 	Classification Technical Rules (MRD4800-181-2020) - To reflect IACS UR W34(New Dec 2019)

<New>

Table 4 Requirements of a TOFD Procedure

Requirement	<u>Essential</u> Variable	<u>Nonessential</u> <u>Variable</u>
Weld configurations to be examined, including thickness dimensions and material product form (castings, forgings, pipe, plate, etc.)	V	
The surfaces from which the examination shall be performed	$\underline{\checkmark}$	
Angle(s) of wave propagation in the material	$\underline{\checkmark}$	
Search unit type(s), frequency(ies), and element size(s)/shape(s)	$\underline{\checkmark}$	
Special search units, wedges, shoes, or saddles, when used	$\underline{\checkmark}$	
Ultrasonic instrument(s) and software(s)	1	
Calibration [calibration block(s) and technique(s)]	1	
Directions and extent of scanning	<u>√</u>	
Scanning (manual vs. automatic)	<u>√</u>	
Data sampling spacing (increase only)	<u>√</u>	
Method for sizing indications and discriminating geometric from flaw indications	<u>√</u>	
Computer enhanced data acquisition, when used	<u>√</u>	
Scan overlap (decrease only)	$\underline{\checkmark}$	
Personnel performance requirements, when required	$\underline{\checkmark}$	
Testing levels, acceptance levels and/or recording levels	<u>√</u>	
Personnel qualification requirements		$\underline{\checkmark}$
Surface condition (examination surface, calibration block)		<u>√</u>
Couplant (brand name or type)		<u>√</u>
Post-examination cleaning technique		<u>√</u>
Automatic alarm and/or recording equipment, when applicable		<u>√</u>
Records, including minimum calibration data to be recorded (e.g., instrument settings)		<u>√</u>
Environmental and safety issues		<u>√</u>

Present	Amendment	reason
<u>≤New></u>		(MRD4800-181-2020) - To reflect IACS UR W34(New Dec 2019)

Table 5 Requirements of a Digital radiography Procedure

Requirement
Material types or weld configurations to be examined, including thickness dimensions and material product form (castings, forgings, pipe, plate, etc.)
Digitizing System Description:
Manufacturer and model no. of digitizing system
Physical size of the usable area of the image monitor
Film size capacity of the scanning device
Spot size(s) of the film scanning system
Image display pixel size as defined by the vertical/horizontal resolution limit of the monitor
Illuminance of the video display
Data storage medium
Digitizing Technique:
Digitizer spot size (in microns) to be used
Loss-less data compression technique, if used
Method of image capture verification
Image processing operations
Time period for system verification
Spatial resolution used:
Contrast sensitivity (density range obtained)
Dynamic range used
Spatial linearity of the system
Material type and thickness range
Source type or maximum X-ray voltage used
Detector type
Detector calibration
Minimum source-to-object distance
Distance between the test object and the detector
Source size
Test object scan plan (if applicable)
Image Quality Measurement Tools
Image Quality Indicator (IQI)
Wire Image Quality Indicator
Duplex Image Quality Indicator
Image Identification Indicator
Testing levels, acceptance levels and/or recording levels
Personnel qualification requirements
Surface condition
Records, including minimum calibration data to be recorded
Environmental and Safety issues

Present		Amendment		reason		
<u><new></new></u>	NDT results. Method sonic testing(PAUT), raphy(RT-D). (B) It may be necessary of indications against (2) PAUT (A) The relationship betw is given in Table 6 welds shall be in ac	(1) General (A) This section details the acceptance levels followed for the assessment of the NDT results. Methods include but are not limited to: Phased array ultrasonic testing(PAUT), Time of flight diffraction(TOFD), Digital radiography(RT-D). (B) It may be necessary to combine testing methods to facilitate the assessment of indications against the acceptance criteria.				
	Table 6 Acceptance lev	vels for PAUT				
	Quality levels according to ISO 5817:2014	Testing level according to ISO 13588:2019	<u>Acceptance levels</u> <u>according</u> to ISO 19285:2017			
	<u>C, D</u>	A	<u>3</u>			
	<u>B</u>	<u>B</u>	2			
	By agreement	<u>C</u>	<u>1</u>			
	Special application	<u>D</u>	By agreement			
	in accordance to reco	cceptance levels for PAUT ognized standard agreed v rial examinations shall co	vith the Society. The acc	ept-		

Present		Amendment			reason
<u> <new></new></u>	given in Table 7 . Qua	een acceptance levels, tes ality levels and acceptance ISO 15626:2018 or recog vels for TOFD	levels for TOFD of we	levels is E elds shall (with the (Classification Technical Rules MRD4800-181-2020) – To reflect IACS UR
	Quality levels according ISO 5817:2014	Testing level according to ISO 10863:2011	Acceptance level according to ISO 15626:2018		V34(New Dec 2019)
	B(Stringent)	<u>C</u>	<u><u>1</u></u>	-	
	C(Intermediate)	<u>At least B</u>	2		
	D(Moderate)	<u>At least A</u>	3		
	Society. Table 8 Acceptance level	accordance with ISO 106	U		
	Quality levels according to ISO 5817:2014 or ISO 10042:2018	<u>Testing</u> <u>techniques/level(class)</u> <u>according to</u> <u>ISO 17636-2:2013</u>	<u>Acceptance level</u> <u>according to</u> <u>ISO 10675-1:2016 &</u> <u>ISO</u> <u>10675-2:2017</u>		
	B(Stringent)	B (class)	<u>1</u>		
	<u>C(Intermediate)</u>	<u>B(1) (class)</u>	<u>2</u>		
	D(Moderate)	<u>A (class)</u>	<u>3</u>		
	~ /	weld testing, the minimum a uirements of ISO 17636-2:20			

Present	Amendment	reason
≤New≥	(1) The test report shall include at least the information of Table 9.	

NDT Related Information method parts Standards a reference to standards of compliance 1) identification of the object under test 2) dimensions including wall thickness 3) material type and product form 4) geometrical configuration The object under test 5) location of welded joint(s) examined 6) reference to welding process and heat treatment 7) surface condition and temperature 8) stage of manufacture Equipment manufacturer and type of instrument, including with identification numbers if required. 1) testing level and reference to a written 2) purpose and extent of test test procedure 4) method and values used for range and Test 3) details of datum and coordinate All sensitivity settings technology systems 6) access limitations and deviations from standards, 5) details of signal processing and scan if any increment setting 1) acceptance criteria applied 2) tabulated data recording the classification, location and size of relevant indications and 3) results of examination including data results of evaluation Test on software used 4) date of test results 5) reference to the raw data file(s) 6) date(s) of scan or exposure and test report 7) names, signatures and certification of personnel 1) manufacturer, type, frequency of phased array probes including number and size of elements, material and angle(s) of wedges with identification numbers if required Equipment 2) details of reference block(s) with identification numbers if required 3) type of couplant used 1) increment (E-scans) or angular increment 2) element pitch and gap dimensions (S-scans) 4) virtual aperture size, i.e. number of elements 3) focus (calibration should be the same as and element width PAUT Test 6) documentation on permitted wedge angular scanning) technology 5) element numbers used for focal laws range from manufacturer 7) documented calibration, TCG and angle 8) scan plan gain compensation 1) phased array images of at least those locations where relevant indications have been detected Test on hard copy, all images or data available in soft format results 2) reference points and details of the coordinate system 1) manufacturer, type, frequency, element size and beam angle(s) of probes with identification numbers if required Equipment 2) details of reference block(s) with identification numbers if required 3) type of couplant used TOFD Test 1) details of TOFD setups technology 2) details of offset scans, if required Test 1) TOFD images of at least those locations where relevant TOFD indications have been results detected

Table 9 Information for the test report

Table 9 Information for the test report(Cont'd)

<u>NDT</u> <u>method</u>	<u>Related</u> parts	Information
<u>RT-D</u>	<u>Equipmen</u> <u>t</u>	 <u>1) system of marking used</u> <u>2) radiation source, type and size of focal spot and identification of equipment used</u> <u>3) detector, screens and filters and detector basic spatial resolution</u>
	<u>Test</u> technology	 <u>1) detector position plan</u> <u>2) tube voltage used and current or source type and activity</u> <u>3) time of exposure and source-to-detector distance</u> <u>4) type and position of image quality indicators</u> <u>5) achieved and required SNR_N for RT-S or achieved and required grey values and/or SNR_N for <u>RT-CR</u></u> <u>6) for RT-S: type and parameters such as gain, frame time, frame number, pixel size, calibration procedure</u> <u>7) for RT-CR: scanner type and parameters such as pixel size, scan speed, gain, laser intensity, laser spot size</u> <u>8) image-processing parameters used, e.g. of the digital filters</u>

÷