RULES FOR CLASSIFICATION(STEEL SHIPS)

Part 14 Structural Rules for Container Ships

2020. 10. Hull Rule Development Team

- Main Amendments -

(1) Enter into force on 1 July 2021 (the contract date for ship construction)

• To reflect Request for Establishment/Revision of Classification Technical Rules (HUC4100-2649-2019)

Ψ

Present	Amendment	Reason
Chapter 1 General Principles	Chapter 1 General Principles	
Section 1 Application	Section 1 Application	
1. Scope of application	1. Scope of application	
1.2 Scope of application for container ships	1.2 Scope of application for container ships	
1.2.1	1.2.1	
These Rules apply to double bottom ships of double side skin construction, intended to carry containers in holds or on deck.	These Rules apply to double bottom ships of double side skin construction, intended to carry containers in holds or on deck. The requirements of hull equipment are generally to comply with those in Pt 4. The requirements of	
The requirements of container ships with a length less than 90 m are generally to comply with those in Pt 4 and Pt 10 .	container ships with a length less than 90 m are generally to comply with those in Pt 4 and Pt 10 .	
The ship's structure is to be longitudinally and transversely framed with full transverse bulkheads and intermediate web frames. Typical midship sections are shown in Figure 1 .	The ship's structure is to be longitudinally and transversely framed with full transverse bulkheads and intermediate web frames. Typical midship sections are shown in Figure 1 .	
〈Figure 1 omitted〉	〈Figure 1 same as the present〉	
2. Rule application	2. Rule application	
2.1 ~ 2.3 (omitted)	2.1 ~ 2.3 (same as the present)	
2.4 Ship parts	2.4 Ship parts	
2.4.1 ~ 2.4.2 〈omitted〉	2.4.1 ~ 2.4.2 (same as the present)	
2.4.3 Cargo hold region	2.4.3 Cargo hold region	
The cargo hold region is the part of the ship that contains cargo holds. It includes the full breadth and depth of the ship, the collision bulkhead and the transverse bulkhead at its aft end. The cargo hold region does not include the pump room, if any.	The cargo hold region is the part of the ship that contains cargo holds. It includes the full breadth and depth of the ship, the collision bulkhead and the transverse bulkhead at its aft end.	

Present	Amendment	Reason
2.4.4 Machinery space	2.4.4 Machinery space	
The machinery space is the part of the ship between the aft peak bulkhead and the transverse bulkhead at the aft end of the cargo hold region and includes the pump room, if any.	The machinery space is the part of the ship between the aft peak bulkhead and the transverse bulkhead at the aft end of the cargo hold region.	
<pre>(omitted)</pre>	⟨same as the present⟩	

Present	Amendment	Reason
Section 2 Rule Principles	Section 2 Rule Principles	
1. (omitted)	1. 〈same as the present〉	
2. Design basis	2. Design basis	
2.1 〈omitted〉	2.1 〈same as the present〉	
2.2 Hull form limit	2.2 Hull form limit	
2.2.1	2.2.1	
The Rules assume the following hull form with respect to environmental loading:	The Rules assume the following hull form with respect to environmental loading:	
90 m ≤ L ≤ <u>400</u> m	90 m ≤ L ≤ <u>500</u> m	
$5 \leq L/B \leq 9$	$5 \leq L/B \leq 9$	
<pre>(omitted)</pre>	⟨same as the present⟩	
For ships over 400 m in length or except above mentioned hull form, the wave loads are to be in accordance with Pt 13, Annex 13-1 .	For ships except above mentioned hull form, the wave loads are to be in accordance with Pt 13, Annex 13-1.	
2.3 (omitted)	2.3 ⟨same as the present⟩	
2.4 Environmental conditions	2.4 Environmental conditions	
2.4.1 North Atlantic wave environment	2.4.1 North Atlantic wave environment	
The rule requirements are based on a ship trading in the North Atlantic wave environment for its entire design life.	The rule requirements are based on a ship trading in the North Atlantic wave environment for its entire design life. <u>The wave environment for fatigue strength is to be in accordance with Ch 9.</u>	
<pre>(omitted)</pre>	〈same as the present〉	

Present	Amendment	Reason
2.5 〈omitted〉	2.5 (same as the present)	
2.6 Operating draughts	2.6 Operating draughts	
 2.6.1 The design operating draughts are to be specified by the builder/designer subject to acceptance by the owner and are to be used to derive the appropriate structural scantlings. All operational loading conditions in the loading manual are to comply with the specified design operating draughts. The following design operating draughts are as a minimum to be considered: Scantling draught for the assessment of structure. Minimum ballast draught at midship for assessment of structure. Minimum forward draughts for the assessment of bottom structure forward subjected to slamming loads, as defined in Ch 4, Sec 5, [3.2.1]. 	 2.2.1 The design operating draughts are to be specified by the builder / designer subject to acceptance by the owner and are to be used to derive the appropriate structural scantlings. All operational loading conditions in the loading manual are to comply with the specified design operating draughts. The following design operating draughts are as a minimum to be considered: Scantling draught for the assessment of structure. Minimum ballast draught at midship for assessment of structure. Minimum draughts at forward perpendicular and aft end for the assessment of forward and stern bottom structure subjected to slamming loads, as defined in Ch 4, Sec 5. 	
3. Design principles	3. Design principles	
3.2 Loads	3.2 Loads	
 3.2.1 Design load scenarios The structural assessment of the structure is based on the design load scenarios encountered by the ship. Refer to Ch 4, Sec 7. ⟨omitted⟩ Accidental design load scenario (A): Covers application of some loads not occurring during normal operations. ⟨newly added⟩ 	 3.2.1 Design load scenarios The structural assessment of the structure is based on the design load scenarios encountered by the ship. Refer to Ch 4, Sec 7. ⟨omitted⟩ Accidental design load scenario (A): Covers application of some loads not occurring during normal operations. Tank testing design load scenario (T): Covers application of maximum loads during tank testing 	

	Present				Amendment					
. Rule design n	nethod			4. Rule design m	nethod					
.3 Load-capacity	based requirements			4.3 Load-capacity	based requirements					
.3.1~4.3.2 ⟨omitted Table 1 : Load	> scenarios and corresponding	rule requirem	ients	4.3.1~4.3.2 (same as Table 1 : Load	s the present〉 scenarios and corresponding	rule requirem	ents			
Operation	Load type	Design load scenario	Acceptance criteria	Operation	Load type	Design load scenario	Acceptance criteria			
	Seagoing operations				Seagoing operations					
	Static and dynamic loads in heavy weather	S+D	AC-SD		Static and dynamic loads in heavy weather	S+D	AC-SD			
Transit	Impact loads in heavy weather	Impact (I)	AC-I	Transit	Impact loads in heavy weather	Impact (I)	AC-I			
	Internal sloshing loads	Sloshing (SL)	AC-S		Internal sloshing loads	Sloshing (SL)	AC-S			
	Cyclic wave loads	Fatigue (F)	-		Cyclic wave loads	Fatigue (F)	-			
BWE by flow through or sequential methods	Static and dynamic loads in heavy weather	S+D	AC-SD	BWE by flow through or sequential methods	Static and dynamic loads in heavy weather	S+D	AC-SD			
	Harbour and sheltered operation	ns			Harbour and sheltered operation	าร				
oading, unloading and ballasting	Typical maximum loads during loading, unloading and ballasting operations	S	AC-S	Loading, unloading and ballasting	Typical maximum loads during loading, unloading and ballasting operations	S	AC-S			
Special conditions in harbour	Typical maximum loads during special operations in harbour, e.g. propeller inspection afloat	S	AC-S	Special conditions in harbour	Typical maximum loads during special operations in harbour, e.g. propeller inspection afloat	S	AC-S			
	Accidental condition				Accidental condition					
Tank testing	Typical maximum loads during- tank testing operations	A	AC-A	(del)	(del)	⟨del⟩	⟨del⟩			
Flooded conditions	Typically maximum loads on internal watertight subdivision structure in accidental flooded conditions	А	AC-A	Flooded conditions	Typically maximum loads on internal watertight subdivision structure in accidental flooded conditions	A	AC-A			
	1	1	<u> </u>		Testing condition					
				Tank testing	Typical maximum loads during tank testing operations	Ī	<u>AC-T</u>			

Present								A	mendm	ent			Reason	
4.4. Ac	ceptance	criteria					4.4. Acc	ceptance	criteria					
4.4.1 Ge	neral						4.4.1 Ge	eneral						
These ar acceptan	e explainec ce criteria	below and set that	shown in is applied	to <u>three</u> acc Table 2 and d in the ru characteristic	Table 3 . T ule requir	The specific rements is	These are acceptane	e explainec ce criteria	below and set that	shown in is applied	nto <u>five</u> acc Table 2 and d in the r characteristic	Table 3. ule requi	The specific rements is	
(omitted)							⟨same as	s the prese	ent>					
such d) (nev				typically appl mpact loads.	ied for im	npact loads,	 c) The acceptance criteria set AC-I is typically applied for impact loads, such as bottom slamming and bow impact loads. d) The acceptance criteria set AC-A is applied for the static design loads in accidental flooded condition e) The acceptance criteria set AC-T is applied for the design loads in tank testing condition. 							
4.4.2 (or	nitted)						4.4.2 〈 sa	ame as th	e present>					
	Table 2:	Acceptance	criteria - p	orescriptive re	quirement	ts	Table 2 : Acceptance criteria - prescriptive requirements							
Acceptance	Plate p local suppo	anels and ort members ⁽¹⁾	Primary suppo	orting members ⁽¹⁾	Hull girde	er members	Acceptance local support members ⁽¹⁾ Primary supporting members ⁽¹⁾ Hull girder members							
criteria	Yield	Buckling	Yield	Buckling	Yield	Buckling		Yield	Buckling	Yield	Buckling	Yield	Buckling	
AC-S AC-SD AC-A	Permissible stress: Ch 6, Sec 4 Ch 6, Sec 5	Control of stiffness and proportions: Ch 8 Sec 2	Permissible stress: Ch 6, Sec 6	Control of stiffness and proportions: Ch 8, Sec 1, 2 Pillar buckling	Permissible stress: Ch 5, Sec 1	Allowable buckling utilisation factor: Ch 8 Sec 1 [3]	AC-S AC-SD AC-A <u>AC-T</u>	Permissible stress: Ch 6, Sec 4 Ch 6, Sec 5		Permissible stress: Ch 6, Sec 6	Control of stiffness and proportions: Ch 8, Sec 1, 2 Pillar buckling	Permissible stress: Ch 5, Sec 1	utilisation	
AC-I	Plastic criteria: Ch 10 Sec 1 [3]	Control of stiffness and proportions: Ch 8, Sec 2 Ch 10 Sec 1 [3]	Plastic criteria: Ch 10 Sec 1 [3]	Control of stiffness and proportions: Ch 8, Sec 2 Ch 10 Sec 1 [3]	N/A	N/A	AC-I	Plastic criteria: Ch 10 Sec 1 [3] <u>Ch 10 Sec 3</u> [5]	Control of stiffness and proportions: Ch 8, Sec 2 Ch 10 Sec 1 [3] Ch 10 Sec 3 [5]	Plastic criteria Ch 10 Sec 1 [3] <u>Ch 10 Sec 3</u> [5]	Control of stiffness and proportions: Ch 8, Sec 2 Ch 10 Sec 1 [3] Ch 10 Sec 3 [5]	N/A	N/A	
⁽¹⁾ Refer t outfittin		ther structures	and to Ch 11	for Superstructu	re, deckhous	ses and hull	⁽¹⁾ Refer to outfittin				for Superstruct	ure, deckhous	ses and hull	

	P	resent			Amendment				
	Table 3 : Acceptar	nce criteria - FE ana	alysis		Table 3 : Acceptance criteria - FE analysis				
Acceptance	Cargo ho	old analysis	Fine mesh analysis	Acceptance	Cargo ho	old analysis	Fine mesh analysis		
criteria	Yield	Buckling	Yield	criteria	Yield	Buckling	Yield		
AC-S, AC-SD, AC-A	Permissible stress: Ch 7, Sec 2, [5]	Allowable buckling utilisation factor: Ch 8, Sec 1, [3]	Permissible Von Mises stress: Ch7, Sec3, [6] Screening criteria: Ch 7, Sec 3, [3.3]	AC-S, AC-SD, AC-A, <u>AC-T</u>	Permissible stress: Ch 7, Sec 2, [5]	Allowable buckling utilisation factor: Ch 8, Sec 1, [3]	Permissible Von Mises stress: Ch 7, Sec 3, [6] Screening criteria: Ch 7, Sec 3, [3.3]		
	1]	7, 386 3, [3.3]]	7, 380 3, [3.3]		

Present	Amendment	Reason
Section 3 Verification of Compliance	Section 3 Verification of Compliance	
1. General	1. General	
1.1 Newbuilding	1.1 Newbuilding	
 1.1.1~1.1.4 (omitted) 1.1.5 Through all stages of ship construction, it is the builder's responsibility to inform promptly the Society of the modifications or departures from approved arrangements and to deal with as necessary. The builder is to ensure that deviations from the requirements of the Rules or approved plans, other than those of a minor nature not affecting the structural strength of the vessel, are, in any case, accepted by the Society's approval office. 	 1.1.1~1.1.4 (same as the present) 1.1.5 Through all stages of ship construction, it is the builder's responsibility to promptly inform the Society of modifications or departures from approved plans. The builder is to ensure that deviations from the requirements of the Rules or approved plans are accepted by the Society. 	
2. Document to be submitted	2. Document to be submitted	
2.1 (omitted)	2.1 (same as the present)	
2.2 Submission of plans and supporting calculations	2.2 Submission of plans and supporting calculations	
 2.2.1 Plans and supporting calculations are to be submitted for approval (omitted) Structural plans are to show scantling, details of connection of the various parts and are to specify the design materials including, in general, their grades, manufacturing processes, welding procedures and heat treatments, and are to include information related to the renewal thickness as specified in Ch 13. For welding requirements, see Ch 12, Sec 2 and Ch 12, Sec 3. In case there are deviations from the design basis, then these are to be documented and submitted to the Society. 	 2.2.1 Plans and supporting calculations are to be submitted for approval (same as the present) Structural plans are to show scantling, details of connection of the various parts and are to specify the design materials including, in general, their grades, manufacturing processes, welding procedures and heat treatments. For welding requirements, see Ch 12, Sec 2 and Ch 12, Sec 3. In case there are deviations from the design basis, then these are to be documented and submitted to the Society. 	

Present	Amendment	Reason
2.2.3 Plans and instruments to be supplied onboard the ship	2.2.3 Plans and instruments to be supplied onboard the ship	
As a minimum, the following plans and instrument are to be supplied onboard:	As a minimum, the following plans and instrument are to be supplied onboard:	
 a) One copy of the following plans indicating the newbuilding and renewal thickness for each structural item is to be supplied onboard the ship: plans of midship sections, construction profiles, shell expansion, transverse bulkheads, aft and fore part structures, machinery space structures. One copy of the following plans indicating the newbuilding thickness for each structural item is to be supplied onboard the ship: plans of superstructures, and casing 	 a) One copy of the following plans indicating the newbuilding thickness for each structural item is to be supplied onboard the ship: plans of midship sections, construction profiles, shell expansion, transverse bulkheads, aft and fore part structures, machinery space structures, superstructures, deckhouses and casing. 	
 superstructures, deckhouses and casing. b) One copy of the final approved loading manual, see [2.1.1]. c) One copy of the final approved loading instrument, see [2.1.1]. d) Welding. e) Details of the extent and location of higher tensile steel together with details of the specification and mechanical properties, and any recommendations for welding, working and treatment of these steels. f) Details and information on use of special materials, such as an aluminium alloy, used in the hull construction. g) Towing and mooring arrangements plan, see Ch 11, Sec 3. h) Structural details for which post weld treatment methods are applied, showing the description of the details and their locations. Other plans or instrument may be required by the Society. 	 b) One copy of the final approved loading manual, see [2.1.1]. c) One copy of the final approved loading instrument, see [2.1.1]. d) Welding. e) Details of the extent and location of higher tensile steel together with details of the specification and mechanical properties, and any recommendations for welding, working and treatment of these steels. f) Details and information on use of special materials, such as an aluminium alloy, used in the hull construction. g) Towing and mooring arrangements plan, see Ch 11, Sec 3. h) Structural details for which post weld treatment methods are applied, showing the description of the details and their locations. Other plans or instrument may be required by the Society. 	

	Present			Amendment	Reas			
S	Section 4 Symbols and Definitions		(Section 4 Symbols and Definition	S			
2. Symb	ools		2. Symb	ools				
2.1 Ship's	s main data		2.1 Ship'	s main data				
	nerwise specified, symbols regarding ship's main data I in these Rules are those defined in Table 2 . Table 2 : Ship's main data	and their	2.1.1 Unless otherwise specified, symbols regarding ship's main data and their units used in these Rules are those defined in Table 2. Table 2 : Ship's main data					
Symbols	Meaning	Units	Symbols	Meaning	Units			
L	Rule length	m	L	Rule length	m			
(omitted)	>		⟨same as	the present>				
T _{FD}	Deepest equilibrium waterline in damage condition	m	T _{FD}	Deepest equilibrium waterline in damage condition	m			
<u>Т_{F-f}, Т_{F-e}</u>	Minimum draught at forward perpendicular for bottom slamming, with respectively all ballast tanks full or with any	m	<u> </u>	<u>Minimum draught at forward perpendicular for bottom</u> <u>slamming</u>	<u>m</u>			
	tank empty in bottom slamming area		<u>T_{AE}</u>	Minimum draught at aft end for stern slamming	<u>m</u>			
Δ	Moulded displacement at draught T_{SC}	t	Δ	Moulded displacement at draught \mathcal{T}_{SC}	t			
(omitted)			⟨same as	the present>				
х, ү, г	X, Y, Z coordinates of the calculation point with respect to the reference coordinate system	m	х, ү, г	X, Y, Z coordinates of the calculation point with respect to the reference coordinate system	m			
2.2 ∢ omit	tted〉		2.2 (sam	e as the present〉				
2.3 Loads				2.3 Loads				
2.3.1 Unless otherwise specified, symbols regarding loads and their units used in these Rules are those defined in Table 4.				2.3.1 Unless otherwise specified, symbols regarding loads and their units used in these Rules are those defined in Table 4.				

	Present			Amendment				
	Table 4 : Loads			Table 4 : Loads				
Symbols	Meaning	Units	Symbols	Meaning	Units			
C _W	Wave coefficient	_	C _W	Wave coefficient	_			
<pre>{omitted</pre>	\rangle		<same as<="" td=""><td>the present></td><td></td><td></td></same>	the present>				
P _{SL}	Bottom slamming pressure	kN/m ²	P _{FB}	Bow impact pressure	kN/m ²			
P _{FB}	Bow impact pressure	kN/m ²	P _{FB}	Bow impact pressure	kN/m ²			
<newly a<="" td=""><td>added></td><td></td><td><u> Pss</u></td><td>Stern slamming pressure</td><td><u>kN/m²</u></td><td></td></newly>	added>		<u> Pss</u>	Stern slamming pressure	<u>kN/m²</u>			
P _{fs}	Static pressure in flooded conditions	kN/m ²	P _{fs}	Static pressure in flooded conditions	kN/m ²			
<pre>(omitted</pre>	\rangle		<same as<="" td=""><td>the present></td><td></td><td></td></same>	the present>				
Mwh	Horizontal wave bending moment	kNm	M_{wh}	Horizontal wave bending moment	kNm			

	Present		Amendment	Reason
3. Definition		3. Definition		
3.1 ~ 3.6 (omitted)		3.1 ~ 3.6 (same as th	e present>	
3.7 Glossary		3.7 Glossary		
3.7.1 Definitions of te	erms	3.7.1 Definitions of terms	S	
	Table 7: Definition of terms	Та	ble 7 : Definition of terms	
Terms	Definition	Terms	Definition	
<pre>(omitted)</pre>		〈same as the present〉		
Confined space	Space identified by one of the following characteristics: limited openings for entry and exit, unfavourable natural ventilation or not designed for continuous worker occupancy	〈del〉		
<newly added=""></newly>		Continually manned space	A space in which the continuous or prolonged presence of seafarers is necessary for normal operational periods. This includes spaces routinely occupied for a period of 20 minutes or more during normal operational periods.	
<pre> domitted ></pre>		(same as the present)		
<newly added=""></newly>		Normally unmanned space	A space not normally manned (without the continuous or prolonged presence of seafarers) during normal operational periods. This includes spaces routinely occupied for a period of less than 20 minutes during normal operational periods.	
<pre></pre>		(same as the present)	·	

	Present			Amendment		Reas
Chapter	3 Structural I	Design	Chapter	3 Structural [Design	
Principles Section 2 Net Scantling Approach				Principles		
			Section 2	Net Scantling App	broach	
1. General			1. General			
1.3 Scantling compl	ance		1.3 Scantling complia	nce		
I.3.1 (omitted) I.3.2 (omitted) Table 1: Assessme	ent for corrosion applied to the g	pross scantlings	1.3.1 ⟨same as the present1.3.2⟨same as the present⟩Table 1 : Assessment	esent>	ross scantlings	
Structural requirement	Property/analysis type	Applied corrosion addition	Structural requirement	Property/analysis type	Applied corrosion addition	
<pre>(omitted)</pre>			<same as="" present="" the=""></same>			
<pre>(omitted)</pre>			〈same as the present〉			
<pre>(omitted)</pre>	1		〈same as the present〉	1		
	Cargo hold (stress determination)	<u>0.5 <i>t_c</i></u>		Cargo hold (stress determination)	<u>0.0</u>	
Strength assessment by FEM	Buckling capacity	<u>t</u> c	Strength assessment by FEM	Buckling capacity	<u>t_c</u> (1)	
	Local fine mesh	<u>0.5 <i>t_c</i></u>		Local fine mesh	<u>0.0</u>	
<pre>(omitted)</pre>			〈same as the present〉			
<pre>(omitted)</pre>			〈same as the present〉			
<pre>(omitted)</pre>			〈same as the present〉	1		
Fatigue assessment (FE Stress analysis)	Coarse mesh FE model Very fine mesh portion	0.5 t _c	Fatigue assessment (FE Stress analysis)	Coarse mesh FE model Very fine mesh portion	0.5 <i>t_c</i>	
Stress analysis)	1		$\frac{1}{t_c} = t_{c1} + t_{c2}$			

Present		Amendment		Reason
Section 3 Corrosion Additi	ons	Section 3 Corrosion Additio	ons	
1. General		1. General		
1.2 Corrosion addition determination		1.2 Corrosion addition determination		
1.2.1		1.2.1		
The corrosion addition for each of the two sides of a t_{c1} or t_{c2} , is specified in Table 1 .	structural member,	The corrosion addition for each of the two sides of a st t_{c1} or t_{c2} , is specified in Table 1 .	tructural member,	
omitted>		$\langle same as the present angle$		
Table 1 : Corrosion addition for one side of a struc	tural member	Table 1 : Corrosion addition for one side of a structu	ıral member	
Compartment type	$t_{c1} \hspace{0.1 cm}$ or $\hspace{0.1 cm} t_{c2}$	Compartment type	t_{c1} or t_{c2}	
Ballast water tank, bilge tank, drain storage tank, chain ${\rm locker}^{\rm (1)}$	1.0	Ballast water tank, bilge tank, drain storage tank, chain locker ⁽¹⁾	1.0	
Exposed to atmosphere	<u>1.0</u>	Exposed to atmosphere ⁽⁵⁾	<u>0.5</u>	
Exposed to sea water	<u>1.0</u>	Exposed to sea water ⁽⁵⁾	<u>0.5</u>	
Fuel oil and lube oil tank	0.5	Fuel oil and lube oil tank	0.5	
Fresh water tank	0.5	Fresh water tank	0.5	
Void spaces and dry spaces ⁽²⁾⁽³⁾⁽⁴⁾	0.0	Void spaces and dry spaces ⁽²⁾⁽³⁾⁽⁴⁾	0.0	
Container holds ⁽⁵⁾	0.5	Container holds ⁽⁵⁾	0.5	
Accommodation spaces	0.0	Accommodation spaces	0.0	
Compartments other than those mentioned above	0.5	Compartments other than those mentioned above	0.5	
 ⁽¹⁾ 1.0 mm is to be added to the plate surface within 3.0 m ab surface of the chain locker bottom. ⁽²⁾ For the determination of the corrosion addition of the outer pipe tunnel is considered as for a ballast water tank. ⁽³⁾ For bottom plate of void spaces and dry spaces, t_{e1} or t_{e2} equal to 0.5 mm. ⁽⁴⁾ For the hull girder strength assessment according to Ch 5, taken equal to 0.5 mm. ⁽⁵⁾ For the hull girder strength assessment according to Ch 5, taken equal to 1.0 mm. 	shell plating, the is to be taken t_{c1} or t_{c2} is to be	 (1) 1.0 mm is to be added to the plate surface within 3.0 m above surface of the chain locker bottom. (2) For the determination of the corrosion addition of the outer sepipe tunnel is considered as for a ballast water tank. (3) For bottom plate of void spaces and dry spaces, t_{c1} or t_{c2} is equal to 0.5 mm. (4) For the hull girder strength assessment according to Ch 5, t_c taken equal to 0.5 mm. (5) For the hull girder strength assessment according to Ch 5, t_c taken equal to 1.0 mm. 	to be taken the to be taken to be taken the taken taken the taken tak	

Present	Amendment	Reason
1.2.2 Stiffener	1.2.2 Stiffener	
The corrosion addition of a stiffener is determined according to the location of its connection to the attached plating.	The corrosion addition of a stiffener is determined according to the location of its connection to the attached plating.	
1.2.3	1.2.3	
When a local structural member/plate is affected by more than one value of corrosion addition, the most onerous value is to be applied to the entire strake.	When a local structural member / plate is affected by more than one value of corrosion addition, the most onerous value is to be applied to the entire strake.	
1.2.4 (newly added)	1.2.4 Maximum of corrosion addition	
	Considering the renewal criteria specified in Ch 13, Sec 2, the corrosion addition satisfy the following condition:	
	$t_c \leq 0.2 t_{gr_off}$ with nearest half millimetre	
	For examples;	
	$0.75 \leq t \langle 1.25 \text{mm}, \text{ the corrosion addition, } t_c, \text{ is } 1.0 \text{mm}.$	
	$1.25 \leq t \langle 1.75 \text{mm}, \text{ the corrosion addition, } t_c, \text{ is } 1.5 \text{mm}.$	

Present	Amendment	Reason
Section 5 Limit States	Section 5 Limit States	
1. 〈omitted〉	1. 〈same as the present〉	
2. Criteria	2. Criteria	
2.1 ~ 2.4 〈omitted〉	2.1 ~ 2.4 (same as the present)	
2.5 Accidental limit state	2.5 Accidental limit state	
<pre>2.5.1 Plating, stiffeners and PSM are to be assessed in flooded conditions in accordance with Ch 6 for yielding criteria. </pre>	2.5.1 Plating, stiffeners and PSM are to be assessed in flooded conditions in accordance with <u>Ch 6 and Ch 7 for yielding</u> criteria. (same as the present)	

Present	Amendment	Reason
Section 6 Structural Detail Principles	Section 6 Structural Detail Principles	
3. Stiffeners	3. Stiffeners	
3.4 Sniped ends	3.4 Sniped ends	
3.4.1 Sniped ends may be used where dynamic loads are small, provided the net thickness of plating supported by the stiffener, tp, is not less than: $t_p = c_1 \sqrt{(1000 l - \frac{s}{2}) \frac{sPk}{10^6}}$ (mm) where: P : Design pressure for the stiffener for the design load set being considered, in kN/m ² . c1 : Coefficient for the design load set being considered, to be taken as: • c1 = 1.2 for acceptance criteria set AC-S. • c1 = 1.1 for acceptance criteria set AC-SD and tank test. Sniped stiffeners are not to be used on structures in the vicinity of engines or generators in the machinery space, propeller impulse zone in the stern area nor on the shell envelope.	 3.4.1 Sniped ends may be used where dynamic loads are small, provided the net thickness of plating supported by the stiffener, tp in mm, is not less than: t_p = c₁√(1000ℓ - ^s/₂) ^{sPk}/_{10⁶} where: P : Design pressure for the stiffener for the design load set being considered, in kN/m². c1 : Coefficient for the design load set being considered, to be taken as: c1 = 1.2 for acceptance criteria set AC-S. c1 = 1.1 for acceptance criteria set AC-SD and <u>AC-T</u>. Sniped stiffeners are not to be used on structures in the vicinity of engines or generators in the machinery space, propeller impulse zone in the stern area nor on the shell envelope. 	

Present	Amendment	Reason
5. Intersection of stiffeners and primary supporting members	5. Intersection of stiffeners and primary supporting members	
5.2 Connection of stiffeners to PSM	5.2 Connection of stiffeners to PSM	
 5.2.1 General For connection of stiffeners to PSM a) in case of lateral pressure other than bottom slamming, stern slamming and bow impact loads, [5.2.2] and [5.2.3] are to be applied. b) in case of bottom slamming or bow impact loads, [5.2.4] is to be applied. 	5.2.1 General For connection of stiffeners to PSM in case of lateral pressure, [5.2.2] and [5.2.3] are to be applied.	
The cross sectional areas of the connections are to be determined from the proportion of load transmitted through each component in association with its appropriate permissible stress. 5.2.2	The cross sectional areas of the connections are to be determined from the proportion of load transmitted through each component in association with its appropriate permissible stress. 5.2.2	
The load, W_l , in kN, transmitted through the shear connection is to be taken as follows. a) If the web stiffener is connected to the intersecting stiffener: $W_1 = W \left(\alpha_a + \frac{A_1}{4f_c A_w + A_1} \right)$ b) If the web stiffener is not connected to the intersecting stiffener: $W_1 = W$	The load, W_1 in kN, transmitted through the shear connection is to be taken as follows. a) If the web stiffener is connected to the intersecting stiffener: $W_1 = W \left(\alpha_a + \frac{A_1}{4 f_c A_w + A_1} \right)$ b) If the web stiffener is not connected to the intersecting stiffener: $W_1 = W$	
where: W : Total load, in kN, transmitted through the stiffener connection to the PSM taken equal to: $\frac{W = \frac{P_1 s_1 \left(S_1 - \frac{S_1}{2000}\right) + P_2 s_2 \left(S_2 - \frac{S_2}{2000}\right)}{2} 10^{-3}}{2}$ P_1, P_2 : Design pressure applied on the stiffener for the design load set being considered, in kN/m ² , on each side of the considered connection.	where: $W : \text{Total load, in kN, transmitted through the stiffener connection to the PSM taken equal to:}$ $\frac{W}{W} = \frac{P_1 s_1 \left(S_1 - \frac{S_1}{2000}\right) + P_2 s_2 \left(S_2 - \frac{S_2}{2000}\right)}{2 \sin \varphi_{w1} \sin \varphi_{w2}} 10^{-3}}$ $P_1, P_2 : Design pressure applied on the stiffener for the design load set being considered, in kN/m2, on each side of the considered connection. For bottom slamming or bow impact loads, P_1 and P_2 are 50 % of the design pressure as defined in Ch 4, Sec 5, [3.2], [3.3] and [3.4] respectively.$	

S_{1}, S_{2} α_{a}	: 〈omitted〉 : 〈omitted〉		1	Amendment				
α_a	· (omitted)		S ₁ , S ₂	: (same as the present)				
u	· (onnitieu/		S1, S2	: 〈same as the present〉				
ρ_{w1}	: 〈omitted〉		α_a	: (same as the present)				
	: (newly added)		$\underline{\varphi_{w1}}$	in deg, as defined in Ch 3,	orting member and attached plating, Sec 7, Symbols and Ch 10, Sec 1,			
φ_{w2}	: (newly added)		φ_{w2}		nd attached plating, in deg, as ols and Ch 3, Sec 7, Figure 12.			
	: 〈omitted〉		A_1 A_{1d}	: 〈same as the present〉 : 〈same as the present〉				
A₁d ⟨omitted⟩	: 〈omitted〉		70	as the present?				
	/ :Collar load factor taken equal to	·	f_c	: Collar load factor taken equal	to:			
' c	For intersecting stiffeners of sym		• 0	For intersecting stiffeners of sy	vmmetrical cross section:			
	$f_c = 1.85$	for $A_w \le 14$		$f_c = 1.85$	for $A_w \le 14$			
	$f_c = 1.85 - 0.0441(A_w - 14)$	w and the second		$f_c = 1.85 - 0.0441(A_w - 14)$	for $14 < A_w \le 31$			
	$f_c = 1.1 - 0.013(A_w - 31)$	for $31 < A_w \le 58$		$f_c {=} 1.1 {-} 0.013 \left(A_w {-} 31\right)$	for $31 < A_w \le 58$			
	$f_c = 1.85$	for $A_w > 58$		$f_c = 0.75$	for $A_w > 58$			
	For intersecting stiffeners of asyr	mmetrical cross section:		For intersecting stiffeners of as	symmetrical cross section:			
	$f_c = 0.68 \pm 0.0172 \frac{\ell_s}{A_w}$			$f_c {=} 0.68 {+} 0.0172 \; \frac{\ell_s}{A_w}$				
ℓ_s	: 〈omitted〉		ℓ_s	: 〈same as the present〉				
5.2.3			5.2.3					
(omitted)	>		<same< td=""><td>as the present></td><td></td><td></td></same<>	as the present>				
	: Effective net area, in cm ² , of t the weld as shown in Figure 8 .	he PSM web stiffener in way of	A_{wc}	: Effective net area, in ${\rm cm}^2$, of the weld as shown in Figure	f the PSM web stiffener in way of 8 .			
σ_{perm}	: Permissible direct stress given tank test, in N/mm ² .	in Table 1 for <u>AC-S, AC-SD and</u>	σ_{perm}	: Permissible direct stress giv <u>AC-I and AC-T</u> , in N/mm ² .	ven in Table 1 for <u>AC-S, AC-SD,</u>			
$ au_{perm}$: Permissible shear stress given	in Table 1 for AC-S, AC-SD and	$ au_{perm}$: Permissible shear stress giv	ven in Table 1 for <u>AC-S, AC-SD,</u>			
perm	<u>tank test,</u> in N/mm ² .			<u>AC-I and AC-T</u> , in N/mm^2 .				

Present						Amendment				Reason				
Table 1: Permissible stre	esses for c	onnection	betwe	en stiffe	ners and	PSMs	Table 1: Permissible stre	esses for c	onnection	betwe	en stiffe	eners and	PSMs	
	Direct stress, σ_{perm} , in N/mm ² shear stress, τ_{perm} , in N/mm ²						Direct stres	s, $\sigma_{\it perm}$, in N	l/mm²	shear	stress, $ au_{pern}$ N/mm ²	_n , in		
ltem	Accepta	nce criteria s	set	Accept	ance criteria	i set	ltem	Accepta	nce criteria s	et	Accept	tance criteria	a set	
	AC-S	AC-SD and <u>tank</u> <u>test</u>	AC-I	AC-S	AC-SD and <u>tank</u> <u>test</u>	AC-I		AC-S	AC-SD and <u>AC-T</u>	AC-I	AC-S	AC-SD and <u>AC-T</u>	AC-I	
PSM web stiffener	$0.83 R_{eH}{}^{(2)}$	R_{eH}	R_{eH}	-	-	-	PSM web stiffener	$0.83 R_{eH}^{(2)}$	R_{eH}	R_{eH}	-	-	-	
PSM web stiffener to intersecting stiffener in way of weld connection: • Double continuous fillet • Partial penetration weld	$\begin{array}{c} 0.58 R_{eH}{}^{(2)} \\ 0.83 R_{eH}{}^{(1)(2)} \end{array}$	$\frac{0.70 R_{eH}{}^{(2)}}{R_{eH}}$	$egin{array}{c} R_{eH} \ R_{eH} \end{array}$	-	- -		PSM web stiffener to intersecting stiffener in way of weld connection: • Double continuous fillet • Partial penetration weld	$\begin{array}{c} 0.58 R_{eH}{}^{(2)} \\ 0.83 R_{eH}{}^{(1)(2)} \end{array}$	$0.70 R_{eH}^{}^{(2)} R_{eH}^{}$	$egin{array}{c} R_{eH} \ R_{eH} \end{array}$	-			
PSM stiffener to intersecting stiffener in way of lapped welding	$0.50R_{eH}$	$0.60R_{eH}$	R_{eH}	_	-	_	PSM stiffener to intersecting stiffener in way of lapped welding	$0.50R_{eH}$	$0.60R_{eH}$	R_{eH}	-	_	-	
Shear connection including lugs or collar plates: • Single sided connection • Double sided connection	-		-	$\begin{array}{c} 0.71 \tau_{eH} \\ 0.83 \tau_{eH} \end{array}$	$0.85 au_{eH}$ $ au_{eH}$	$ au_{eH} \ au_{eH}$	Shear connection including lugs or collar plates: • Single sided connection • Double sided connection	- -		-	$\begin{array}{c} 0.71 \tau_{eH} \\ 0.83 \tau_{eH} \end{array}$	$0.85 au_{eH}$ $ au_{eH}$	$ au_{eH} \ au_{eH}$	
<pre></pre>			1 1	I			⟨same as the present⟩							
5.2.4 Bottom slamming For bottom slamming or hrough the PSM web instead of those defined $0.9 W \leq \frac{A_1 \tau_{perm} + A_w \sigma_{perm}}{10}$	bow impac stiffener is in [5.2.2] a	t loads, t to comp	h e load bly wit				5.2.4 〈del〉							
vhere:														
	s defined i													
W : Load, in kN, a	A_1 : Effective net shear area, in cm2, as defined in [5.2.2].													
	shear area,		A_w : Effective net cross sectional area, in cm2, as defined in [5.2.2].											
$\begin{array}{ccc} 4_1 & \begin{array}{c} & \\ \end{array} & \begin{array}{c} & \\ \end{array} & \begin{array}{c} \\ \hline \\ 4_w & \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} $	cross sectic	onal area,												
4 ₁ : Effective net s	cross sectic	onal area,												

ŀ	Present		Am	endment		Reason
5.2.5 (omitted)			5.2.4 (same as the present)			
5.2.6 (omitted)			5.2.5 (same as the present)			
5.2.7 (omitted)			5.2.6 (same as the present)			
5.2.8 (omitted)			5.2.7 (same as the present)			
5.2.9 The size of the fillet welds is to [2.5] based on the weld factors of the shear connection the size the PSM web plate for the location Table 2 : Weld factors for co	given in Table 2. F is not to be less on under considerati	or the welding in way than that required for on.	5.2.8 The size of the fillet welds is to [2.5] based on the weld factors of the shear connection the size the PSM web plate for the location Table 2 : Weld factors for co	given in Table 2. F is not to be less on under considerat	or the welding in way than that required for ion.	
ltem	Acceptance criteria	Weld factor	Item	Acceptance criteria	Weld factor	
PSM stiffener to intersecting stiffener	AC-S, AC-SD and tank test	$0.6\sigma_{wc}/\sigma_{perm}$ not to be less than 0.38	PSM stiffener to intersecting stiffener	AC-S, AC-SD, <u>AC-I and AC-T</u>	$\begin{array}{c} 0.6 \; \sigma_{wc} / \; \sigma_{perm} \\ \mathrm{not} \; \mathrm{to} \; \mathrm{be} \; \mathrm{less} \; \mathrm{than} \\ 0.38 \end{array}$	
Shear connection inclusive of lug or collar plate	AC-S, AC-SD and <u>tank test</u>	0.38	Shear connection inclusive of lug or collar plate	AC-S, AC-SD, <u>AC-I and AC-T</u>	0.38	
Shear connection inclusive of lug or collar plate, where the web stiffener of the PSM is not connected to the intersection stiffener	AC-S, AC-SD and tank test	$0.6 au_w/ au_{perm}$ not to be less than 0.44	Shear connection inclusive of lug or collar plate, where the web stiffener of the PSM is not connected to the intersection stiffener	AC-S, AC-SD, <u>AC-I and AC-T</u>	$\begin{array}{c} 0.6 \ \tau_w \ / \ \tau_{perm} \\ \mathrm{not} \ \mathrm{to} \ \mathrm{be} \ \mathrm{less} \ \mathrm{than} \\ 0.44 \end{array}$	
PSM stiffener to intersecting stiffener Shear connection inclusive of lug or collar plate	AC-I	$0.6 \frac{9 W}{A_1 \tau_{perm} + A_w \sigma_{perm}}$	⟨del⟩	⟨del⟩	(del)	
<pre>(omitted)</pre>			〈same as the present〉	1		

	Amendment	Reason
9. Deck structure	9. Deck structure	
9.1 〈omitted〉	9.1 (same as the present)	
9.2 Deck scantlings	9.2 Deck scantlings	
 9.2.1 (omitted) 9.2.2 Hatch corners The stress concentrations in way of the hatch corners are to be checked, in particular in the top part (hatch coaming, upper deck and stringers under deck). 9.2.3 (newly added) 	9.2.1 (same as the present) 9.2.2 Hatch corners The stress concentrations in way of the hatch corners are to be checked, in particular in the top part (hatch coaming, upper deck and stringers under deck). 9.2.3 Hatch corner curvature radii The hatch corner curvature radius, <i>r</i> in mm, as shown in Figure 20 is not to be taken less than: $r = C_{sec} C_{thick} C_{material} C_{I2} C_{location} 10^3$ with $r \ge r_{min}$ where: r_{min} : minimum curvature radius of hatch corner $r_{min} = 250$ for $0.25 \le x/L \le 0.75$ $r_{min} = 200$ for other cases C_{sec} : Coefficient of section property in longitudinal direction $C_{sec} = \frac{M_{sw} + M_{wv}}{Z_{deck} \frac{235}{1.24k} 10^3} \cdot \frac{1}{C_{dis}}$ M_{sw} : Permissible hogging and sagging vertical still water bending moment in seagoing operation, in kNm, at the hull transverse section considered, M_{wv} : Vertical wave bending moment in seagoing condition, in kNm, in seagoing operation at the hull transverse section considered Z_{deck} : Section modulus at strength deck, in m ³	

Present	Amendment	Reason
(newly added)	C _{dis} : Correction factor in longitudinal direction	
	$C_{dis} = 0.5$ for $x/L = 0.0$	
	$C_{dis} = 1.0 \qquad \qquad \text{for } 0.25 \le x/L \le 0.75$	
	$C_{dis} = 0.5$ for $x/L = 1.0$	
	Intermediate values are obtained by linear interpolation.	
	C _{thick} : Correction factor for plate thickness effect	
	$C_{thick} = \frac{t_{deck}}{t_{insert}} \qquad \qquad \text{with } 0.667 \le C_{thick} \le 1.0$	
	t_{deck} : Gross thickness of the strength deck plate, in mm, see Figure <u>20</u>	
	t_{insert} : Gross thickness of the insert plate, in mm, see Figure 20	
	C _{material} : Correction factor of material	
	$C_{material} = \sqrt{rac{R_{eH-deck}}{R_{eH-insert}}}$	
	$R_{eH-deck}$: Specified minimum yield stress of strength deck plate, in <u>N/mm²</u>	
	$R_{eH-insert}$: Specified minimum yield stress of insert plate, in N/mm ²	
	C_{L2} : Correction factor along the ship length	
	$C_{L2} = \sqrt{\frac{L_2}{2000}}$	
	Clocation : Correction factor of hatch corner location	
	$C_{location} = 1.0 + rac{\sqrt{b_{hatch}}}{\ell_{hatch}}$	
	b_{hatch} : Breadth of hatch opening at considered location, in m	
	ℓ_{hatch} : Length of hatch opening at considered location, in m	

Present	Amendment	Reason
<pre> /record / / / / / / / / / / / / / / / / / / /</pre>	The size of insert plates, in mm, at hatch corner as defined in Figure 20 is not to be taken less than: $a \ge a_{min}, \\ b \ge b_{min}$ where: $a_{min} = 350$ $b_{min} = : \text{ End of curvature radius of hatch corner(R.E.) + 100 mm}$ Fr. Fr. Fr. Fr. LBHD LBHD $a \ge 350 \text{ mm}$ $a \ge 350 \text{ mm}$ $b \ge R.E. + 100 \text{ mm}$ Figure 20 : Curvature radius of hatch corner	

Present	Amendment	Reason
Section 7 Structural Idealisation	Section 7 Structural Idealisation	
Symbols	Symbols	
 For symbols not defined in this section, refer to Ch 1, Sec 4. φ_w : Angle, in deg, between the stiffener or primary supporting member web and the attached plating, see Figure 12. φ_w is to be taken equal to 90 deg if the angle is greater than or equal to 75 deg. ℓ_{bdg} : Effective bending span, in m, as defined in [1.1.2] for stiffeners and [1.1.6] for primary supporting members. ⟨omitted⟩ 1. Structural idealisation of stiffeners and primary support members 	 For symbols not defined in this section, refer to Ch 1, Sec 4. φ_w : Angle, in deg, between the stiffener or primary supporting member web and the attached plating, see Figure 12 for stiffener and Ch 10, Sec 1, Figure 4 for primary supporting member. φ_w is to be taken equal to 90 deg if the angle is greater than or equal to 75 deg. ℓ_{bdg} : Effective bending span, in m, as defined in [1.1.2] for stiffeners and [1.1.6] for primary supporting members. ⟨same as the present⟩ 1. Structural idealisation of stiffeners and primary support members	
1.3 Effective breadth	1.3 Effective breadth	
 1.3.3 Effective area of curved face plate and attached plating of primary supporting members ⟨omitted⟩ a) The effective net area, A_{eff-n50}, in mm², is to be taken as: A_{eff-n50} = C_ft_{f-n50} b_f 	 1.3.3 Effective area of curved face plate and attached plating of primary supporting members ⟨same as the present⟩ a) The effective net area, A_{eff-n50}, in mm², is to be taken as: A_{eff-n50} = C_ft_{f-n50} b_f 	

Present	Amendment	Reason
C_f : Flange efficiency coefficient taken equal to: $C_f = C_{f1} \frac{\sqrt{r_f t_{f-n50}}}{b_1}$ but not to be taken greater than 1.0.	$C_{f} : \text{Flange efficiency coefficient is to be obtained from the following formula but not to be greater than 1.0:} \\ \bullet C_{f} = C_{f1} \frac{1.285}{\beta k_{1}} \text{for symmetrical face plates} \\ \bullet C_{f} = 0.18 + \frac{0.08}{\beta^{2}} \text{for unsymmetrical face plate,} \\ \bullet C_{f} = C_{f1} \frac{1.285}{\beta} \text{for attached plating of box girders,} \end{cases}$	
$\begin{split} \mathcal{C}_{f1} &: \text{Coefficient taken equal to:} \\ &: \underbrace{\text{For symmetrical and unsymmetrical face plates,}}{C_{f1} = \frac{0.643 (\sinh\beta \cosh\beta + \sin\beta \cos\beta)}{(\sinh\beta)^2 + \sin^2\beta}} \\ &: \text{For attached plating of box girders with two webs,} \\ &: \mathcal{C}_{f1} = \frac{0.78 (\sinh\beta + \sin\beta) (\cosh\beta - \cos\beta)}{(\sinh\beta)^2 + \sin^2\beta} \\ &: \text{For attached plating of box girders with multiple webs,} \\ &: \mathcal{C}_{f1} = \frac{1.56 (\cosh\beta - \cos\beta)}{\sinh\beta + \sin\beta} \\ &: \mathcal{C}_{f1} = \frac{1.56 (\cosh\beta - \cos\beta)}{\sinh\beta + \sin\beta} \\ \end{split}$	$C_{f1} : \text{Coefficient taken equal to:}$ $C_{f1} : \text{Coefficient taken equal to:}$ $C_{f1} = \frac{(\sinh k_1 \beta \cosh k_1 \beta + \sin k_1 \beta \cosh k_1 \beta)}{(\cosh k_1 \beta)^2 + (\cosh k_1 \beta)^2}$ $\cdot \text{For attached plating of box girders with two webs,}$ $C_{f1} = \frac{0.78 (\sinh \beta + \sin \beta) (\cosh \beta - \cos \beta)}{(\sinh \beta)^2 + \sin^2 \beta}$ $\cdot \text{For attached plating of box girders with multiple webs,}$ $C_{f1} = \frac{1.56 (\cosh \beta - \cos \beta)}{\sinh \beta + \sin \beta}$ $\frac{k_1 : \text{Coefficient calculated as:}}{(\cosh \beta + \sin \beta)^2 + \sin^2 \beta}$ $\frac{\cdot \text{For } \beta < 1.4 \qquad k_1 = 1.4 + 1.25 (1.4 - \beta)^3}{(6 - \cos \beta)^2}$ $\beta : \text{Coefficient calculated as:}$ $\beta = \frac{1.285 b_1}{\sqrt{r_f t_{f-n50}}} \text{, in rad.}$	
<pre>{omitted}</pre>	$\sqrt{r_f t_{f-n50}}$ (same as the present) - 28 -	

Present	Amendment	Reason
Chapter 4 Loads	Chapter 4 Loads	
Section 2 Dynamic load cases	Section 2 Dynamic load cases	
Symbols	Symbols	
For symbols not defined in this section, refer to Ch 1 , Sec 4 . $a_{surge}, a_{pitch-x}, a_{sway}, a_{roll-y}, a_{heave}, a_{roll-z}, a_{pitch-z}$: Acceleration components, as defined in Ch 4 , Sec 3 . f_{xL} : (omitted) f_{T} : (omitted) f_{U} : (omitted) f_{U} : (omitted) f_{U} : (omitted) $f_{U}-BSR$: Factor for the longitudinal distribution of the torsional moment for the BSR load case, to be taken as: $f_{U}-BSR$ =1.2 f_{xL} -0.2 for $x/L \le 0.5$ $f_{U}-BSR$ =0.4 for $0.5 < x/L \le 0.75$ $f_{U}-BSR$ =0.4 for $0.75 < x/L$ $f_{U}-BSR$ =0.4 for $0.75 < x/L$ $f_{U}-BSR$ =0.6 f_{xL} +1.6 for $0.75 < x/L$ $f_{U}-BSP$ =0.8 f_{xL} for $x/L \le 0.5$ $f_{U}-BSP$ =0.8 f_{xL} for $x/L \le 0.5$ $f_{U}-BSP$ =0.8 f_{xL} for $0.5 < x/L \le 0.75$ $f_{U}-BSP$ =0.4 for $0.5 < x/L \le 0.75$ f_{U}	For symbols not defined in this section, refer to Ch 1, Sec 4. $a_{surge}, a_{pitch-x}, a_{sway}, a_{roll-y}, a_{hcave}, a_{roll-z}, a_{pitch-z}$: Acceleration components, as defined in Ch 4, Sec 3. f_{sL} : (same as the present) f_T : (same as the present) f_{lp} : (same as the present) f_{lp} : (same as the present) f_{lp-BSR} : (del) f_{lp-BSP} : (del) f_{lp-OST} : (same as the present) (same as the present)	

Present	Amendment	Reason
1. General	1. General	
1.1 Definition of dynamic load cases	1.1 Definition of dynamic load cases	
1.1.1 The following Equivalent Design Waves (EDW) are to be used to generate the dynamic load cases for structural assessment: (omitted) e) BSP load cases:	 1.1.1 The following Equivalent Design Waves (EDW) are to be used to generate the dynamic load cases for structural assessment: (same as the present) e) BSP load cases: 	
BSP-1P and BSP-2P: Beam sea EDWs that <u>minimise and</u> <u>maximise</u> the hydrodynamic pressure at the waterline amidships on the port side respectively. BSP-1S and BSP-2S: Beam sea EDWs that <u>minimise and</u> <u>maximise</u> the hydrodynamic pressure at the waterline amidships on the starboard side respectively.	BSP-1P and BSP-2P: Beam sea EDWs that <u>maximise and minimise</u> the hydrodynamic pressure at the waterline amidships on the port side respectively. BSP-1S and BSP-2S: Beam sea EDWs that <u>maximise and minimise</u> the hydrodynamic pressure at the waterline amidships on the starboard side respectively. (same as the present)	
<pre>{omitted}</pre>		

			Present							Amendment								Rea
. Dyn	amic lo	bad ca	ses						2. Dyr	2. Dynamic load cases								
.1 Des	scription	of dy	namic I	oad cas	ses				2.1 De	scriptior	n of dy	namic I	oad cas	ses				
.1.1									2.1.1									
omitted)		2:Ship	response	es for B	SR and I	BSP load	l cases		⟨same a	s the pre Table		respons	es for B	SR and	BSP load	d cases		
Load case	BSR-1P	BSR-2P	BSR-1S	BSR-2S	BSP-1P	BSP-2P	BSP-1S	BSP-2S	Load case	BSR-1P	BSR-2P	BSR-1S	BSR-2S	BSP-1P	BSP-2P	BSP-1S	BSP-2S	
EDW	B	SR	B	SR	BS	SP	В	SP	EDW	В	SR	В	SR	В	SP	В	SP	
Heading		Be	am		Beam			Heading		Be	eam			Be	am			
Effect		Max	. roll		Ma	ax. pressur	e at waterl	ine	Effect		Max	k. roll	1	Max. pressure at		e at water	ine	
VWBM	-	-	-	-	<u>Hogging</u>	<u>Sagging</u>	Hogging	<u>Sagging</u>	VWBM	-	-	-	-	<u>Sagging</u>	Hogging	Sagging	Hogging	
VWSF	-	-	-	-	Positive- aft Negative- fore	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	Positive- aft Negative- fore	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	VWSF	_	_	_	-	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	Positive- aft Negative- fore	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	Positive- aft Negative- fore	
HWBM	Stbd tensile	Port tensile	Port tensile	Stbd tensile	<u>Port</u> tensile	<u>Stbd</u> tensile	<u>Stbd</u> tensile	<u>Port</u> tensile	HWBM	Stbd tensile	Port tensile	Port tensile	Stbd tensile	<u>Stbd</u> tensile	<u>Port</u> tensile	<u>Port</u> tensile	<u>Stbd</u> tensile	
HWSF	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	Positive- aft Negative- <u>fore</u>	Positive- aft Negative- fore	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	<u>Positive-</u> <u>aft</u> <u>Negative-</u> <u>fore</u>	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	Positive- aft Negative- fore	HWSF	=	=	=	Ξ	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	Positive- aft Negative- fore	Positive- aft Negative- fore	<u>Negative</u> <u>-aft</u> <u>Positive-</u> <u>fore</u>	
TM	<u>Negative</u>	<u>Positive</u>	<u>Positive</u>	<u>Negative</u>	-	-	-	-	TM	=	=	=	=	-	-	-	-	
(omitted)	1		1		1				⟨same a	the prese	nt>	1						
Roll	Portside down	Portside up	Starboard down	Starboard up	Portside up	Portside down	Starboard up	Starboard down	Roll	Portside down	Portside up	Starboard down	Starboard up	Portside up	Portside down	Starboard up	Starboard down	
a_{roll}	W.S L.S	W.S L.S	LS W.S	LS	W.S LS	W.S LS	L.S W.S	LS	a_{roll}	W.S L.S	W.S L.S	LS	LS	W.S LS	W.S L.S	LS		
(omitted)	I	I	1	1	I	L	1	<u> </u>	⟨same a	the prese	nt>	1	1	L	<u>I</u>	<u>I</u>	<u> </u>	
omitted)	>								<same a<="" td=""><td>s the pre</td><td>esent></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td></same>	s the pre	esent>						_	

	Present								Amendment					
2.2 Load	combi	nation	factors				2.2 Load combination factors							
2.2.1	.2.1						2.2.1	2.2.1						
				for the glob	al loads and	inertia load				actors, LCFs	for the glob	al loads and	inertia load	
components omitted>	s are d	ennea	in.				components <same as="" td="" th<=""><td></td><td></td><td>11.</td><td></td><td></td><td></td><td></td></same>			11.				
	: Load	combi	nation factors	, LCFs for BS	SR and BSP I	oad cases				nation factors	, LCFs for B	SR and BSP	load cases	
Load comp	onent	LCF	BSR-1P	BSR-2P	BSR-1S	BSR-2S	Load comp	onent	LCF	BSR-1P	BSR-2P	BSR-1S	BSR-2S	
	M_{WV}	C_{WV}	0.0	0.0	0.0	0.0		M_{WV}	C_{WV}	0.0	0.0	0.0	0.0	
	Q_{WV}	C_{QW}	0.0	0.0	0.0	0.0		Q_{WV}	C_{QW}	0.0	0.0	0.0	0.0	
Hull girder loads	$M_{W\!H}$	$C_{W\!H}$	0.05	-0.05	-0.05	0.05	Hull girder loads	$M_{W\!H}$	$C_{W\!H}$	0.05	-0.05	-0.05	0.05	
	Q_{WH}	$C_{Q\!H}$	0.0	0.0	0.0	0.0		Q_{WH}	$C_{Q\!H}$	0.0	0.0	0.0	0.0	
	M_{WT}	C_{WT}	$-f_{lp-BSR}$	f_{lp-BSR}	f_{lp-BSR}	$-f_{lp-BSR}$		M_{WT}	C_{WT}	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>	
Longitudin	a_{surge}	$C_{\!X\!S}$	0.0	0.0	0.0	0.0	Longitudin	a_{surge}	C_{XS}	0.0	0.0	0.0	0.0	
al acceleratio	a _{pitch} -	C_{XP}	0.0	0.0	0.0	0.0	al	a_{pitch}	$C_{X\!P}$	0.0	0.0	0.0	0.0	
ns	$gsin\varphi$	C_{XG}	0.0	0.0	0.0	0.0	ns	$gsin_4$	C_{XG}	0.0	0.0	0.0	0.0	
Transvers	a_{sway}	$C_{Y\!S}$	$0.6 - 0.7 f_T$	$-0.6+0.7f_T$	$-0.6+0.7f_T$	$0.6 - 0.7 f_T$	Transvers	a_{sway}	$C_{Y\!S}$	$0.6 - 0.7 f_T$	$-0.6 + 0.7 f_T$	$-0.6 + 0.7 f_T$	$0.6 - 0.7 f_T$	
e acceleratio	a _{roll-3}	$C_{Y\!R}$	1.0	-1.0	-1.0	1.0	e acceleratio	a_{roll} –	$C_{Y\!R}$	1.0	-1.0	-1.0	1.0	
ns	$gsin \theta$	$C_{Y\!G}$	-1.0	1.0	1.0	-1.0	ns	gsint	C_{YG}	-1.0	1.0	1.0	-1.0	
Vertical	a_{heave}	$C_{Z\!H}$	$0.9 - 0.8 f_T$	$-0.9 + 0.8 f_T$	$0.9 - 0.8 f_T$	$-0.9 + 0.8 f_T$	Vertical	a_{heave}	C_{ZH}	$0.9 - 0.8 f_T$	$-0.9 + 0.8 f_T$	$0.9 - 0.8 f_T$	$-0.9 + 0.8 f_{T}$	
acceleratio	a _{roll-2}	$C_{Z\!R}$	$\underline{1.5-\boldsymbol{f}_{T}}$	$\underline{-1.5+f_{T}}$	$-1.5 + f_T$	$\underline{1.5-f_{T}}$	Vertical acceleratio	a_{roll-}	C_{ZR}	<u>1.0</u>	<u>-1.0</u>	<u>-1.0</u>	<u>1.0</u>	
ns	a _{pitch}	C_{ZP}	0.0	0.0	0.0	0.0	ns	a_{pitch}	C_{ZP}	0.0	0.0	0.0	0.0	
continued)			1	· J			(continued)			'				

Present								Amendment						
Table 5	Load	combi	nation factors	s, LCFs for BS	SR and BSP k	oad cases	Table 5: Load combination factors, LCFs for BSR and BSP load cases							
Load comp	onent	LCF	BSP-1P	BSP-2P	BSP-1S	BSP-2S	Load comp	onent	LCF	BSP-1P	BSP-2P	BSP-1S	BSP-2S	
	M_{WV}	C_{WV}	$-0.25 + 0.5 f_T$	$0.25 - 0.5 f_T$	$-0.25 + 0.5 f_T$	$0.25 - 0.5 f_T$		M_{WV}	C_{WV}	$-0.25 + 0.5 f_T$	$0.25 - 0.5 f_T$	$-0.25 + 0.5 f_T$	$0.25 - 0.5 f_T$	
Hull girder	Q_{WV}	C_{QW}	$\begin{array}{c} (-0.25 f_{T} \\ +0.5) f_{lp} \end{array}$	$\begin{array}{c} (0.25 f_T \\ - 0.5) f_{lp} \end{array}$	$\begin{array}{c} (-0.25 {f_T} \\ +0.5) {f_{lp}} \end{array}$	$\begin{array}{c} (0.25 f_{T} \\ -0.5) f_{lp} \end{array}$		Q_{WV}	C_{QW}	$\begin{array}{c} (-0.25 {f_T} \\ +0.5) {f_{lp}} \end{array}$	$\begin{array}{c} (0.25 {f_T} \\ - 0.5) {f_{lp}} \end{array}$	$\begin{array}{c} (-0.25 {f_T} \\ +0.5) {f_{lp}} \end{array}$	$\begin{array}{c} (0.25 {f_T} \\ - 0.5) {f_{lp}} \end{array}$	
loads	$M_{W\!H}$	$C_{W\!H}$	-0.15	<u>0.15</u>	<u>0.15</u>	-0.15	Hull girder Ioads	$M_{W\!H}$	$C_{W\!H}$	0.15	-0.15	-0.15	<u>0.15</u>	
	$Q_{W\!H}$	$C_{Q\!H}$	$0.1 f_{lp}$	$-0.1 f_{lp}$	$-0.1 f_{lp}$	$\underline{0.1 f_{lp}}$		$Q_{W\!H}$	$C_{Q\!H}$	$-0.1 f_{lp}$	$0.1 f_{lp}$	$\underline{0.1f_{lp}}$	$-0.1 f_{lp}$	
	M_{WT}	C_{WT}	f_{lp-BSP}	$-f_{lp-BSP}$	$-f_{lp-BSP}$	f_{lp-BSP}		M_{WT}	C_{WT}	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	
Longitudin	a_{surge}	C_{XS}	<u>0.1</u>	<u>-0.1</u>	0.1	<u>-0.1</u>	Longitudin	a_{surge}	C_{XS}	-0.1	<u>0.1</u>	-0.1	<u>0.1</u>	
al	a _{pitch} -	C_{XP}	0.0	0.0	0.0	0.0	al acceleratio	a _{pitch} -	C_{XP}	0.0	0.0	0.0	0.0	
ns	$gsin \varphi$	C_{XG}	0.0	0.0	0.0	0.0		$gsin \varphi$	C_{XG}	0.0	0.0	0.0	0.0	
Transvers	a_{sway}	$C_{Y\!S}$	<u>1.0</u>	<u>-1.0</u>	<u>-1.0</u>	<u>1.0</u>	Transvers	a_{sway}	$C_{Y\!S}$	<u>-1.0</u>	<u>1.0</u>	1.0	<u>-1.0</u>	
e acceleratio	a_{roll-i}	$C_{Y\!R}$	$0.58 f_T - 0.18$	$-0.58f_T + 0.18$	$-0.58f_T + 0.18$	$0.58 f_T - 0.18$	e acceleratio	a_{roll-i}	$C_{Y\!R}$	$-0.58f_T + 0.18$	$0.58 f_T - 0.18$	$\underline{0.58 {f}_{T} - 0.18}$	$-0.58f_T + 0.18$	
ns	gsin heta	C_{YG}	<u>-0.1</u>	<u>0.1</u>	<u>0.1</u>	<u>-0.1</u>	ns	$gsin \theta$	C_{YG}	<u>0.1</u>	<u>-0.1</u>	<u>-0.1</u>	<u>0.1</u>	
	a_{heave}	$C_{Z\!H}$	$-0.5f_T - 0.4$	$\underline{0.5} \boldsymbol{f}_T \! + \! \boldsymbol{0.4}$	$-0.5f_T - 0.4$	$\underline{0.5f_T+0.4}$		a_{heave}	$C_{Z\!H}$	$0.5f_T + 0.4$	$-0.5f_T - 0.4$	$0.5 f_T + 0.4$	$-0.5f_T - 0.4$	
Vertical acceleratio	a_{roll-2}	C_{ZR}	$0.58 f_T - 0.18$	$-0.58f_T + 0.18$	$-0.58f_T + 0.18$	$\underline{0.58 f_T \!-\! 0.18}$	Vertical acceleratio	a_{roll-s}	C_{ZR}	$-0.58f_T + 0.18$	$0.58 f_T - 0.18$	$\underline{0.58 {f}_{T} - 0.18}$	$-0.58f_T + 0.18$	
ns	a _{pitch} -	C_{ZP}	0.0	0.0	0.0	0.0	ns	a_{pitch} -	C_{ZP}	0.0	0.0	0.0	0.0	

Present	Amendment	Reason
Section 3 Ship motions and accelerations	Section 3 Ship motions and accelerations	
Symbols	Symbols	
For symbols not defined in this section, refer to Ch 1 , Sec 4 . a_0 : Acceleration parameter, to be taken as: $\frac{a_0 = (1.58 - 0.47 C_B) \left(\frac{2.4}{\sqrt{L}} + \frac{100}{L} - \frac{600}{L^2} \right)}{(\text{omitted})}$ (omitted) f_{ps} : Coefficient for strength assessments which is dependant on the applicable design load scenario specified in Ch 4 , Sec 7 , and to be taken as: $f_{ps} = 1.0$ for extreme sea loads design load scenario. $f_{ps} = 0.8$ for the ballast water exchange design load scenario. $f_{ps} = 0.8$ for the accidental design load scenario at sea. $f_{ps} = 0.4$ for the harbour/sheltered water design load scenario.	For symbols not defined in this section, refer to Ch 1 , Sec 4 . a_0 : Acceleration parameter, to be taken as: $\underline{a_0 = (1.31 - 0.43C_B) \left(\frac{4.2}{\sqrt{L}} + \frac{16}{L} - \frac{150}{L^2}\right)}{(5 \sqrt{L})^2}$ (same as the present) f_{ps} : Coefficient for strength assessments which is dependant on the applicable design load scenario specified in Ch 4 , Sec 7 , and to be taken as: $f_{ps} = 1.0$ for extreme sea loads design load scenario. $f_{ps} = 0.8$ for the ballast water exchange design load scenario. $f_{ps} = 0.8$ for the accidental design load scenario at sea. $f_{ps} = 0.4$ for the harbour/sheltered water design load scenario. f_R : Coefficient related to the operational profile, to be taken as: $f_R = 0.85$	

Р	resent			Ame	endment			Reason		
1. (omitted)				1. (same as the present)						
2. Ship motions and accele	erations			2. Ship motions and accele						
2.1 Ship motions				2.1 Ship motions						
2.1.1 Roll motion The roll period, T_{θ} in s, to be take (omitted) GM : Metacentric height, in		idered loadin	a condition.	2.1.1 Roll motion The roll period, T_{θ} in s, to be take (omitted) GM : Metacentric height, in	$T_ heta$ in s, to be taken as:					
The values in Table 1 loading manual.			-	The values in Table 1 loading manual.			-			
Table 1 :	k_r and GM valu	es		Table 1 :	k_r and GM valu	Ies				
Loading condition ⁽¹⁾	T_{LC}	k_r	GM	Loading condition ⁽¹⁾	T_{LC}	k_r	GM			
Full load condition	T_{SC}	0.35 <i>B</i>	0.06 <i>B</i>	Full load condition	T_{SC}	0.35 <i>B</i>	0.06 <i>B</i>			
Ballast condition	T_{BAL}	0.45 <i>B</i>	<u>0.25B</u>	Ballast condition	T_{BAL}	0.45 <i>B</i>	<u>0.16B</u>			
⁽¹⁾ For flooded loading conditions, the loading manual, are to be taken a				⁽¹⁾ For flooded loading conditions, the loading manual, are to be taken a						
2.1.2 Pitch motion				2.1.2 Pitch motion						
The pitch period T_{ϕ} , in s, is to be	e taken as:			The pitch period T_{ϕ} , in s, is to be	taken as:					
$T_{\phi} = \sqrt{\frac{2\pi L}{g}}$				$T_{\phi} = \sqrt{\frac{2\pi L}{g}}$						
where:				where:						
The pitch angle ϕ , in deg, is to be $\left((15)^{1.6} \right)$	e taken as:			The pitch angle ϕ , in deg, is to be						
$\phi = 1350 f_p L^{-0.94} \left\{ 1.0 + \left(\frac{15}{\sqrt{gL}}\right)^{1.6} \right\}$				$\frac{\phi = 1350 f_R f_p L^{-0.94} \left\{ 1.0 + \left(\frac{15}{\sqrt{gL}}\right)^{1.6} \right\}}{100}$						
f_p : Coefficient to be taken		trongth accord	amont	f_p : Coefficient to be taken		atronath acco	aamaat			
$\begin{split} f_p &= f_{ps} \\ f_p &= 0.9 \left[(0.27 - 0.02 f_T) - (13 - 5 f_T) \right] \end{split}$		strength asses atigue assess		$f_p = f_{ps}$ $f_p = 0.9[(0.27 - 0.02f_T) - (13 - 5f_T)]$		strength asses fatigue assess				

Amendment	Reason						
2.2 Ship accelerations at the centre of gravity							
2.2.1 Surge acceleration The longitudinal acceleration due to surge, in m/s^2 , is to be taken as: $a_{surge} = 0.32 f_R f_p a_0 g$ where: f_p : Coefficient to be taken as:							
$f_p = 0.9[0.27 - (15 + 4f_T)L \times 10^{-5}]$ for fatigue assessment.							
The transverse acceleration due to sway, in m/s^2 , is to be taken as: $a_{sway} = 0.56 f_R f_p a_0 g$ where:							
$f_p = f_{ps} \qquad \qquad \text{for strength assessment.}$ $f_p = 0.9[0.24 - (6 - 2f_T)B \times 10^{-4}] \qquad \text{for fatigue assessment.}$							
The vertical acceleration $a_{heave} = f_R f_p a_0 g$ where: f_p : Coefficient to be taken as:							
, $f_p = f_{ps} \qquad \qquad \mbox{for strength assessment.} \\ f_p = 0.9[(0.27 + 0.02 f_T) - 17L \times 10^{-5}] \mbox{ for fatigue assessment.} $							
	2.2 Ship accelerations at the centre of gravity2.2.1 Surge accelerationThe longitudinal acceleration due to surge, in m/s², is to be taken as: $a_{surge} = 0.32 f_R f_p a_0 g$ where: f_p : Coefficient to be taken as: $f_p = f_{ps}$ for strength assessment. $f_p = 0.9[0.27 - (15 + 4f_T)L \times 10^{-5}]$ for fatigue assessment. $f_p = 0.9[0.27 - (15 + 4f_T)L \times 10^{-5}]$ The transverse accelerationThe transverse acceleration due to sway, in m/s², is to be taken as: $a_{sucap} = 0.56 f_R f_p a_0 g$ where: f_p : Coefficient to be taken as: $f_p = f_{ps}$ for strength assessment. $f_p = 0.9[0.24 - (6 - 2f_T)B \times 10^{-4}]$ for fatigue assessment. $f_p = 0.9[0.24 - (6 - 2f_T)B \times 10^{-4}]$ The vertical accelerationThe vertical acceleration due to heave, in m/s², is to be taken as: $a_{heave} = f_R f_P a_0 g$ where: f_p : Coefficient to be taken as: $a_{heave} = f_R f_P a_0 g$ where: f_p : Coefficient to be taken as: $f_p = f_{ps}$ for strength assessment.						

Present	Amendment	Reason
2.2.4 Roll acceleration	2.2.4 Roll acceleration	
The roll acceleration, a_{roll} , in rad/s ² , is to be taken as:	The roll acceleration, a_{roll} , in rad/s ² , is to be taken as:	
$a_{roll} = f_p \theta \; \frac{\pi}{180} \bigg(\frac{2\pi}{T_\theta} \bigg)^2 \label{eq:aroll}$	$a_{roll} = f_p \theta \; \frac{\pi}{180} \left(\frac{2\pi}{T_\theta} \right)^2 $	
where:	where:	
	θ : Roll angle using f_p equal to 1.0	
f_p : Coefficient to be taken as:	f_p : Coefficient to be taken as:	
$f_p = f_{ps}$ for strength assessment.	$f_p = f_{ps}$ for strength assessment.	
$f_p = 0.9[0.23 - 4f_T B \times 10^{-4}]$ for fatigue assessment.	$f_p = 0.9 [0.23 - 4 f_T B \times 10^{-4}] \qquad \qquad {\rm for \ fatigue \ assessment.}$	
2.2.5 Pitch acceleration	2.2.5 Pitch acceleration	
The pitch acceleration, a_{pitch} , in rad/s ² , is to be taken as:	The pitch acceleration, a_{pitch} , in rad/s ² , is to be taken as:	
$a_{pitch}=f_pigg(rac{3.1}{\sqrt{gL}}+1.4igg)\phirac{\pi}{180}igg(rac{2\pi}{T_{\phi}}igg)^2$	$a_{pitch} = f_p \left(\frac{3.1}{\sqrt{gL}} + 1.4\right) \phi \frac{\pi}{180} \left(\frac{2\pi}{T_{\phi}}\right)^2$	
where:	where:	
	ϕ : Pitch angle using f_p equal to 1.0	
f_p : Coefficient to be taken as:	f_p : Coefficient to be taken as:	
$f_p = f_{ps}$ for strength assessment.	$f_p = f_{ps}$ for strength assessment.	
$f_p = 0.9[0.28 - (5 + 6f_T)L \times 10^{-5}]$ for fatigue assessment.	$f_p = 0.9[0.28 - (5 + 6f_T)L \times 10^{-5}] \qquad \mbox{for fatigue assessment.}$	
<pre>(omitted)</pre>	〈same as the present〉	

Present	Amendment	Reason
Section 4 Hull girder loads	Section 4 Hull girder loads	
Symbols	Symbols	
or symbols not defined in this section, refer to Ch 1, Sec 4.	For symbols not defined in this section, refer to Ch 1, Sec 4.	
omitted>	(same as the present)	
f_{β} : Heading correction factor, to be taken as:	f_{β} : Heading correction factor, to be taken as:	
a) For strength assessment:	a) For strength assessment:	
$f_{\beta} = 0.8$ for BSR and BSP load cases for the extreme sea loads design load scenario.	f_{β} = 0.8, for BSR and BSP load cases for the extreme sea loads design load scenario.	
$f_{\beta} = 1.0$ for HSM, HSA, FSM, OST and OSA load cases for the extreme sea loads design load scenario.	f_{β} = 1.0, for HSM, HSA, FSM, OST and OSA load cases for the extreme sea loads design load scenario.	
$f_{\beta} = 1.0$ for ballast water exchange at sea, harbour/sheltered water and accidental flooded design load scenarios.	f_{β} = 1.0, for ballast water exchange at sea, harbour / sheltered water and accidental flooded design load scenarios.	
b) For fatigue assessment:	b) For fatigue assessment:	
$f_{eta} = 1.0$	$f_{\beta} = 1.0$	
newly added>	f_{ps} : Coefficient, as defined in Ch 4, Sec 3.	
	f_R : Coefficient, as defined in Ch 4, Sec 3.	
C_w : Wave coefficient, in m, to be taken as:	C_w : Wave coefficient, in m, to be taken as:	
$C_w = 10.75 - \left(rac{300-L}{100} ight)^{1.5}$ for $90 \le L \le 300$	$C_w = 10.75 - \left(\frac{300 - L}{100}\right)^{1.5} \text{ for } 90 \le L \le 300$	
$C_w = 10.75$ for $300 < L \le 350$	$C_w = 10.75$ for $300 < L \le 350$	
$C_w = 10.75 - \left(rac{L-350}{150} ight)^{1.5}$ for $350 < L \le 500$	$C_w = 10.75 - \left(\frac{L - 350}{150}\right)^{1.5} \ \text{for} \ \ 350 < L \leq 500$	
omitted>	⟨same as the present⟩	

Present	Amendment	Reason
1. (omitted)	1. (same as the present)	
2. Vertical still water hull girder loads	2. Vertical still water hull girder loads	
2.1 〈omitted〉	2.1 (same as the present)	
2.2 Vertical still water bending moment	2.2 Vertical still water bending moment	
 2.2.1 ~ 2.2.2 (omitted) 2.2.3 Permissible vertical still water bending moment in harbour/sheltered water and tank testing condition 	 2.2.1 ~ 2.2.2 (same as the present) 2.2.3 Permissible vertical still water bending moment in harbour / sheltered water 	
The permissible vertical still water bending moments in the harbour/sheltered water and tank testing condition M_{sw-p-h} and M_{sw-p-s} at any longitudinal position are to envelop:	The permissible vertical still water bending moments in the harbour/sheltered water and tank testing condition M_{sw-p-h} and M_{sw-p-s} at any longitudinal position are to envelop:	
a) The most severe still water bending moments, in hogging and sagging conditions, respectively, for the harbour/sheltered water loading conditions defined in Ch 4, Sec 8 .	a) The most severe still water bending moments, in hogging and sagging conditions, respectively, for the harbour/sheltered water loading conditions defined in Ch 4, Sec 8 .	
b) The most severe still water bending moments for the harbour/ sheltered water loading conditions defined in the loading manual.	b) The most severe still water bending moments for the harbour/ sheltered water loading conditions defined in the loading manual.	
c) The permissible still water bending moment defined in [2.2.2].	c) The permissible still water bending moment defined in [2.2.2].	
2.2.4 Permissible vertical still water bending moment in flooded condition at sea	2.2.4 Permissible vertical still water bending moment in flooded condition at sea	
<pre>{omitted></pre>	〈same as the present〉	
2.2.5 (newly added)	2.2.5 Permissible vertical still water bending moment in tank testing conditionThe permissible vertical still water bending moments in tank testing	
	$\frac{1}{1} \frac{1}{1} \frac{1}$	
	a) The most severe still water bending moments for the tank testing conditions defined in the tank testing procedure.	
	b) When the still water bending moments are not defined in the tank testing procedure, the permissible still water bending moment may be taken the values as defined in [2.2.2].	

Present		Amendmer	Reason	
3. Dynamic hull girder loads		3. Dynamic hull girder loads		
3.1 〈omitted〉		3.1 (same as the present)		
3.2 Vertical wave bending moment		3.2 Vertical wave bending moment		
3.2.1 The distribution of the vertical wave induce kNm, along the ship length is given in Figure $M_{wv-Bog} = 1.5 f_R f_p L^3 C C_{wp} \left(\frac{B}{L}\right)^{0.8} f_{NL-Bog}$ $M_{wv-Sog} = -1.5 f_R f_p L^3 C C_{wp} \left(\frac{B}{L}\right)^{0.8} f_{NL-Sog}$ where: f_R : Factor related to the operational p $f_R = 0.85$ f_p : Coefficient to be taken as: $f_p = f_{ps}$ $f_p = 0.9[0.27 - (6 + 4f_T)L \times 10^{-5}]$ (omitted)	e 2, where:	3.2.1 The distribution of the vertical wave induct kNm, along the ship length is given in Figur $M_{wv-Hog} = 1.5 f_R f_p L^3 C C_{wp} \left(\frac{B}{L}\right)^{0.8} f_{NL-Hog}$ $M_{wv-Sug} = -1.5 f_R f_p L^3 C C_{wp} \left(\frac{B}{L}\right)^{0.8} f_{NL-Sug}$ where: f_p : Coefficient to be taken as: $f_p = f_{ps}$ $f_p = 0.9[0.27 - (6 + 4f_T)L \times 10^{-5}]$ (same as the present)		

Present		Amendment	Reason
	Section 5 External loads	Section 5 External loads	
Symb	ols	Symbols	
For sym $\langle \text{omitted} \\ f_T \\ \langle \text{newly} \rangle$	Ratio as defined in Ch 4, Sec 3.	For symbols not defined in this section, refer to Ch 1, Sec 4 . (same as the present) f_T : Ratio as defined in Ch 4, Sec 3 . f_{zT} : Ratio between Z-coordinate of the load point and f_T , to be taken as: $f_{zT} = \frac{z}{T_{LC}}$, but not greater than 1.0.	
h_W	: Water head equivalent to the pressure at waterline, in m, to be taken as: $h_w = \frac{P_{W,W\!L}}{\rho g}$	$\frac{T_{LC}}{h_W} = \frac{P_{W,WL}}{\rho g}$	
$P_{W,WL}$: Wave pressure at the waterline, kN/m^2 , for the considered dynamic load case. $P_{W,WL} = P_W$ for $y = B_x/2$ and $z = T_{LC}$	$P_{W,WL}$: Wave pressure at the waterline, kN/m ² , for the considered dynamic load case. $P_{W,WL} = P_W$ for $y = B_x/2$ and $z = T_{LC}$	
f_{ps}	: Coefficient for strength assessment, as defined in Ch 4, Sec 3.	f_{ps} : Coefficient for strength assessment, as defined in Ch 4, Sec 3. f_R : Coefficient, as defined in Ch 4, Sec 3.	
$T_{ heta}$ heta	: Roll period, in s, as defined in Ch 4, Sec 3, [2.1.1]. : Roll angle, in deg, as defined in Ch 4, Sec 3, [2.1.1].	$\overline{J_R}$: Coefficient, as defined in Ch 4, Sec 3. $\overline{T_{\theta}}$: Roll period, in s, as defined in Ch 4, Sec 3, [2.1.1]. θ : Roll angle, in deg, as defined in Ch 4, Sec 3, [2.1.1]. f_{β} : Coefficient defined in Ch 4, Sec 4. $\overline{C_w}$: Coefficient defined in Ch 4, Sec 4.	
z_{SD}	: Z coordinate, in m, of the midpoint of stiffener span, or of the middle of the plate field.	z_{SD} : Z coordinate, in m, of the midpoint of stiffener span, or of the middle of the plate field.	

Present	Amendment	Reason
1. Sea pressure	1. Sea pressure	
1.1 ~ 1.2 〈omitted〉	1.1 ~ 1.2 (same as the present)	
1.3 External dynamic pressures	1.3 External dynamic pressures	
1.3 External dynamic pressures 1.3.1 (omitted) 1.3.2 Hydrodynamic pressures for HSM load cases The hydrodynamic pressures, P_W , for HSM-1 and HSM-2 load cases, at any load point, in kN/m^2 , are to be obtained from Table 2. (omitted) where: $P_{HSM} = f_R f_p f_{nl} f_\beta f_{yz} P_a f_a f_{p-HSM}$ f_p : Coefficient to be taken as: $f_p = f_{ps}$ for strength assessment. $f_p = 0.9[(0.21 + 0.02f_T) + (6 - 4f_T)L \times 10^{-5}]$ for fatigue assessment. f_{nl} : Coefficient considering non-linear effects, to be taken as: a) For extreme sea loads design load scenario for strength assessment : $f_{nl} = 0.7$ at $f_{xL} = 0$ $f_{nl} = 0.9$ at $0.3 \le f_{xL} < 0.7$ $f_{nl} = 0.6$ at $f_{xL} = 1$ b) For ballast water exchange design load scenario for strength assessment : $f_{nl} = 0.95$ at $0.3 \le f_{xL} < 0.7$ $f_{nl} = 0.95$ at $0.3 \le f_{xL} < 0.7$	1.3. External dynamic pressures 1.3.1 (same as the present) 1.3.2 Hydrodynamic pressures for HSM load cases The hydrodynamic pressures, P_W , for HSM-1 and HSM-2 load cases, at any load point, in kN/m^2 , are to be obtained from Table 2. (same as the present) where: $P_{HSM} = f_R f_p f_{nl} f_\beta f_{yz} P_a f_a f_{p-HSM}$ f_p : Coefficient to be taken as: $f_p = f_{ps}$ for strength assessment. $f_p = 0.9[(0.21 + 0.02f_T) + (6 - 4f_T)L \times 10^{-5}]$ for fatigue assessment. f_{nl} : Coefficient considering non-linear effects, to be taken as: a) For extreme sea loads design load scenario for strength assessment : $f_{nl} = 0.7$ at $f_{xL} = 0$ $f_{nl} = 0.9$ at $0.3 \le f_{xL} < 0.7$ $f_{nl} = 0.6$ at $f_{xL} = 1$ b) For ballast water exchange design load scenario for strength assessment : $f_{nl} = 0.95$ at $0.3 \le f_{xL} < 0.7$ $f_{nl} = 0.95$ at $0.3 \le f_{xL} < 1$	
Intermediate values are obtained by linear interpolation. $f_{nl} = 1.0$ for fatigue assessment.	Intermediate values are obtained by linear interpolation. $f_{nl} = 1.0$ for fatigue assessment.	

Present	Amendment	Reason
f_{yz} : Girth distribution coefficient, to be taken as:	f_{yz} : Girth distribution coefficient, to be taken as:	
$f_{yz} = \frac{1}{3} \left(0.5 f_{yB} + 1.4 \frac{z}{T_{LC}} + 1.1 \right)$	$f_{yz} = \frac{1}{3} \left(0.5 f_{yB} f_{BG} + 1.4 \frac{z}{T_{LC}} f_{WL} + 1.1 f_{CL} \right)$	
<pre>(newly added)</pre>	f_{WL} : Pressure amplitude coefficient at water line, but not less than 1.0	
	a) For full load condition and $B > 35m$:	
	$f_{WL} = 2.59 - 0.15 P_a$	
	b) For ballast load condition or $B \le 35m$:	
	$f_{W\!L} = 2.0 - 0.085 P_a$	
(newly added)	f_{BG} : Pressure amplitude coefficient at bilge, but not less than 1.0	
	a) For full load condition and $B > 35m$:	
	$\qquad \qquad $	
	b) For ballast load condition or $B \le 35m$:	
<pre>(newly added)</pre>	$\qquad \qquad $	
	f_{CL} : Pressure amplitude coefficient at bottom centerline, but not less than 1.0	
	a) For full load condition and $B > 35m$:	
	$f_{CL} = 2.21 - 0.13 P_a$	
	b) For ballast load condition or $B \le 35m$:	
	$f_{CL} = 1.75 - 0.08 P_a$	

	Present		Amendment	Reason
P_a	: Pressure amplitude coefficient in mid-ship position, to be taken as:	P_a	: Pressure amplitude coefficient in mid-ship position, to be taken as:	
	a) For full load condition and $B>35{ m m}$:		a) For full load condition and $B > 35 \mathrm{m}$:	
	$P_a = \frac{B}{10} + \frac{L}{80}$		$P_a = \frac{B}{10} + \frac{L}{80}$	
	b) For ballast load condition or $B \leq 35 \mathrm{m}$:		b) For ballast load condition or $B \leq 35 \mathrm{m}$:	
	$P_a = \frac{L}{B} + \frac{200}{L}$		$P_a = \frac{L}{B} + \frac{200}{L}$	
f_a	: Wave amplitude coefficient to be taken as:	f_a	: Wave amplitude coefficient to be taken as:	
	$f_a = 0.85 C_w \sqrt{\frac{\lambda + 25}{L}}$		$f_a = 0.85 C_w \sqrt{\frac{\lambda + 25}{L}}$	
λ	: Wave length of the dynamic load case, in $\mathbf{m},$ to be taken as:	λ	: Wave length of the dynamic load case, in m, to be taken as:	
	$\lambda = 0.5 (1 + f_T) L$		$\lambda = 0.5 (1 + f_T) L$	
f_{p-HSM}	: Pressure distribution coefficient in the longitudinal direction of the ship, to be taken as:	f_{p-HSM}	: Pressure distribution coefficient in the longitudinal direction of the ship, to be taken as:	
	a) For full load condition:		$f_{p-HSM} = k_a k_p$	
	$-f_{p-HSM} = \left(0.8 \sin\left(\frac{2\pi}{0.8}(f_{xL} - 0.25)\right) + 0.2\right) \qquad \text{for } f_{xL} < 0.4$		$J_p - HSM - \kappa_a \epsilon_p$	
$f_{p-HSM} =$	$= \left(5.8 \sin\left(\frac{2\pi}{2.65}(f_{xL} - 2.4)\right) - 4.7\right) f_{yB} + \left(7 \sin\left(\frac{2\pi}{2.65}(f_{xL} - 2.4)\right) - 5.9\right) (1 - f_{yB})$			
	for $0.5 \le f_{xL}$			
	b) For ballast load condition:			
	$-f_{p-HSM} = \left(0.8 \sin\left(\frac{2\pi}{0.75}(f_{xL} - 0.35)\right) + 0.3\right) \qquad \text{for } f_{xL} < 0.4$			
$f_{p-HSM} =$	$= \left(2\sin\left(\frac{2\pi}{1.2}(f_{xL} - 0.2)\right) - 1\right)f_{yB} + \left(6\sin\left(\frac{2\pi}{2}f_{xL}\right) - 5\right)(1 - f_{yB})$			
	for $0.5 \le f_{xL}$			
	Intermediate values are obtained by linear interpolation.			

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Table 3 : k_{a-WL} values for HSM load case f_{xL} 0.0 $-\frac{1}{9}f_T + \frac{47}{180} - \frac{1}{9}f_T + \frac{37}{90} - \frac{1}{9}f_T + \frac{32}{45} - \frac{1}{45}f_T + \frac{158}{225}$ 1.0	
$\begin{vmatrix} k_{a-WL} - \frac{20}{9} f_T + \frac{29}{9} \end{vmatrix} = 0.3 = 1.0 = 1.0 = 0.3 = \begin{vmatrix} \frac{20}{9} f_T + \frac{16}{9} \end{vmatrix}$	
Table 4 : k_{a-CL} values for HSM load case	
$f_{xL} = 0.0 = -\frac{1}{9}f_T + \frac{14}{45} - \frac{1}{9}f_T + \frac{37}{90} - \frac{1}{9}f_T + \frac{32}{45} - \frac{4}{45}f_T + \frac{173}{225} = 1.0$	
$ \begin{vmatrix} k_{a-CL} & -\frac{34}{9} f_T + \frac{547}{90} \\ 0.3 & 1.0 & 1.0 \\ 0.5 & \frac{40}{9} f_T + \frac{347}{90} \end{vmatrix} $	
	Table 4 : k_{a-CL} values for HSM load case f_{xL} 0.0 $-\frac{1}{9}f_T + \frac{14}{45}$ $-\frac{1}{9}f_T + \frac{37}{90}$ $-\frac{1}{9}f_T + \frac{32}{45}$ $-\frac{4}{45}f_T + \frac{173}{225}$ 1.0

Present	Amendment	Reason
<pre>(newly added)</pre>	k_p : Phase coefficient tin the longitudinal direction of the ship, to be taken as:	
	$k_{p} = k_{p-WL} f_{zT} + k_{p-CL} (1 - f_{zT})$	
	Intermediate values are obtained by linear interpolation.	
	Table 5 : k_{p-WL} values for HSM load case	
	f_{xL} 0.0 0.15 0.22 0.25 $-\frac{1}{9}f_T + \frac{37}{90}$	
	$k_{p-WL} = -2f_T + \frac{3}{2} = -f_T = \frac{8}{3}f_T - \frac{37}{15} = \frac{10}{3}f_T - \frac{79}{30} = 1.0$	
	f_{xL} 0.65 0.7 $\frac{1}{9}f_T + \frac{31}{45}$ 1.0	
	k_{p-WL} 1.0 $-\frac{26}{9}f_T + \frac{17}{9}$ -1.0 -0.8	
	Table 6 : k_{p-CL} values for HSM load case	
	$ \begin{array}{ c c c c c c c c } f_{xL} & 0.0 & \left -\frac{8}{45}f_T + \frac{313}{900} \right -\frac{1}{9}f_T + \frac{37}{90} & \left -\frac{1}{9}f_T + \frac{32}{45} & \left -\frac{1}{9}f_T + \frac{73}{90} & 1.0 & $	
	$k_{p-CL} = \frac{10}{9} f_T + \frac{10}{9} = -1.0$ 1.0 1.0 -1.0 -0.75	

Present	Amendment	Reason
1.3.3 Hydrodynamic pressure for HSA load cases The hydrodynamic pressures, P_W , for HSA-1 and HSA-2 load cases at any load point, in kN/m ² , are to be obtained from Table 3 . (comitted) where: $P_{HSA} = f_R f_p f_{nl} f_\beta f_{yz} P_a f_a f_{p-HSA}$	essure for HSA load cases 1.3.3 Hydrodynamic pressure for HSA load cases ures, P _W , for HSA-1 and HSA-2 load cases at any The hydrodynamic pressures, P _W , for HSA-1 and HSA-2 load cases at any e to be obtained from Table 3. Same as the present where: where:	
f_p : Coefficient to be taken as: $f_p = f_{ps}$ for strength assessment.	f_p : Coefficient to be taken as: $f_p = f_{ps}$ for strength assessment.	
$\begin{array}{ll} f_{nl} & : \mbox{Coefficient considering non-linear effects, to be taken as:} \\ \mbox{a) For extreme sea loads design load scenario for strength assessment :} \\ & f_{nl} = 0.7 \mbox{ at } f_{xL} = 0 \\ & f_{nl} = 0.9 \mbox{ at } 0.3 \leq f_{xL} < 0.7 \\ & f_{nl} = 0.6 \mbox{ at } f_{xL} = 1 \\ \mbox{b) For ballast water exchange design load scenario for strength assessment :} \\ & f_{nl} = 0.85 \mbox{ at } f_{xL} = 0 \\ & f_{nl} = 0.95 \mbox{ at } 0.3 \leq f_{xL} < 0.7 \\ & f_{nl} = 0.80 \mbox{ at } f_{xL} = 1 \\ \mbox{Intermediate values are obtained by linear interpolation.} \\ & f_{nl} = 1.0 \\ \hline \end{array}$	$\begin{array}{ll} f_{nl} & : \mbox{Coefficient considering non-linear effects, to be taken as:} \\ \mbox{a) For extreme sea loads design load scenario for strength assessment :} \\ & f_{nl} = 0.7 \mbox{ at } f_{xL} = 0 \\ & f_{nl} = 0.9 \mbox{ at } 0.3 \leq f_{xL} < 0.7 \\ & f_{nl} = 0.6 \mbox{ at } f_{xL} = 1 \\ \mbox{b) For ballast water exchange design load scenario for strength assessment :} \\ & f_{nl} = 0.85 \mbox{ at } f_{xL} = 0 \\ & f_{nl} = 0.95 \mbox{ at } 0.3 \leq f_{xL} < 0.7 \\ & f_{nl} = 0.80 \mbox{ at } f_{xL} = 1 \\ \mbox{ Intermediate values are obtained by linear interpolation.} \end{array}$	
f_{yz} : Girth distribution coefficient, to be taken as: $f_{yz} = \frac{1}{3} \left(0.5 f_{yB} + 1.4 \frac{z}{T_{LC}} + 1.1 \right)$	f_{yz} : Girth distribution coefficient, to be taken as: $f_{yz} = \frac{1}{3} \Big(0.5 f_{yB} + 1.4 \frac{z}{T_{LC}} + 1.1 \Big)$	

Present		Amendment	Reason
<i>P_a</i> : Pressure amplitude coefficient in mid-ship position, to be taken as:	P _a : Press as:	sure amplitude coefficient in mid-ship position, to be taken	
a) For full load condition and $B > 35 \text{m}$:		full load condition and $B > 35m$:	
$P_a = \frac{B}{10} + \frac{L}{80}$	P_a =	$=\frac{B}{10}+\frac{L}{80}$	
b) For ballast load condition or $B\leq 35{ m m}$:	b) Fo	ballast load condition or $B \leq 35 { m m}$:	
$P_a = \frac{L}{B} + \frac{200}{L}$	P_a =	$=\frac{L}{B}+\frac{200}{L}$	
f_a : Wave amplitude coefficient to be taken as:	f_a : Wave	amplitude coefficient to be taken as:	
$f_a = 0.8 C_w \sqrt{\frac{L + \lambda - 125}{L}}$	$f_a = 0.8$	$C_w \sqrt{\frac{L+\lambda-125}{L}}$	
λ : Wave length of the dynamic load case, in m, to be taken as:	λ : Wave	e length of the dynamic load case, in m, to be taken as:	
$\lambda = 0.5 (1 + f_T) L$	$\lambda = 0.5$	$(1+f_T)L$	
f_{p-HSA} : Pressure distribution coefficient in the longitudinal direction of the ship, to be taken as:	P	sure distribution coefficient in the longitudinal direction of ship, to be taken as:	
-a) For full load condition:	f_{p-HSA}	$=k_a k_p$	
$f_{p-HSA} = \left(0.8\sin\left(\frac{2\pi}{0.8}(f_{xL} + 0.05)\right) - 0.5\right)f_{yB} + \left(\sin\left(\frac{2\pi}{0.9}f_{xL}\right) - 0.9\right)(1 - f_{yB})$			
for $f_{xL} < 0.4$			
$f_{p-HSA} = \left(5.8\sin\left(\frac{2\pi}{2.5}(f_{xL} - 3.6)\right) + 5.1\right)f_{yB} + \left(6\sin\left(\frac{2\pi}{2}(f_{xL} - 3)\right) + 5.1\right)(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f_{yB})) - 5.1(1 - f_{yB}) - 5.1(1 - f$			
for $0.5 \le f_{xL}$			
$f_{p-HSA} = \left(0.8\sin\left(\frac{2\pi}{0.6}(f_{xL} - 0.1)\right) - 0.5\right)f_{yB} + \left(3\sin\left(2\pi f_{xL}\right) - 2.5\right)\left(1 - f_{yB}\right)$			
for $f_{xL} < 0.3$			
$f_{p-HSA} = \left(5.8\sin\left(\frac{2\pi}{2.3}(f_{xL} - 3.4)\right) + 5.1\right)f_{yB} + \left(8\sin\left(\frac{2\pi}{2.2}(f_{xL} - 1.1)\right) + 7\right)(1 - f_{yB}) - 6.15\pi^{-1}$			
for $0.4 \le f_{xL}$			
Intermediate values are obtained by linear interpolation.			

Present	Amendment	Reason
<pre>{newly added></pre>	$\begin{array}{c c} \underline{k_a} & : \mbox{ Amplitude coefficient in the longitudinal direction of the ship, to} \\ & \underline{be taken as:} \\ \underline{k_a = k_{a-WL} f_{zT} + k_{a-CL} (1 - f_{zT})} \\ \hline & \mbox{ Intermediate values are obtained by linear interpolation.} \\ \hline & \mbox{ Table 8 : } k_{a-WL} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{ c c c c c c c } \hline k_{a-WL} & -\frac{8}{3}f_T + \frac{11}{3} & 0.3 & 1.0 & 1.0 & 0.25 & \frac{10}{9}f_T + \frac{26}{9} \\ \hline \\ $	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{ c c c c c c c c } \hline k_{a-CL} & -4f_T + \frac{31}{5} & 0.3 & 1.0 & 1.0 & 0.45 & \frac{10}{9}f_T + \frac{62}{9} \\ \hline \end{array}$	
	$\begin{array}{c c} \underline{k_p} & \vdots \text{ Phase coefficient tin the longitudinal direction of the ship, to be} \\ & \underline{\text{taken as:}} \\ \underline{k_p = k_{p-WL} f_{zT} + k_{p-CL} (1 - f_{zT})} \\ \hline & \underline{\text{Intermediate values are obtained by linear interpolation.}} \end{array}$	
	Table 10 : k_{p-WL} values for HSA load case	
	$ \begin{array}{ c c c c c c c c c } f_{xL} & 0.0 & -\frac{2}{9}f_T + \frac{353}{900} & -\frac{2}{9}f_T + \frac{47}{90} & -\frac{4}{45}f_T + \frac{133}{180} & -\frac{2}{9}f_T + \frac{83}{90} & 1.0 \\ \hline \end{array} $	
	$ \begin{vmatrix} k_{p-WL} & \frac{10}{9} f_T - \frac{68}{45} \\ 1.0 & -0.7 \\ -0.7 & 0.9 \\ 1.0 \\ \end{vmatrix} $	
	Table 11 : k_{p-CL} values for HSA load case	
	$f_{xL} = 0.0 = 0.15 = -\frac{2}{9}f_T + \frac{19}{45} - \frac{2}{9}f_T + \frac{47}{90} - \frac{4}{45}f_T + \frac{13}{18} - \frac{2}{9}f_T + \frac{83}{90} = 1.0$	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

	Present	Amendment	Reason
1.3.4 Hydrodynamic pressure for FSM load cases The hydrodynamic pressures, P_W , for FSM-1 and FSM-2 load cases, at		1.3.4 Hydrodynamic pressure for FSM load cases The hydrodynamic pressures, P_{W} for FSM-1 and FSM-2 load cases, at	
	ad point, in kN/m^2 , are to be obtained from Table 12.	any load point, in kN/m^2 , are to be obtained from Table 12 .	
<pre></pre>		⟨same as the present⟩	
where	:	where:	
$P_{FSM} =$	$= f_R f_p f_{nl} f_\beta f_{yz} P_a f_a f_{p-FSM}$	$P_{FSM} = f_R f_p f_{nl} f_\beta f_{yz} P_a f_a f_{p-FSM}$	
f_p	: Coefficient to be taken as:	f_p : Coefficient to be taken as:	
	$f_p = f_{ps}$ for strength assessment.	$f_p = f_{ps}$ for strength assessment.	
	$f_p = 0.9[(0.21 + 0.02f_T) + (6 - 4f_T)L \times 10^{-5}]$ for fatigue assessment.	$f_p = 0.9[(0.21 + 0.02f_T) + (6 - 4f_T)L \times 10^{-5}]$ for fatigue assessment.	
f_{nl}	: Coefficient considering non-linear effects, to be taken as:	f_{nl} : Coefficient considering non-linear effects, to be taken as:	
a) F	for extreme sea loads design load scenario for strength assessment : $f_{nl}{=}0.9$	a) For extreme sea loads design load scenario for strength assessment : $f_{nl} = 0.9 \label{eq:fnl}$	
	For ballast water exchange design load scenario for strength assessment :	b) For ballast water exchange design load scenario for strength assessment :	
	$f_{nl} = 0.95$	$f_{nl} = 0.95$	
	$f_{nl} = 1.0$ for fatigue assessment.	c) For fatigue assessment	
		$f_{nl} = 1.0$	
f_{yz}	: Girth distribution coefficient, to be taken as:	f_{yz} : Girth distribution coefficient, to be taken as:	
	$f_{yz} = \frac{1}{3} \bigg(0.5 f_{yB} + 1.2 \frac{z}{T_{LC}} + 1.3 \bigg)$	$f_{yz} = \frac{1}{3} \bigg(0.5 f_{yB} + 1.2 \frac{z}{T_{LC}} + 1.3 \bigg)$	
P_a	: Pressure amplitude coefficient in mid-ship position, to be taken as:	P_a : Pressure amplitude coefficient in mid-ship position, to be taken as:	
	$P_a = 0.5 \frac{L}{B} + \frac{50}{L} + 2.3$	$P_a = 0.5 \frac{L}{B} + \frac{50}{L} + 2.3$	
f_a	: Wave amplitude coefficient to be taken as:	f_a : Wave amplitude coefficient to be taken as:	
	$f_a = 0.85 C_w \sqrt{\frac{\lambda + 25}{L}}$	$f_a = 0.85 C_w \sqrt{\frac{\lambda + 25}{L}}$	
λ	: Wave length of the dynamic load case, in m, to be taken as: $\lambda = 0.5 (1 + 1.5 f_T) L$	λ : Wave length of the dynamic load case, in m, to be taken as: $\lambda = 0.5(1+1.5f_T)L$	

Present	Amendment	Reason
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$f_{p-FSM} : \text{Pressure distribution coefficient in the longitudinal direction of the ship, to be taken as:} \\ \underline{f_{p-FSM} = k_a k_p} \\ \underline{k_a} : \text{Amplitude coefficient in the longitudinal direction of the ship, to be taken as:} \\ \end{array}$	
	$\frac{k_{a} = k_{a-WL}f_{zT} + k_{a-CL}(1 - f_{zT})}{ $	

	Present		Amendment	Reas
<newly added=""></newly>			$\begin{array}{c c} k_p & : \mbox{ Phase coefficient tin the longitudinal direction of the ship, to be} \\ \hline k_p & : \mbox{ Phase coefficient tin the longitudinal direction of the ship, to be} \\ \hline k_p & = k_{p-WL} f_{zT} + k_{p-CL} (1 - f_{zT}) \\ \hline k_p & = k_{p-WL} f_{zT} + k_{p-CL} (1 - f_{zT}) \\ \hline \mbox{ Intermediate values are obtained by linear interpolation.} \\ \hline \hline \mbox{ Table 15 : } k_{p-WL} \mbox{ values for FSM load case} \end{array}$	
			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
			Table 16 : k_{p-CL} values for FSM load case	
			$ \begin{array}{ c c c c c c c c c }\hline f_{xL} & 0.0 & -\frac{8}{45}f_T + \frac{161}{450} & -\frac{2}{9}f_T + \frac{19}{45} & 0.65 & -\frac{1}{9}f_T + \frac{73}{90} & 1.0 \\ \hline \end{array} $	
			k_{p-CL} -0.6 -1.0 1.0 1.0 -1.0 -0.7	
The wave pressures point, in $kN/m^2,$ are (omitted)	pressure for BSR load , <i>P_W</i> , for BSR-1 and BS to be obtained from Table 6 : Factor application for I	R-2 load cases, at any loa 5.	1.3.5 Hydrodynamic pressure for BSR load cases The wave pressures, P_W , for BSR-1 and BSR-2 load cases, at any load point, in kN/m^2 , are to be obtained from Table 17 . (same as the present) (del)	
Transverse position	BSR-1P, BSR-2P	BSR-1S, BSR-2S		
$y \ge 0$	(S)	(P)		
$\frac{y < 0}{P_{BSR} = f_R f_p f_{nl} f_\beta f_{yz} P_a}$	(P) $f_a f_{p-BSR}$	(S)	where: <u>For BSR-1P and BSR-2P load cases, to be taken as:</u> $\underline{P_{BSR} = f_{\beta}f_{nl} \left(10ysin\theta + 0.48f_{p}C_{W}\sqrt{\frac{L_{0} + \lambda - 125}{L}} \left(f_{yB1} + 1 \right) \right)}$	

	Present		Amendment	Reason
			$\begin{aligned} & = SR-1S \text{ and } BSR-2S \text{ load cases, to be taken as:} \\ & = f_{\beta}f_{nl} \bigg(-10y\sin\theta + 0.48f_p C_W \sqrt{\frac{L_0 + \lambda - 125}{L}} \left(f_{yB1} + 1 \right) \bigg) \end{aligned}$	
f _p f _{nl} f _{yz}	: Coefficient to be taken as: $\begin{aligned} f_p &= f_{ps} & \text{for strength assessment.} \\ f_p &= 0.9[(0.21 + 0.04f_T) - (12f_T - 2)B \times 10^{-4}] \text{ for fatigue assessment.} \\ \vdots & \text{Coefficient considering non-linear effects, to be taken as:} \\ f_{nl} &= 1.0 \\ \hline &: \text{Girth distribution coefficient, to be taken as:} \\ \hline &= 1.0 \\ \hline &: \text{Girth distribution coefficient, to be taken as:} \\ \hline &= 1.0 \\ \hline &: \text{Girth distribution coefficient, to be taken as:} \\ \hline &= 1.0 \\ \hline &: \text{Girth distribution coefficient, to be taken as:} \\ \hline &= 0.9 \\ \hline &= 1.0 \\ \hline &: \text{Girth distribution coefficient, to be taken as:} \\ \hline &= 0.9 \\$	$\frac{P_{BSR}}{f_p}$	$= f_{\beta}f_{nl} \left(-10y \sin \theta + 0.48f_{p}C_{W}\sqrt{\frac{1}{L}(f_{yB1}+1)}\right)$: Coefficient to be taken as: $f_{p} = f_{ps} \qquad \text{for strength assessment.}$ $f_{p} = 0.9[(0.21+0.04f_{T}) - (12f_{T}-2)B \times 10^{-4}] \text{ for fatigue assessment.}$: Coefficient considering non-linear effects, to be taken as: $f_{nl} = 1.0$	
	: Pressure amplitude coefficient in mid-ship position, to be taken as: a) For full load condition: $P_a = 13 - 0.03L + \frac{35 GM}{B}$ b) For ballast condition: $P_a(P) = 7(GM - 0.2B) + 10(-C_w + 10.75)$ $P_a(S) = 10(GM - 0.2B - C_w + 10.75)$			

Present			Amendment	Reason
f_a : Wave amplitude coefficient to be taken as:				
$f_a = 0.25 C_w \sqrt{\frac{L + \lambda - 125}{L}}$				
λ : Wave length of the dynamic load case, in m	n, to be taken as:	λ	: Wave length of the dynamic load case, in \mathbf{m} , to be taken as:	
$\lambda = \frac{g T_{\theta}^2}{2\pi}$			$\lambda = \frac{g T_{\theta}^2}{2\pi}$	
f_{p-BSR} : Pressure distribution coefficient in the long the ship, to be taken as:	gitudinal direction of	⟨del⟩		
-a) For full load condition:				
$-f_{p-BSR}(P) = -(\sin(2\pi(f_{xL}+0.05)))f_{yB}$				
$-f_{p-BSR}(P) = -f_{yB}$	for $0.2 \le f_{xL} < 0.6$			
$- f_{p-BSR}(P) = -\left(0.5\sin\left(\frac{2\pi}{0.8}(f_{xL} - 0.45)\right) + 0.5\right)f_{yB}$	for $0.7 \le f_{xL}$			
$-f_{p-BSR}(S) = (\sin(2\pi(f_{xL}+0.05)))f_{yB}$				
$-f_{p-BSR}(S) = f_{yB} + 0.8(1 - f_{yB})$	for $0.2 \leq f_{xL} < 0.6$			
$- f_{p-BSR}(S) = \left(0.5\sin\left(\frac{2\pi}{0.8}(f_{xL} - 0.45)\right) + 0.5\right)f_{yB}$	for $0.7 \le f_{xL}$			
$-f_{p-BSR}(P) = -\left(\sin\left(\frac{2\pi}{1.5}f_{xL}\right)\right)f_{yB}$	for $f_{xL} < 0.4$			
$- f_{p-BSR}(P) = -\left(0.5\sin\left(\frac{2\pi}{1.4}(f_{xL} - 0.1)\right) + 0.5\right)f_{yB}$	for $0.5 \le f_{xL}$			
$-f_{p-BSR}(S) = \left(\sin\left(\frac{2\pi}{1.5}f_{xL}\right)\right)f_{yB}$	for $f_{xL} < 0.4$			
$-f_{p-BSR}(S) = \left(0.5\sin\left(\frac{2\pi}{1.4}(f_{xL}-0.1)\right) + 0.5\right)f_{yB}$	for $0.5 \le f_{xL}$			
- Intermediate values are obtained by linear interpolation	n.			

	Presen	ıt		Amendn	nent		Reason
The wave proint, in kN/	dynamic pressure for BSP I ressure, P_W , for BSP-1 and m^2 , are to be obtained from able 7 : Hydrodynamic pressu	BSP-2 load cases, at any load Table 7.	The wave point, in kN	1.3.6 Hydrodynamic pressure for BSP load cases The wave pressure, P_W , for BSP-1 and BSP-2 load cases, at any loadpoint, in kN/m^2 , are to be obtained from Table 18.Table 18: Hydrodynamic pressures for BSP load cases			
	Wave pres	ssure, in kN/m^2		Wave pre	essure, in ${ m kN/m^2}$		
$\label{eq:Load case} \begin{tabular}{c c c c c } Load case \end{tabular} z &\leq T_{LC} \end{tabular} \begin{tabular}{c c c c c c } T_{LC} &< z &\leq h_W + T_{LC} \end{tabular} \begin{tabular}{c c c c c c } z &> h_W + T_{LC} \end{tabular} \end{tabular}$		Load case	$z \leq T_{LC}$	$T_{LC} < z \le h_W + T_{LC}$	$z > h_W + T_{LC}$		
BSP-1P	$\underline{P_{W}} = \max\left(-P_{BSP}, \rho g \left(z - T_{LC}\right)\right)$	-	BSP-1P	$\underline{P}_{W} = \max \left(P_{BSP}, \ \rho g \left(z - T_{LC} \right) \right)$			
BSP-2P	$\underline{P}_{W} = \max\left(P_{BSP}, \rho g \left(z - T_{LC}\right)\right)$	$P_{W} = P_{W,WL} - \rho g(z - T_{LC})$ $P_{W} = 0.0$	BSP-2P	$\begin{split} \underline{P_{W}} = \max\left(-P_{BSP}, \ \rho g\left(z-T_{LC}\right)\right) \\ \underline{P_{W}} = \max\left(P_{BSP}, \ \rho g\left(z-T_{LC}\right)\right) \end{split}$	$\frac{P_{W}}{P_{W}} = P_{W,WL} - \rho g(z - T_{LC})$	$P_{W} = 0.0$	
BSP-1S		-	BSP-1S				
BSP-2S	$\underline{P_{W}} = \max \left(P_{BSP}, \rho g \left(z - T_{LC} \right) \right)$		BSP-2S	$P_W = \max\left(-P_{BSP}, \rho g \left(z - T_{LC}\right)\right)$	2		
(omitted) where:			<pre></pre>	ne present>			
	$_{l}f_{\beta}f_{uz}P_{a}f_{a}f_{p-BSP}$			$f_{nl}f_{\beta}f_{uz}P_{a}f_{a}f_{p-BSP}$			
(omitted)	- p- 9% a- a- p _ 264		same as th				
r _{yz} : Gi	irth distribution coefficient, to	be taken as:	f_{yz} : C	Girth distribution coefficient, to	o be taken as:		
f_{yz}	$f_{yB}(P) = \left(f_{yB} + 0.55 \frac{z}{T_{LC}} + 0.2\right) \left(f_{yB}\right)$ $f_{yB}(S) = \left(0.4f_{yB} + 0.5 \frac{z}{T_{LC}}\right) f_{yB}(S) = \left(0.4f_{yB} + 0.5 \frac{z}{T_{LC}}\right) f_{yB}(S)$	$_B - 0.6) + 0.3$	f_{z}	$_{yz}(P) = 0.25 \frac{z}{T_{LC}} + 0.6 f_{yB1} + 0.15$	-		
f_{yz}	$f_{yB}(S) = \left(0.4f_{yB} + 0.5\frac{z}{T_{LC}}\right)f_{yB} + 0$.1	f_{i}	$_{yz}(S) = 0.5 \frac{z}{T_{LC}} + 0.35 f_{yB1} + 0.15$			
P _a : Pr	ressure amplitude coefficient	 in mid-ship position, to be taken	P_a : F	Pressure amplitude coefficient	t in mid-ship position,	to be taken	
as			-	as:			
u	(P) = 11 (S) = 25			$P_a(P) = 11$ $P_a(S) = 25$			
r _a	(3) - 23		Γ	$a^{(3)} - 23$			

Present	Amendment	Reason
f_a : Wave amplitude coefficient to be taken as:	f_a : Wave amplitude coefficient to be taken as:	
$f_a = \left(0.8 C_w \sqrt{\frac{L + \lambda - 125}{L}} \right) \left(\frac{L}{600 \left(2 - f_T\right)}\right) + 5 C_b$	$f_a = \left(0.8 C_w \sqrt{\frac{L + \lambda - 125}{L}} \right) \left(\frac{L}{600 \left(2 - f_T\right)}\right) + 5 C_b$	
λ : Wave length of the dynamic load case, in m, to be taken as: $\lambda = 90 + 0.3B$	λ : Wave length of the dynamic load case, in m, to be taken as: $\lambda = 90 + 0.3B$	
f_{p-BSP} : Pressure distribution coefficient in the longitudinal direction of the ship, to be taken as:	f_{p-BSP} : Pressure distribution coefficient in the longitudinal direction of the ship, to be taken as:	
$f_{p-BSP}(P) = \left(0.5\sin\left(\frac{2\pi}{0.8}(f_{xL} - 0.2)\right) + 0.5\right)f_{yB} + \left(2\sin\left(2\pi(f_{xL} + 0.25)\right) + 3\right)\left(1 - f_{yB}\right)$	$\underline{f_{p-BSP}=1}$	
for $f_{xL} < 0.4$		
$\int_{p-BSP} (P) = (-0.5f_{xL} + 1.2)f_{yB} + \left(3\sin\left(\frac{2\pi}{0.9}(f_{xL} - 0.75)\right) + 4\right)(1 - f_{yB})$		
for $0.5 \le f_{xL} < 0.8$		
$f_{p-BSP}(P) = (-2f_{xL} + 2.4)f_{yB} + \left(3\sin\left(\frac{2\pi}{0.9}(f_{xL} - 0.75)\right) + 4\right)(1 - f_{yB})$		
for $0.8 \le f_{xL}$		
$\int f_{p-BSR}(S) = \left(0.3\sin\left(\frac{2\pi}{0.8}(f_{xL}-0.2)\right) + 0.7\right) f_{yB} + \left(2\sin\left(2\pi(f_{xL}+0.25)\right) + 3\right)\left(1 - f_{yB}\right)$		
for $f_{xL} < 0.4$		
$-f_{p-BSR}(S) = f_{yB} + \left(3\sin\left(\frac{2\pi}{0.9}(f_{xL} - 0.75)\right) + 4\right)(1 - f_{yB}) \text{ for } 0.5 \le f_{xL} < 0.6$		
$-f_{p-BSR}(S) = (-1.25f_{xL} + 1.75)f_{yB} + \left(3\sin\left(\frac{2\pi}{0.9}(f_{xL} - 0.75)\right) + 4\right)(1 - f_{yB})$		
for $0.6 \le f_{xL} < 0.8$		
$\int f_{p-BSR}(S) = \left(0.6\sin\left(\frac{2\pi}{1.1}(f_{xL}-0.5)\right) + 0.16\right)f_{yB} + \left(3\sin\left(\frac{2\pi}{0.9}(f_{xL}-0.75)\right) + 4\right)(1-f_{yB}-1)f_{yB} + \frac{2\pi}{0.9}(f_{xL}-0.75) + 4\left(1-f_{yB}-1\right)f_{yB} +$		
for $0.8 \le f_{xL}$		
Intermediate values are obtained by linear interpolation.		

	Р	resent			Amendment	Reason
1.3.7	Hydrodynamic pressure	for OST load cases	1.3.7	Hydrodynamic press		
The wave pressures, P_W , for OST-1 and OST-2 load cases, at any load point are to be obtained, in kN/m ² , from Table 9 . (omitted) where: $P_{OST} = f_R f_p f_{nl} f_\beta f_{uz} P_a f_a f_{p-OST}$		point 〈same where				
$P_{OST} - f_p$	$\int_{R} \int_{p} \int_{nl} \int_{\beta} \int_{yz} \mathbf{r}_{a} J_{a} J_{p-OST}$: Coefficient to be taken	ac.	$P_{OST} - f_p$	$= f_R f_p f_{nl} f_\beta f_{yz} P_a f_a f_{p-O}$: Coefficient to be t		
	$f_p = f_{ps}$	for strength assessment. $2f_T - 9)B \times 10^{-4}$ for fatigue assessment.	Jp	$f_p = f_{ps}$	for strength assessment. $r_{T} + (12f_{T} - 9)B \times 10^{-4}]$ for fatigue assessment.	
f_{nl}	$f_{nl} = 0.8$	non-linear effects, to be taken as: for strength assessment.	f_{nl}	$f_{nl} = 0.8$	ering non-linear effects, to be taken as: for strength assessment.	
f_{yz}	$f_{nl} = 1.0$: Girth distribution coeffic		f_{yz}	$f_{nl} = 1.0$: Girth distribution c	for fatigue assessment. oefficient, to be taken as:	
	$\frac{f_{yz}(P) = \frac{1}{8} \left(\left(5f_{yB} + 3\frac{z}{T_{LC}} + 5\frac{z}{T_{LC}} + 5\frac{z}{$			$\frac{f_{yz}(P) = 0.06\frac{z}{T_{LC}} + 0.06\frac{z}{T_{LC}} + 0.06\frac{z}{T_{yz}} + 0.02\frac{z}{T_{yz}} + 0.02\frac{z}{T_{LC}} + 0.02\frac{z}{T_{LC}}$		
P_a	: Pressure amplitude coe as: $\frac{P_a(P) = 10(3^{-\frac{L}{500}})}{P_a(S) = 10(3^{-\frac{L}{500}}) + 17}$	fficient in mid-ship position, to be taken	P_a	: Pressure amplitude as: $P_a = 20$	e coefficient in mid-ship position, to be taken	
$\overline{f_a}$: Wave amplitude coeffic $f_a = 0.6 C_w \sqrt{\frac{L + \lambda - 125}{L}}$	ent to be taken as:	f_a	: Wave amplitude co $f_a = 0.6 C_w \sqrt{\frac{L + \lambda - \lambda}{L}}$	befficient to be taken as:	
λ	: Wave length of the dyr $\lambda {=} 0.45 L$	namic load case, in m, to be taken as:	λ	: Wave length of th $\lambda = 0.45 L$	e dynamic load case, in m, to be taken as:	

Present	Amendment	Reason
f_{p-OST} : Pressure distribution coefficient in the longitudinal direction of	f_{p-OST} : Pressure distribution coefficient in the longitudinal direction of	
the ship, to be taken as: a) For full load condition:	the ship, to be taken as:. f = -h h	
$f_{p-OST}(P) = \left(-\sin\left(\frac{2\pi}{0.6}f_{xL}\right) + 0.5\right)f_{yB} + \left(-1.5\sin\left(\frac{2\pi}{1.3}(f_{xL} - 0.2)\right) + 0.4\right)(1 - f_{yB}) - 0.5$	$\qquad \qquad $	
for $f_{xL} < 0.2$		
$f_{p-OST}(P) = \left(0.5 \sin\left(\frac{2\pi}{0.6}(f_{xL} - 0.15)\right) - 0.5\right) f_{yB} + \left(-1.5 \sin\left(\frac{2\pi}{1.3}(f_{xL} - 0.2)\right) + 0.4\right) (1 - f_{yB})$		
for $0.3 \le f_{xL} < 0.6$		
$f_{p-OST}(P) = -f_{yB} + (1.5\sin(2\pi(f_{xL} - 0.5)) - 2)(1 - f_{yB})$		
for $0.7 \le f_{xL} < 0.8$		
$f_{p-OST}(P) = (-10f_{xL} + 7)f_{yB} + (1.5\sin(2\pi(f_{xL} - 0.5)) - 2)(1 - f_{yB})$		
for $0.8 \le f_{xL}$		
$f_{p-OST}(S) = 0.5f_{yB} + \left(-1.5\sin\left(\frac{2\pi}{1.3}(f_{xL} - 0.2)\right) + 0.4\right)(1 - f_{yB})$		
for $f_{xL} < 0.2$		
$ \int f_{p-OST}(S) = \left(0.75 \sin\left(\frac{2\pi}{0.7} f_{xL}\right) - 0.25 \right) f_{yB} + \left(-1.5 \sin\left(\frac{2\pi}{1.3} \left(f_{xL} - 0.2\right)\right) + 0.4 \right) (1 - f_{yB}) $		
for $0.3 \le f_{xL} < 0.6$		
$\int f_{p-OST}(S) = \left(0.6\sin\left(\frac{2\pi}{0.6}(f_{xL}-0.1)-0.25\right)f_{yB} + (1.5\sin\left(2\pi(f_{xL}-0.5)\right)-2\right)(1-f_{yB})f_{yB} + (1.5\sin\left(2\pi(f_{xL}-0.5)\right)-2)(1-f_{yB})f_{yB} + (1.5\cos\left(2\pi(f_{xL}-0.5)\right)-2)(1-f_{yB})f_{yB} + (1.5\cos\left(2\pi(f_{xL}-0.5)\right)-2)(1-f_{yB})f_{yB} + $		
for $0.7 \le f_{xL}$		

Present	Amendment	Reason
b) For ballast load condition:		
$\int_{P^{-OST}} (P) = \left(-2\sin\left(\frac{2\pi}{0.6}f_{xL}\right) + 2.1\right) f_{yB} + \left(-4\sin\left(\frac{2\pi}{1.9}(f_{xL} - 0.1)\right) + 3\right) (1 - f_{yB})$		
for $f_{xL} < 0.2$		
$ \int f_{p-OST}(P) = (-1.2\sin(2\pi(f_{xL}+0.35)))f_{yB} + \left(-4\sin\left(\frac{2\pi}{1.9}(f_{xL}-0.1)\right) + 3\right)(1-f_{yB}) $		
for $0.2 \le f_{xL} < 0.6$		
$f_{p-OST}(P) = (-11f_{xL} + 9)f_{yB} + (3\sin\left(\frac{2\pi}{0.6}(f_{xL} - 0.1)\right) - 1.5)(1 - f_{yB})$		
for $0.8 \le f_{xL}$		
$\int f_{p-OST}(S) = 0.6f_{yB} + \left(-4\sin\left(\frac{2\pi}{1.9}(f_{xL} - 0.1)\right) + 3\right)(1 - f_{yB}) \text{for } f_{xL} \le 0.2$		
$f_{p-OST}(S) = \left(0.8\sin\left(\frac{2\pi}{0.65}(f_{xL}-0.05)\right) - 0.2\right)f_{yB} + \left(-4\sin\left(\frac{2\pi}{1.9}(f_{xL}-0.1)\right) + 3\right)(1 - f_{yB}) - 0.2\left(1 - f_{yB}\right) - 0.2\left(1$		
for $0.2 \le f_{xL} < 0.6$		
$f_{p-OST}(S) = \left(0.8\sin\left(\frac{2\pi}{0.65}\left(f_{xL} - 0.05\right)\right) - 0.2\right)f_{yB} + (10f_{xL} - 7)(1 - f_{yB})$		
for $0.6 \le f_{xL} < 0.8$		
$f_{p-OST}(S) = \left(0.8\sin\left(\frac{2\pi}{0.65}(f_{xL} - 0.05)\right) - 0.2\right)f_{yB} + \left(3\sin\left(\frac{2\pi}{0.6}(f_{xL} - 0.1) - 1.5\right)(1 - f_{yB})\right)f_{yB} + \left(3\sin\left(\frac{2\pi}{0.6}(f_{xL} - 0.1) - 1.5\right)(1 - f_{yB})f_{yB} + \left(3\sin\left(\frac{2\pi}{0.6}(f_{xL} - 0.1) - 1.5\right)(1 - f_{yB})f_{yB} + 1.56\right)f_{yB} + 1.56\right)f_{yB} + 1.56$		
for $0.8 \le f_{xL}$		
Intermediate values are obtained by linear interpolation.		
(newly added)	k_a : Amplitude coefficient in the longitudinal direction of the ship, to	
	be taken as:	
	$\underline{\qquad \qquad } k_a = k_{a-WL} f_{zT} + k_{a-CL} (1 - f_{zT})$	
	Intermediate values are obtained by linear interpolation.	

Present			Amendmer	nt		Reason
newly added>		Table 22	k_{a-WL} values for	r OST load ca	Se	
	Transverse	OST-1F	P, OST-2P	OST-1	S, OST-2S	
	position	f_{xL}	k_{a-WL}	f_{xL}	k_{a-WL}	
		0.0	1.0	0.0	$3 - 2f_T$	
		0.2	$0.6f_T + 0.4$	0.15	f_T	
		0.4	$0.4f_T + 0.6$	0.3	$2 - f_T$	
	$y \ge 0$	0.5	1.0	0.5	1.0	
		0.6	1.0	0.65	$1.4f_T \! = \! 0.4$	
		0.8	f_T	0.8	f_T	
		1.0	$1.4 - 0.4 f_T$	1.0	3.0	
		0.0	$3-2f_T$	0.0	1.0	
		0.15	f_T	0.2	$0.6f_T + 0.4$	
		0.3	$2 - f_T$	0.4	$0.4f_T \! + \! 0.6$	
	y < 0	0.5	1.0	0.5	1.0	
		0.65	$1.4f_T - 0.4$	0.6	1.0	
		0.8	f_T	0.8	f_T	
		1.0	3.0	1.0	$1.4 - 0.4 f_T$	
		Table 23	: k_{a-CL} values for	^r OST load ca	se	
	f_{xL}	0.0	0.2	0.8	1.0	
	k_{a-CL}	$7-5f_T$	1.0	1.0	$6-2f_T$	

Present	Amendment	Reason
(newly added)	\underline{k}_p : Phase coefficient tin the longitudinal direction of the ship, to be	
	taken as:	
	$\underline{k_{p} = k_{p-WL}f_{zT} + k_{p-CL}(1 - f_{zT})}$	
	Intermediate values are obtained by linear interpolation.	

Present			Amendme	ent		Reason	
newly added		Table 24 : k_{p-WL} values for OST load case					
	Transverse	OST-1P,	OST-2P	OST-1S,	OST-2S		
	position	f_{xL}	$k_{p-W\!L}$	f_{xL}	k_{p-WL}		
		0.0	1.0	0.0	$1.5 - f_T$		
				0.1	$2.5 - 3f_T$		
		0.2	1.0	0.15	$2.4 - 2.8 f_T$		
				0.2	$1.1 - 1.4 f_T$		
	$y \ge 0$.	0.4	-1.0	0.4	$2.06 - 2.36 f_T$		
	$y \ge 0$	$0.1 f_T \! + \! 0.55$	+0.55 -1.0	0.45	$2.53 - 3.06 {f_T}$		
		* 1		0.55	$3-4f_T$		
		$0.1 f_T \! + \! 0.75$	1.0	0.65	$3-4f_T$		
		1.0		0.8	$2-3f_T$		
			1.0 $0.5 - f_T$	$0.5-{f_T}$	1.0	$-0.6f_T - 0.4$	
		0.0	$1.5 - f_T$	0.0 1.0	1.0		
		0.1	$2.5-3 \boldsymbol{f}_T$				
		0.15	$2.4 - 2.8 f_T$		1.0		
		0.2	$1.1 - 1.4 f_T$	-			
		0.4	$2.06 - 2.36 f_T$	0.4	-1.0		
	y < 0	0.45	$2.53 - 3.06 f_T$	$0.1f_T + 0.55$	-1.0		
		0.55	$3 - 4 f_T$		1.0		
		0.65	$3 - 4 f_T$	$0.1 f_T \! + \! 0.75$	1.0		
		0.8	$2-3f_T$				
		1.0	$-0.6f_T - 0.4$	1.0	$0.5 - f_T$		

Present	Amendment	Reason
<newly added=""></newly>	Table 25 : k_{p-CL} values for OST load case	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{ c c c c c c c c } \hline k_{p-CL} & 1.0 & 1.4 - 0.8 f_T & -1.0 & -1.0 & 2.5 - 3 f_T & -0.5 \\ \hline \end{array}$	
1.3.8 Hydrodynamic pressure for OSA load cases	1.3.8 Hydrodynamic pressure for OSA load cases	
The wave pressures, P_W , for OSA-1 and OSA-2 load cases, at any loa point, in kN/m ² , are to be obtained from Table 11 . (omitted)	d The wave pressures, P_W , for OSA-1 and OSA-2 load cases, at any load point, in kN/m^2 , are to be obtained from Table 26 . (same as the present)	
f_{nl} : Coefficient considering non-linear effects, to be taken as:	f_{nl} : Coefficient considering non-linear effects, to be taken as:	
a) For extreme sea loads design load scenario for strength assessment		
$f_{nl} = 0.5$ at $f_{xL} = 0$ $f_{nl} = 0.8$ at $0.3 \le f_{xL} < 0.7$	$f_{nl} = 0.5$ at $f_{xL} = 0$ $f_{nl} = 0.8$ at $0.3 \le f_{xL} < 0.7$	
$f_{nl} = 0.6$ at $f_{xL} = 1$	$f_{nl} = 0.6$ at $f_{xL} = 1$	
 b) For ballast water exchange design load scenario for strengt assessment : 		
$f_{nl}{=}0.75$ at $f_{xL}{=}0$	$f_{nl} = 0.75 \qquad \qquad \text{at} \ f_{xL} = 0$	
$f_{nl}{=}0.90$ at $0.3{\leq}f_{xL}{<}0.7$	$f_{nl} = 0.90$ at $0.3 \le f_{xL} < 0.7$	
$f_{nl}{=}0.80$ at $f_{xL}{=}1$	$f_{nl} = 0.80 \qquad \qquad \text{at} \ f_{xL} = 1$	
Intermediate values are obtained by linear interpolation.	Intermediate values are obtained by linear interpolation.	
$f_{nl} = 1.0$ for fatigue assessment.	(del)	

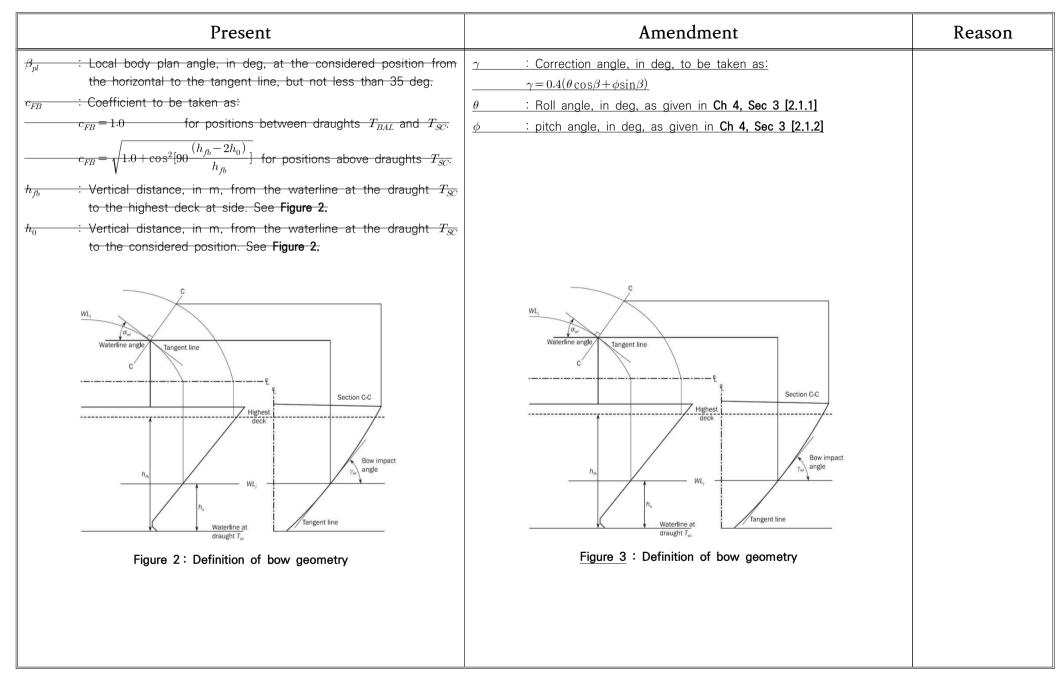
Present	Amendment	Reason
f_{yz} : Girth distribution coefficient, to be taken as:	f_{yz} : Girth distribution coefficient, to be taken as:	
$\frac{f_{yz}(S) = \frac{1}{4.5} \left(f_{yB} + 3 \frac{z}{T_{LC}} + 0.5 \right)}{\text{a) For full load condition:}}$	$\frac{f_{yz}(P) = 0.6\frac{z}{T_{LC}} + (0.32f_T - 0.16)f_{yB} + 0.24}{f_{yz}(S) = 0.85\frac{z}{T_{LC}} + 0.21f_{yB} + 0.24}$	
$f_{yz}(P) = \left(1.1f_{yB} + 0.8\frac{z}{T_{LC}}\right)(f_{yB} - 0.6) + 0.24$ b) For ballast load condition:	$-\frac{J_{yz}(y) - O(y)}{T_{LC}} T_{LC} + O(L) J_{yB} + O(L)$	
$f_{yz}(P) = \left(0.5f_{yB} + 2.5\frac{z}{T_{LC}}\right)(0.95f_{yB} - 0.7) + 0.25$		
 P_a : Pressure amplitude coefficient in mid-ship position, to be taken as: a) For full load condition: 	P_a : Pressure amplitude coefficient in mid-ship position, to be taken as:	
$P_a(P) = \frac{1500}{L} + \frac{L^{0.3}}{10}$	$\underline{P_a = \left(\frac{2300}{L} + 0.4L^{0.3}\right) (2f_T - 1) + 12(1 - f_T)}$	
$P_a(S) = \frac{3000}{L} + \frac{L^{0.3}}{2}$ b) For ballast load condition:		
$\frac{P_a(P) = 7}{P_a(S) = 15}$		
f_a : Wave amplitude coefficient to be taken as: $f_a = 0.6 C_w \sqrt{\frac{L + \lambda - 125}{L}}$	f_a : Wave amplitude coefficient to be taken as: $f_a = 0.6C_w\sqrt{\frac{L+\lambda-125}{L}}$	
λ : Wave length of the dynamic load case, in m, to be taken as: $\lambda = 0.3 (f_T + 1) L$	λ : Wave length of the dynamic load case, in m, to be taken as: $\lambda = 0.3 (f_T + 1) L$	

Present	Amendment	Reason
f_{p-OSA} : Pressure distribution coefficient in the longitudinal direction of the ship, to be taken as:	f_{p-OSA} : Pressure distribution coefficient in the longitudinal direction of the ship, to be taken as:	
-a) For full load condition:	$\underline{f_{p-OSA}} = k_a k_p$	
$\int f_{p-OSA}(P) = f_{yB} + \left(0.5\sin\left(\frac{2\pi}{0.5}(f_{xL} - 0.3)\right) + 1.5\right)(1 - f_{yB}) \text{for } f_{xL} < 0.2$		
$\int f_{p-OSA}(P) = f_{yB} + \left(8\sin\left(\frac{2\pi}{2.5}(f_{xL}+0.3)\right) - 6.6\right)(1 - f_{yB}) \text{for } 0.2 \le f_{xL} < 0.3$		
$f_{p-OSA}(P) = \left(1.5 \sin\left(\frac{2\pi}{0.8}(f_{xL} - 0.1)\right) - 0.5\right) f_{yB} + \left(8 \sin\left(\frac{2\pi}{2.5}(f_{xL} + 0.3)\right) - 6.6\right) (1 - f_{yB})$		
for $0.3 \le f_{xL} < 0.7$		
$f_{p-OSA}(P) = \left(1.5\sin\left(\frac{2\pi}{0.9}(f_{xL} - 0.6)\right) - 3\right)f_{yB} + \left(8\sin\left(\frac{2\pi}{2.5}(f_{xL} + 0.3)\right) + 6.6\right)(1 - f_{yB})$		
for $0.8 \le f_{xL}$		
$f_{p-OSA}(S) = \left(0.5\sin\left(\frac{2\pi}{0.8}(f_{xL} - 0.2)\right) + 0.5\right)f_{yB} + \left(0.5\sin\left(\frac{2\pi}{0.5}(f_{xL} - 0.3)\right) + 1.5\right)(1 - f_{yB})$		
for $f_{xL} < 0.2$		
$f_{p-OSA}(S) = \left(0.5\sin\left(\frac{2\pi}{0.8}(f_{xL} - 0.2)\right) + 0.5\right)f_{yB} + \left(8\sin\left(\frac{2\pi}{2.5}(f_{xL} + 0.3)\right) - 6.6\right)(1 - f_{yB})$		
for $0.2 \le f_{xL} < 0.4$		
$\int f_{p-OSA}(S) = \left(-\sin\left(\frac{2\pi}{0.8}(f_{xL}-0.6)\right)\right) f_{yB} + \left(8\sin\left(\frac{2\pi}{2.5}(f_{xL}+0.3)\right) - 6.6\right)(1 - f_{yB}) - 6.6\right)(1 - f_{yB}) - 6.6\left(1 - f_{yB}\right) - 6.6\left(1 - f_{$		
for $0.4 \le f_{xL} < 0.8$		
$\int f_{p-OSA}(S) = \left(\sin\left(\frac{2\pi}{0.8}(f_{xL} - 0.6)\right) - 2\right) f_{yB} + \left(8\sin\left(\frac{2\pi}{2.5}(f_{xL} + 0.3)\right) - 6.6\right) (1 - f_{yB}) - 6.6 $		
for $0.8 \le f_{xL}$		

Present	Amendment	Reason
b) For ballast load condition:		
$f_{p-OSA}(P) = (-2.5f_{xL} + 0.5)f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right)(1 - f_{yB})$		
for $f_{xL} < 0.4$		
$f_{p-OSA}(P) = (-2.5f_{xL} + 0.5)f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL} + 0.15)\right) - 6\right)(1 - f_{yB})$		
for $0.4 \leq f_{xL} < 0.6$		
$\int f_{p-OSA}(P) = -f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL}+0.15)\right) - 6\right)(1 - f_{yB}) \text{for } 0.6 \le f_{xL} < 0.8$		
$f_{p-OSA}(P) = -3f_{yB} - 6(1 - f_{yB}) \qquad \text{for } f_{xL} = 1.0$		
$\int f_{p-OSA}(S) = \left(0.5\sin\left(\frac{2\pi}{0.6}(f_{xL} - 0.25)\right) + 0.5\right) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + \left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\right) (1 - f_{yB}) f_{yB} + 2\left(2\sin\left(\frac{2\pi}{0.7}(f_{xL} - 0.4)\right) + 2\left(2\sin\left($		
for $f_{xL} < 0.3$		
$\int f_{p-OSA}(S) = \left(0.5\sin\left(\frac{2\pi}{0.6}(f_{xL} - 0.25)\right) + 0.5\right) f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL} + 0.15)\right) - 6\right) (1 - f_{yL} - 0.25) + 0.5 \int f_{yB} f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL} - 0.25)\right) - 6\right) (1 - f_{yL} - 0.25) + 0.5 \int f_{yB} f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL} - 0.25)\right) - 6\right) (1 - f_{yL} - 0.25) + 0.5 \int f_{yB} f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL} - 0.25)\right) - 6\right) (1 - f_{yL} - 0.25) + 0.5 \int f_{yB} f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL} - 0.25)\right) - 6\right) (1 - f_{yL} - 0.25) + 0.5 \int f_{yB} f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL} - 0.25)\right) - 6\right) (1 - f_{yL} - 0.25) + 0.5 \int f_{yB} f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL} - 0.25)\right) - 6\right) (1 - f_{yL} - 0.25) + 0.5 \int f_{yB} f_{yB} + \left(7\sin\left(\frac{2\pi}{2.4}(f_{xL} - 0.25)\right) - 6\right) (1 - f_{yL} - 0.25) + 0.5 \int f_{yB} f_{yB} + 0.5 $		
for $0.3 \le f_{xL} < 0.4$		
$f_{p-OSA}(S) = (-\sin(2\pi(f_{xL} - 0.65)))f_{yB} + (7\sin(\frac{2\pi}{2.4}(f_{xL} + 0.15)) - 6)(1 - f_{yB}) - 6$		
$for -0.4 \le f_{xL} < 0.8$		
$f_{p-OSA}(S) = -1.5f_{yB} - 6(1 - f_{yB}) \qquad \text{for } f_{xL} = 1.0$		
Intermediate values are obtained by linear interpolation.	k_a : Amplitude coefficient in the longitudinal direction of the ship, to	
<pre>(newly added)</pre>	$\underline{k_a}$: Amplitude coefficient in the longitudinal direction of the ship, to <u>be taken as:</u>	
	$\overline{k_a = k_{a-WL} f_{zT}} + k_{a-CL} (1 - f_{zT})$	
	Intermediate values are obtained by linear interpolation.	

Present			Amendme	nt		Reason	
(newly added)		Table 28 : k_{a-WL} values for OSA load case					
	Transverse	OSA-1P, OSA-2P		OSA-1S, OSA-2S			
	position	f_{xL}	k_{a-WL}	f_{xL}	k_{a-WL}		
		0.0	$-f_T + 1$	0.0	$2f_T$		
		0.1	$-0.4f_T + 0.7$	0.1	$3f_T - 1$		
		0.2	$1.2f_{T} - 0.6$	0.3	$3f_T - 1$		
		0.3	$-0.2f_T + 1.1$	0.4	f_T		
		0.4	1.0	0.5	1.0		
	$y \ge 0$	0.5	1.0	0.6	1.5		
		0.6	f_T	0.7	2.0		
		0.7	f_T	0.8	$0.6f_T + 0.9$		
		0.8	$0.8f_T + 0.4$	0.9	2.0		
		0.9	$0.4f_T + 1$				
		1.0	$f_T + 1$	1.0	3.0		
		0.0	$2f_T$	0.0	$-f_T + 1$		
		0.1	$3f_T - 1$	0.1	$-0.4f_T + 0.7$		
		0.3	$3f_T - 1$	0.2	$1.2f_T - 0.6$		
		0.4	f_T	0.3	$-0.2f_T + 1.1$		
		0.5	1.0	0.4	1.0		
	y < 0	0.6	1.5	0.5	1.0		
		0.7	2.0	0.6	f_T		
		0.8	$0.6f_T + 0.9$	0.7	f_T		
		0.9	2.0	0.8	$0.8f_T + 0.4$		
				0.9	$0.4f_T + 1$		
		1.0	3.0	1.0	$f_T + 1$		

Present	Amendment	Reason
(newly added)	Table 29 : k_{a-CL} values for OSA load case	
	f_{xL} 0.0 0.1 0.2 0.6 0.7 0.8 0.9 1.0	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
<pre>(newly added)</pre>	k_p : Phase coefficient tin the longitudinal direction of the ship, to be	
	taken as:	


Present			Amendme	nt		Reason	
(newly added)		Table 30 : k_{p-WL} values for OSA load case					
	Transverse	OSA-1	P, OSA-2P	OSA-1S, OSA-2S			
	position	f_{xL}	k_{p-WL}	f_{xL}	k_{p-WL}		
		0.0	f_T	0.0	0.5		
		0.1	$2f_T - 1$	0.1	0.5		
		0.2	$4f_T - 3$	0.2	$f_T\!=\!0.5$		
		0.3	$0.4 f_T + 0.6$	0.3	$2.2 f_T - 1.7$		
		0.4	$1.1 - 0.2 f_T$	0.4	$3f_T - 2.5$		
	$y \ge 0$	0.5	$1.1 - 0.4 f_T$	0.5	$0.4f_T - 0.9$		
		0.6	$1.2 - 1.2 f_T$	0.6	$-0.6f_T - 0.4$		
		0.7	$-0.6f_T - 0.2$	0.7	$-0.6f_T - 0.4$		
		0.8	$0.2f_T - 1.1$	0.8	-1.0		
		0.9	-1.0	0.9	$0.4 f_T - 1.2$		
		1.0	-1.0	1.0	$0.4 f_T - 1.2$		
		0.0	0.5	0.0	f_T		
		0.1	0.5	0.1	$2f_T - 1$		
		0.2	$f_T \! = \! 0.5$	0.2	$4f_T - 3$		
		0.3	$2.2 f_T - 1.7$	0.3	$0.4f_T + 0.6$		
		0.4	$3 {f_T} - 2.5$	0.4	$1.1 - 0.2 f_T$		
	y < 0	0.5	$0.4 f_T - 0.9$	0.5	$1.1 - 0.4 f_T$		
		0.6	$-0.6f_T - 0.4$	0.6	$1.2 - 1.2 f_T$		
		0.7	$-0.6f_T - 0.4$	0.7	$-0.6f_T - 0.2$		
		0.8	-1.0	0.8	$0.2f_T - 1.1$		
		0.9	$0.4 f_T - 1.2$	0.9	-1.0		
		1.0	$0.4 f_T - 1.2$	1.0	-1.0		

Present			Amer	ndment			Reason
ewly added>		Table 31 : k_{p-CL} values for OSA load case					
	f_{xL}	0.0	0.1	0.2	0.3	0.4	
	k_{p-CL}	$0.9 - 0.4 f_T$	$0.9 - 0.4 f_T$	$2f_T - 1$	$2f_T - 1$	f_T	
	f_{xL}	0.5	0.6	0.7	0.8	1.0	
	k_{p-CL}	$1.2 - 0.4 f_T$	$2.5-3 {f_T}$	$-0.6f_T - 0.2$	-1.0	-1.0	

Present	Amendment	Reason
2. (omitted)	2. (same as the present)	
3. External impact pressures for the bow area	3. External impact pressures	
3.1 Application	3.1 Application	
3.1.1 The impact pressures for the bow area are only to be applied for strength assessment.	3.1.1 The impact pressures for the bow/stern area are only to be applied for strength assessment.	
3.2 Bottom slamming pressure	3.2 Bottom slamming pressure	
3.2.1	3.2.1	
The bottom slamming pressure P_{SL} , in kN/m ² , for the bottom slamming design load scenario is to be evaluated for the following two cases:	The bottom slamming pressure P_{SL} , in kN/m ² , for the bottom slamming design load scenario is to be taken as:	
Case 1 : An empty ballast tank or a void space in way of the bottom shell.	$P_{S\!L} = \frac{c_1 c_2}{T_F} B_B \left(0.56 - \frac{L}{1250} - \frac{x}{L} \right)$	
$P_{\overline{SL}} = 10 g \sqrt{L} f_{\overline{SL}} e_{\overline{SL}-et} \qquad \text{for } L < 170 \text{m}$	where:	
$- P_{SL} = 130 g f_{SL} c_{SL-et} e^{c_1}$ for $L \ge 170 m$	$\underline{c_1}$: Coefficient to be taken as:	
Case 2 : A full ballast tank in way of the bottom shell.	$c_1 = L^{1/3} \qquad \qquad {\rm for} \ L \le 150 \ {\rm m}$	
$-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$c_1 = (225 - 0.5L)^{1/3} \qquad \qquad {\rm for} \ \ L > 150 \ {\rm m}$	
$P_{SL} = 130 g f_{SL} c_{SL-ft} e^{c_1} - 1.25 \rho g (z_{top} - z) \qquad \text{for } L \ge 170 \text{m}$	$\underline{c_2}$: Coefficient to be taken as:	
where: c_1 : Coefficient to be taken as:	$c_2 = 1675 \left(1 - \frac{20T_F}{L}\right)$	
$\begin{array}{c} c_1 = 0 & \text{for } L \leq 180 \mathrm{m} \\ \hline c_1 = -0.0125 (L - 180)^{0.705} & \text{for } L > 180 \mathrm{m} \\ \hline c_{SL-et} & \vdots & \text{Slamming coefficient for case with an empty ballast tank or } \\ \hline \text{void space} \vdots \end{array}$	$\frac{x}{D_{B}} \stackrel{\text{: Longitudinal distance in m from FE to cross section considered,}}{\sum_{k=1}^{n} \frac{but need not to be taken smaller than x_{1}}{\sum_{k=1}^{n} \frac{x_{1} = \left(1.2 - C_{B}^{-1/3} - \frac{L}{2500}\right)L}{B_{B}}}$ $\frac{B_{B}}{D_{B}} \stackrel{\text{: Breadth of bottom in m at the height 0.15 } T_{F}}{\sum_{k=1}^{n} \frac{L}{2}}$	
$c_{SL-et} = 5.95 - 10.5 \left(\frac{T_{F-e}}{L}\right)^{0.2}$	baseline measured at the cross section considered. B_B shall not be taken greater than the smaller of 1.35 T_F and $0.55\sqrt{L}$	

Present	Amendment	Reason
<i>_{IL-ft}</i> : Slamming coefficient for case with a full ballast tank:	T_F : Design bottom slamming draught, in m, at the FE to be	
$c_{SL-ft} = 5.95 - 10.5 \left(\frac{T_{F-f}}{L}\right)^{0.2}$	provided by designer.	
₃₂ : Longitudinal slamming distribution factor, to be taken as:		
$f_{SL} = 0$ for $x/L \le 0.5$		
$f_{SL} = 1.0$ for $x/L = 0.5 + c_2$		
$f_{SL} = 1.0$ for $x/L = 0.65 + c_2$	ľ í	
$f_{SL} = 0.5$ for $x/L \ge 1$		
Intermediate values of f_{SL} are to be obtained by linear	$0.15 T_{\rm F}$	
terpolation.		
: Coefficient to be taken as:		
$c_2 = 0.33 C_B + \frac{L}{2500}$ but not to be taken greater than 0.35.		
T_{F-e} : Design slamming draught at the FP to be provided by the Designer. T_{F-e} is not to be greater than the minimum draught		
at the FP indicated in the loading manual for all seagoing		
conditions where any of the ballast tanks within the bottom slamming region are empty. This includes all loading conditions		
with tanks inside the bottom slamming region that use the	Plan A-A	
"sequential" ballast water exchange method, if relevent.	Figure 2 : Breadth of bottom at the height 0.15 T_F	
T_{F-f} : Design slamming draught at the FP to be provided by the		
Designer. T_{F-f} is not to be greater than the minimum draught at the FP indicated in the loading manual for all seagoing		
conditions where all ballast tanks within the bottom slamming		
region are full. This includes all loading conditions with tanks inside the bottom slamming region that use the "flow-through"		
ballast water exchange method, if relevent.		
op : Z-coordinate of the highest point of the tank, excluding small		
hatchways, in m.		
For strength assessment of double bottom floors and girders,		
z_{top} is not to be taken greater than the double bottom height.		

32.2 Loading manual information The loading guidance information is to clearly state the design stamming draughts and the ballast water exchange method used for each ballast 33.3 Bow impact pressure33.1 Design pressure33.1 Design pressure33.1 Design pressure31.1 Desig	Present	Amendment	Reason
3.3 Bow impact pressure 3.3.1 Design pressures The bow impact pressure P_{EB} , in kN/m ² , to be considered for the bow impact design load scenario is to be taken as: $P_{EB} = 1025 f_{EB} r_B T_{em}^2$ is longitudinal bow flare impact pressure distribution factor. To be taken as: $T_{FB} = 0.55$ for $x/L \le 0.9$ $f_{FB} = -0.55$ for $x/L \le 0.9$ $f_{FB} = -0.55$ for $x/L \le 0.9$ $f_{FB} = -0.55$ for $0.9 < x/L \le 0.9875$ $f_{FB} = 1.0$ for $x/L \le 0.9$ $f_{FB} = 1.0$ for $x/L \le 0.9$ $f_{FB} = 1.0$ for $x/L \ge 0.9$ $f_{FB} = 1.0$ for $x/L \ge 1.0$ $f_{FB} = 0.0$ for calculation point between T_{BAL} and T_{SC} $f_{FB} = 0.0$ for $x/L \ge 1.0$ $f_{FB} = 0.0$ for $x/L \ge 0$ for $x/L $	The loading guidance information is to clearly state the design slamming draughts and the ballast water exchange method used for each ballast	2.2. Pour import processo	
$\frac{\beta}{2} : \text{Angle, in deg, at the calculation point defined as the angle}{\frac{\beta}{2} : \text{Angle, in deg, at the calculation point defined as the angle}{\frac{\beta}{2} : \text{Angle, in deg, at the calculation point defined as the angle}{\frac{\beta}{2} : \text{Angle, in deg, at the calculation point defined as the angle}{\frac{\beta}{2} : \text{Angle, in deg, at the calculation point defined as the angle}{\frac{\beta}{2} : \text{Angle, in deg, at the calculation point defined as the angle}{\frac{\beta}{2} : \text{Angle, in deg, at the calculation point defined as the angle}{\frac{\beta}{2} : \text{Angle, in deg, at the calculation point defined as the angle}{\frac{\beta}{2} : \beta}$	3.3.1 Design pressures The bow impact pressure P_{FB} , in kN/m ² , to be considered for the bow impact design load scenario is to be taken as: $P_{FB} = 1.025 f_{FB} c_{FB} V_{im}^2 \sin \gamma_{wl}$ where: f_{FB} : Longitudinal bow flare impact pressure distribution factor. To be taken as: $f_{FB} = 0.55$ for $x/L \le 0.9$ $f_{FB} = 4(x/L - 0.9) + 0.55$ for $0.9 < x/L \le 0.9875$ $f_{FB} = 8(x/L - 0.9875) + 0.9$ for $0.9875 < x/L \le 1.0$ $f_{FB} = 1.0$ for $x/L \ge 1.0$ V_{im} : Impact speed, in knots, to be taken as: $V_{im} = 0.514 V_{ref} \sin \alpha_{wl} + \sqrt{L}$ V_{ref} : Forward speed, in knots, to be taken as: $V_{ref} = 0.75 V$ but not less than 10. α_{wl} : Local waterline angle, in deg, at the considered position, but not less than 35 deg. See Figure 2. γ_{wl} : Local bow impact angle, in deg, measured in a vertical plane containing the normal to the shell, from the horizontal to the tangent line at the considered position but not less than 50 deg, as shown in Figure 2. Where this value is not available, it may be taken as:	3.3.1 Design pressures The bow impact pressure P_{FD} , in kN/m^2 , to be considered for the bowimpact design load scenario is to be taken as: $P_{FD} = C[2.2 + C_f](0.4 V \sin \beta + 0.6 \sqrt{L})^2$ where: C : Coefficient, to be taken as: $C = 0.18(C_w - 0.5h_0)$ with $0.0 \le C \le 1.0$ C_w : Wave coefficient as defined in Ch 4, Sec 4 h_0 : Vertical distance, in m, from the waterline at the draught T_{SC} to the calculation point, see Figure 3, to be taken as: $h_0 = 0.0$ for calculation point between T_{BAL} and T_{SC} $h_0 = z - T_{SC}$ for calculation point above the draught T_{SC} C_f : Coefficient, to be taken as: $C_f = 1.5 \tan(\alpha + \gamma)$ but not greater than 10.0 z : Z coordinates, in m, of the calculation point with respect to the reference coordinate system α : Flare angle, in deg, at the calculation point defined as the angle between a vertical line and the tangent to the side plating, measured in a vertical plane normal to the horizontal tangent to the shell plating, see Figure 3. β : Angle, in deg, at the calculation point defined as the angle between a longitudinal line and a tangent to the side plating in	

Present	Amendment	Reason
<newly added=""></newly>	3.4 Stern slamming	
	3.4.1 Design pressures	
	The stern slamming pressure P_{SS} , in kN/m^2 , to be considered for the stern slamming design load scenario is to be taken as:	
	$P_{SS} = 2.2 CL \left(0.6 + \frac{1.65 a_{ss} (0.55 L - x) \sin^3 \alpha}{C_B L} \right)^2$	
	where:	
	<u>C</u> : Coefficient, to be taken as:	
	$\underline{\qquad \qquad C = 0.18 \big(C_w - 2 h_0 \big) \ \text{with} \ 0.0 \leq C \leq 1.0 }$	
	C_w : Wave coefficient as defined in Ch 4, Sec 4	
	<u>a_{ss}</u> : Acceleration parameter to be taken as:	
	$a_{ss} = \frac{3C_w}{L} + 0.16$	
	h_0 : Vertical distance, in m, from the waterline at the draught T_{AE}	
	to the calculation point, to be taken as:	
	$h_0 = z - T_{AE}$ for calculation point above the draught T_{AE}	
	z : Z coordinates, in m, of the calculation point with respect to the reference coordinate system	
	T_{AE} : Minimum draught, in m, at AE	
	x : Longitudinal distance in m from AE to cross section considered, but need not to be taken smaller than 0.05 L	
	 	

Present	Amendment	Reason
Section 6 Internal loads	Section 6 Internal loads	
Symbols	Symbols	
For symbols not defined in this section, refer to Ch 1, Sec 4 a_X, a_Y, a_Z : Longitudinal, transverse and vertical accelerations, in m/s ² , at x_G, y_G, z_G , as defined in Ch 4, Sec 3, [3.2] . f_{cd} : Factor for joint probability of occurrence of liquid cargo density and maximum sea state in 25 years design life, to be taken as: 	x _G , y _G , z _G , as defined in Ch 4, Sec 3, [3.2] .	
h_{air} : Height of air pipe or overflow pipe above the top of the tank, in m. h_{max} : Maximum permissible filling level, in m, taken as: <u>a) For ballast tanks: maximum tank height</u>	h_{air} : Height of air pipe or overflow pipe above the top of the tank, in m. h_{max} : Maximum permissible filling level, in m, maximum tank height for ballast tanks	
P_{drop} : Overpressure, in kN/m ² , due to sustained liquid flow through air pipe or overflow pipe in case of overfilling or filling during flow through ballast water exchange. It is to be defined by the designer, but not to be less than 25 kN/m^2 .		
P_{PV} : Design vapour pressure, in kN/m ² , but not less than $25 \mathrm{kN/m^2}$.	P_{PV} : Design vapour pressure, in kN/m^2 , but not less than 25.0 kN/m^2 .	
x, y, z : X, Y and Z coordinates, in m, of the load point with respect to the reference coordinate system defined in Ch 4, Sec 1, [1.2.1].		

	Present		Amendment	Reason
x _G y _G z	$r_G: X, Y$ and Z coordinates, in m, of the volumetric centre of gravity of the tank or fully filled cargo hold, i.e. V_{Full} , considered with respect to the reference coordinate system defined in Ch 4 , Sec 1 , [1.2].	x _G , y _G ,	z_G : X, Y and Z coordinates, in m, of the volumetric centre of gravity of the tank or fully filled cargo hold, i.e. V_{Full} , considered with respect to the reference coordinate system defined in Ch 4, Sec 1, [1.2].	
z_{top}	: Z coordinate of the highest point of tank, excluding small hatchways, in m.	z_{top}	: Z coordinate of the highest point of tank, excluding small hatchways, in m.	
ρ _L	 Density of liquid in the tank, in t/m³, but not less than: a) For strength assessment ρ_L = 1.025 for all liquids including oil cargoes. If a tank filled at 98% is intended to carry heavier liquid cargoes than 1.025 (i.e. ρ_{max-LM} > 1.025), then ρ_L = ρ_{max-LM}. b) For fatigue assessment ρ_L = 0.9 for liquid cargoes. ρ_L = 1.025 for all other liquids. <i>i</i> Maximum liquid cargo density in t/m³, associated with a full 	$ \rho_L $: Density of liquid in the tank, in t/m³, but not less than: $\underline{\rho_L=1.025}$	
ρ_{max-LM} ρ_{slh}	 tank at 98%, from any loading condition in the ship's loading manual or value specified by the designer. Liquid density, in t/m³, to be used for sloshing assessment, 	$ ho_{slh}$: Liquid density, in t/m^3 , to be used for sloshing assessment, taken as:	
	taken as: $ ho_{slh}= ho_L$		$\rho_{slh} = \rho_L$	
ρ_{ST} θ	: Density of steel, in t/m ³ , to be taken as 7.85. : Roll angle, in deg, defined in Ch 4, Sec 3, [2.1.1].	ρ_{ST} θ	: Density of steel, in t/m ³ , to be taken as 7.85. : Roll angle, in deg, defined in Ch 4, Sec 3, [2.1.1].	

Present	Amendment	Reason
1. Pressure due to liquids	1. Pressure due to liquids	
1.1 ~ 1.2 〈omitted〉	1.1 ~ 1.2 〈same as the present〉	
1.3 Dynamic liquid pressure	1.3 Dynamic liquid pressure	
1.3.1	1.3.1	
The dynamic pressure, P_{ld} due to liquid in tanks, in $\rm kN/m^2,$ is to be taken as:	The dynamic pressure, P_{ld} due to liquid in tanks, in kN/m^2 , is to be taken as:	
$ \boxed{ P_{ld} = f_{\beta} f_{\alpha l} \rho_L [a_Z(z_0 - z) + f_{ull - l} a_X(x_0 - x) + f_{ull - l} a_Y(y_0 - y)] }_{ } $	$\underline{P_{ld}} = f_\beta \rho_L[a_Z(z_0 - z) + f_{ull - l}a_X(x_0 - x) + f_{ull - l}a_Y(y_0 - y)]$	
<pre>{omitted></pre>	〈same as the present〉	
1.4 Static pressure in flooded conditions	1.4 Static pressure in flooded conditions	
1.4.1 Static pressure in flooded compartments	1.4.1 Static pressure in flooded compartments	
The static pressure, P_{fs} in kN/m ² , for watertight boundaries of flooded compartments is to be taken as:	The static pressure, P_{fs} in kN/m ² , for watertight boundaries of flooded compartments is to be taken as:	
$P_{fs} = \rho g h_{fs}$ but not less than 0.	$P_{fs} = \rho g h_{fs}$ but not less than 0.	
where:	where:	
h_{fs} : Pressure height, in m, in flooded condition, to be taken as:	h_{fs} : Pressure height, in m, in flooded condition, to be taken as:	
$h_{fs} = \max(z_{FD} - z, y \sin\theta_{dam} + (z_{dam} - z) \cos\theta_{dam})$	$h_{fs} = \max(z_{FD} - z, y \sin\theta_{dam} + (z_{dam} - z) \cos\theta_{dam})$	
for hull local scantling according to Ch 6	for hull local scantling according to Ch 6	
$h_{fs} = y\sin\theta_{dam} + (z_{dam} - z)\cos\theta_{dam}$	$h_{fs} = y\sin\theta_{dam} + (z_{dam} - z)\cos\theta_{dam} + 1.0$	
for direct strength analysis according to Ch 7	for direct strength analysis according to Ch 7	
<pre>(newly added)</pre>	Alternatively, the worst damage water line corresponding to the damage stability calculation for every individual cargo hold may be used for direct strength assessment.	
z_{FD} : Z coordinate, in m, of the freeboard deck at side in way of the transverse section considered.	z_{FD} : Z coordinate, in m, of the freeboard deck at side in way of the transverse section considered.	
<pre>{omitted}</pre>	〈same as the present〉	

Present	Amendment	Reason
2. Pressures and forces due to container	2. Pressures and forces due to container	
2.1 Container design load	2.1 Container design load	
2.1.1 ~ 2.1.2 (omitted)	2.1.1 ~ 2.1.2 (same as the present)	
2.1.3 Dynamic force of a container The dynamic container force components of a container at the container center of gravity, in kN , is to be taken as:	2.1.3 Dynamic force of a container The dynamic container force components of a container at the container center of gravity, in kN, is to be taken as:	
$F_{\cos n-d-x-i} = M_{\cos n-i} a_X$	$F_{con-d-x-i} = M_{con-i} a_X$	
$F_{con-d-y-i} = M_{con-i} a_Y$	$F_{con-d-y-i} = M_{con-i} a_Y$	
$F_{con-d-z-i} = M_{con-i} a_Z$	$F_{con-d-z-i} = M_{con-i} a_Z$	
<newly added=""></newly>	$\frac{\text{The reference point of } a_X, a_Y \text{ and } a_Z \text{ is to be taken at the center of }}{\text{considered cargo hold.}}$	
<pre>(omitted)</pre>	〈same as the present〉	
3. Sloshing pressure in tanks	3. Sloshing pressure in tanks	
3.1 General	3.1 General	
3.1.1 Application This article applies to all fiquid cargo, ballast tanks and other tanks with volume exceeding $100\mathrm{m^3}$. (omitted)	3.1.1 Application This article applies to all ballast tanks and other tanks with volume exceeding 100 m ³ . The ballast tanks within cargo hold region need not to be considered for the sloshing pressure. ⟨same as the present⟩	

Present	Amendment	Reason
Section 7 Design load scenarios	Section 7 Design load scenarios	
Symbols	Symbols	
For symbols not defined in this section, refer to Ch 1, Sec 4. VBM : Design vertical bending moment, in kNm. (omitted) M_{sw-f} : Permissible hull girder hogging or sagging still water bending moment M_{sw-f} for seagoing operation in the flooded condition, in kNm, as defined in Ch 4, Sec 4, [2.2.4] .	For symbols not defined in this section, refer to Ch 1, Sec 4. VBM : Design vertical bending moment, in kNm. (same as the present) M_{sw-f} : Permissible hull girder hogging or sagging still water bending moment M_{sw-f} for seagoing operation in the flooded condition, in kNm, as defined in Ch 4, Sec 4, [2.2.4] . M_{sw-t} : Permissible hull girder hogging and sagging still water bending moment for tank testing, in kNm, as defined in Ch 4, Sec 4, [2.2.5].	
M_{wv-LC} : Vertical wave bending moment for a considered dynamic load case, in kNm, as defined in Ch 4, Sec 4, [3.2].	M_{wv-LC} : Vertical wave bending moment for a considered dynamic load case, in kNm, as defined in Ch 4, Sec 4, [3.2] .	
<pre>(omitted)</pre>	〈same as the present〉	
Q_{sw-f} : Permissible hull girder positive and negative still water shear force for seagoing operation in the flooded condition, in kN, as defined in Ch 4, Sec 4, [2.3.3].	Q_{sw-f} : Permissible hull girder positive and negative still water shear force for seagoing operation in the flooded condition, in kN, as defined in Ch 4, Sec 4, [2.3.3] . Q_{sw-p} : Permissible hull girder positive and negative still water shear force	
Q_{wv-LC} : Vertical wave shear force for a considered dynamic load case, in kN, as defined in Ch 4, Sec 4, [3.3] .	$\begin{array}{l} \begin{array}{l} \underset{wv-LC}{\text{limits for tank testing, in kN.}} \\ Q_{wv-LC} \end{array} : \text{Vertical wave shear force for a considered dynamic load case,} \\ & \text{in kN, as defined in Ch 4, Sec 4, [3.3].} \end{array}$	
<pre>{omitted></pre>	(same as the present)	
P_{SL} : Bottom slamming pressure, in kN/m ² , as defined in Ch 4, Sec 5, [3.2].	P_{SL} : Bottom slamming pressure, in kN/m ² , as defined in Ch 4, Sec 5, [3.2].	
P_{FB} : Bow impact pressure, in kN/m^2 , as defined in Ch 4, Sec 5, [3.3].	P_{FB} : Bow impact pressure, in kN/m^2 , as defined in Ch 4, Sec 5, [3.3]. P_{SS} : Stern slamming pressure, in kN/m^2 , as defined in Ch 4, Sec 5, [3.4].	
P_{slh} : Sloshing pressure, in kN/m ² , as defined in Ch 4, Sec 6, [3] .	P_{slh} : Sloshing pressure, in kN/m ² , as defined in Ch 4, Sec 6, [3] .	

			P	resent						Reaso						
2. C)esi	gn load scen	arios fo	or strength	assessme	ent		2. Design load scenarios for strength assessment								
2.1	Princ	cipal design lo	ad scer	narios				2.1	2.1 Principal design load scenarios							
2.1.1								2.1.1								
The I	orinci	pal design load	scenarios	are given in	Table 1.			The								
	Tabl	le 1: Principal d	esign loa	d scenarios fo	or strength a	ssessme	ənt		Table 1: Principal design load scenarios for strength assessment							
	Design load scenarioHarbour and sheltered waterSeagoing conditions with extreme sea loadsBallast water exchange(2)Accidenta I flooded condition steting ⁽²⁾							Design load scenarioHarbour and sheltered waterSeagoing conditions with extreme sea loadsBallast water exchange(2)Accidenta I flooded condition s^{(2)}								
	Loa	d components	Static (S)	Static + Dynamic (S+D)	Static + Dynamic (S+D)	Accidenta (A)	Accidenta [(A)		Loa	ad components	Static (S)	Static + Dynamic (S+D)	Static + Dynamic (S+D)	Accidenta (A)	<u>Test</u> (T)	
		VBM	M_{sw-p}	$M_{sw} + M_{uv-LC}$	$M_{sw} + M_{wv-LC}$	$M_{sw-f}^{(1)}$	$\underline{M_{sw-p}}$			VBM	M _{sw-p}	$M_{sw} + M_{uv-LC}$	$M_{sw} + M_{wv-LC}$	M _{sw-f} ⁽¹⁾	\underline{M}_{sw-t}	
Hull		HBM	-	M_{wh-LC}	M_{wh-LC}	-	-	Hull		HBM	-	M _{wh-LC}	M_{wh-LC}	-	-	
Girde r		VSF	Q_{sw-p}	$Q_{sw} + Q_{uv-LC}$	$Q_{sw} + Q_{uv-LC}$	-	Q_{sw-p}	Girde r		VSF	Q_{sw-p}	$Q_{sw} + Q_{wv-LC}$	$Q_{sw} + Q_{uv-LC}$	-	Q_{sw-t}	
		TM	-	$M_{st} + M_{ut-LC}$	$M_{st} + M_{ut-LC}$	-	-			TM	-	$M_{st} + M_{ut-LC}$	$M_{st} + M_{ut-LC}$	-	-	
	P_{ex}	External deck for green sea	-	P_D	-	-	-		P _{ex}	External deck for green sea	-	P_D	-	-	-	
		Hull envelope	P_s	$P_s + P_w$	$P_s + P_w$	-	P_s			Hull envelope	P_s	$P_s + P_w$	$P_s + P_w$	-	P_s	
		Ballast tanks	$-P_{ls}$	$P_{ls} + P_{ld}$	$P_{ls} + P_{ld}$	-	max			Ballast tanks	$-P_{ls}$	$P_{ls} + P_{ld}$	$P_{ls} + P_{ld}$	-	P	
	P_{in}	Other tanks	1 ls	Is I ld	_	-	(P_{ls}, P_{ST})		P_{in}	Other tanks	rls	$r_{ls} + r_{ld}$	_	-	\underline{P}_{ST}	
Local Load		Watertight boundaries	-	-	-	P_{fs}	-	Loca Load		Watertight boundaries	-	_	-	P_{fs}	-	
S	F_{con}	Container	F_{con-s}	$F_{con-s} + F_{con-d}$	-	-	-	s	F_{con}	Container	F_{con-s}	$F_{con-s} + F_{con-d}$	-	-	-	
		Internal decks for dry spaces	P_{dl-s}	$P_{dl-s} + P_{dl-d}$	-	-	$\underline{P_{dl-s}}$			Internal decks for dry spaces	P_{dl-s}	$P_{dl-s} + P_{dl-d}$	-	-	=	
	P_{dk}	External deck for distributed loads	P_{dl-s}	$P_{dl-s} + P_{dl-d}$	-	-	$\underline{P_{dl-s}}$		P_{dk}	External deck for distributed loads	P_{dl-s}	$P_{dl-s} + P_{dl-d}$	-	-	=	
		External deck for heavy units	F_{U-s}	$F_{U-s} + F_{U-d}$	-	_	$\underline{F_{U-s}}$			External deck for heavy units	F_{U-s}	$F_{U-s} + F_{U-d}$	_	-	=	
⁽¹⁾ <i>M</i> ⁽²⁾ Ap	f _{sw-f}	used for hull local sc le to prescriptive asse	antling of w essment only	vatertight bulkhead y.	l.			(1) j (2) A	M _{sw-f} .pplicab	used for hull local sc ble to prescriptive asse	antling of w essment onl	vatertight bulkhead y.	I.			

			Present						Reason				
2.2	Ado	ditional design loa	ad scenarios			2.2							
2.2.						2.2.							
		gn load scenarios t impact are given in		d for sloshing, bo	ottom slamming			ign load scenarios / impact are given		ered for slo	shing, botto	om slamming	
	Tab	le 2:Design load s	cenarios for im	pact and sloshing	conditions		Tab	ble 2: Design load	scenarios for	impact and	sloshing co	onditions	
		ign load scenario ad components	Bow impact Impact (I)	Bottom slamming Impact (I)	Sloshing Sloshing (SL)			sign load scenario bad components	Bow impact Impact (I)	Bottom slamming Impact (I)	<u>Stern</u> slamming Impact (I)	Sloshing Sloshing (SL)	
		VBM	_	-	M_{sw}			VBM	-	-		M _{sw}	
Hull		HBM	_	-	-	Hull		HBM	-	-		-	
Gird er		VSF	-	-	-	Gird er		VSF	-	-	=	-	
		TM			TM	-	<u>-</u> ·		-				
	P_{ex}	External deck for green sea	-	-	-		P_{ex}	External deck for green sea	-	-	=	-	
	02	Hull envelope	P_{FB}	P_{SL}	-		010	Hull envelope	P_{FB}	P_{SL}	P_{SS}	-	
		Ballast tanks	_	_	P_{slh}			Ballast tanks	_	_	_	P_{slh}	
	P_{in}	Other tanks		_	1 slh		P_{in}	Other tanks			=	1 slh	
Loc al		Watertight boundaries		-	-	Loc al		Watertight boundaries		-	=	-	
Loa ds	F_{con}	Container	-	-	-	Loa ds	F_{con}	Container	-	-	=	-	
		Internal decks for dry spaces	-	-	-			Internal decks for dry spaces	-	-	=	-	
	P_{dk}	External deck for distributed loads	-	-	_		P_{dk}	External deck for distributed loads	-	-	Ξ	-	
		External deck for heavy units	-	-	-			External deck for heavy units	-	-	Ξ	-	

Present	Amendment	Reason
Section 8 Loading Conditions	Section 8 Loading Conditions	
1. (omitted)	1. (same as the present)	
2. Design loading conditions	2. Design loading conditions	
2.1 ~ 2.3 (omitted)	2.1 ~ 2.3 (same as the present)	
2.4 Loading conditions	2.4 Loading conditions	
2.4.1 Alternative design	2.4.1 Alternative design	
For structural arrangement not covered by this section, the loading conditions, including loading pattern, corresponding draught, still water bending moment and shear forces are to be agreed by the Society.	For structural arrangement not covered by this section, the loading conditions, including loading pattern, corresponding draught, still water bending moment and shear forces are to be agreed by the Society.	
2.4.2 Standard loading conditions for cargo holds strength check	2.4.2 Standard loading conditions for cargo holds strength check	
The loading conditions to be considered for cargo hold strength check are given in Table 1.	The loading conditions to be considered for cargo hold strength check are given in Table 1.	
2.4.3 Standard loading conditions for fuel oil tanks strength check	2.4.3 Standard loading conditions for fuel oil tanks strength check	
The loading conditions to be considered for fuel oil tank strength check are given in Table 2.	The loading conditions to be considered for fuel oil tank strength check are given in Table 2.	
2.4.4 Standard loading conditions for cargo holds fatigue check	2.4.4 Standard loading conditions for cargo holds fatigue check	
The loading conditions to be considered for cargo hold fatigue check are given in Table 3.	The loading conditions to be considered for cargo hold fatigue check are given in Table 3.	

			Pro	esent							Ame	ndment				Reason
Tabl	e 1 : St	anda	rd loading conditi cargo l	ons for cargo hold region	holds stre	ength ch	neck to	Tab	le 1 : Sta	anda	ard loading conditi cargo	ions for cargo hold region	holds str	ength ch	eck to	
NL	Loading		S	Still water loads			Dynami c load cases		Loading		Ş	Still water loads			Dynami c load cases	
No	Pattern	Drau ght	Container In hold	load On deck	% of perm. SWBM	% of perm. SWSF	Midship cargo region	No	Pattern	Drau ght	Container In hold	On deck	% of perm. SWBM	% of perm. SWSF	Midship cargo region	
Seagoi B1 ³⁾	ng conditio				300000	30031	Tegion	Seago B1 ³⁾	ing condition				3000101	30031	Tegion	
F1 ³⁾	⟨omitted⟩ ⟨omitte d⟩	T _{SC}	30.5 t/FEU not exceeding max 40 ft stack weight all tanks empty	max 40 ft stack weight	100% (hog.)	≤100%	⟨omitte d⟩	F1 ³⁾	⟨same as ⟨same as the present ⟩	T _{sc}	Max 40 ft stack	max 40 ft stack weight	100% (hog.)	≤100%	⟨same as the present ⟩	
F2 ³⁾	(omitted)))		1				F2 ³⁾	(omitted)))						
F3 ³⁾	⟨omitte d⟩	0.9 <i>T_{sc}</i>	24 t/TEU not- exceeding max 20 ft stack weight all tanks empty	max 20 ft stack weight, if mixed stowage is applicable, max 20 ft + 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨omitte d⟩	F3 ³⁾	⟨same as the present ⟩	0.9 <i>T_{sc}</i>	Max 20 ft stack weight all tanks empty	max 20 ft stack weight, if mixed stowage is applicable, max 20 ft + 40 ft stack weight	100% (sag. or min. hog.)	≤100%	〈same as the present 〉	
F4 ³⁾	(omitted))		1			_	F4 ³⁾	⟨same as	s the	present>	-	1			
F5	⟨omitte d⟩	T _{SC}	30.5 t/FEU not exceeding max 40 ft stack weight all tanks empty	max 40 ft stack weight	100% (hog.)	≤100%	⟨omitte d⟩	F5	⟨same as the present ⟩	Tsc	Max 40 ft stack weight all tanks empty	max 40 ft stack weight	100% (hog.)	≤100%	⟨same as the present ⟩	
F6	⟨omitte d⟩	T _{sc}	30.5 t/FEU not exceeding max 40 ft stack weight all tanks empty	max 40 ft stack weight	100% (hog.)	≤100%	⟨omitte d⟩	F6	⟨same as the present ⟩	T _{SC}	Max 40 ft stack weight all tanks empty	max 40 ft stack weight	100% (hog.)	≤100%	⟨same as the present ⟩	
F7 ³⁾	⟨omitte d⟩	Tsc	30.5 t/FEU not- exceeding max 40 ft stack weight all fuel oil tanks full all ballast tanks full	max 20 ft stack weight, if mixed stowage is applicable, max 20 ft + 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨omitte d⟩	F7 ³⁾	⟨same as the present ⟩	Tsc	Max 40 ft stack weight all fuel oil tanks full all ballast tanks full	max 20 ft stack weight, if mixed stowage is applicable, max 20 ft + 40 ft stack weight	100% (sag. or min. hog.)	≤100%	〈same as the present 〉	
	ed condi		i						ded condi	tions	5					
A1 ⁴⁾	(omitted)	>						A1 ⁴⁾	⟨same as	s the	present>					
	ed≽							⟨same	e as the pre	esent)	>					

			Pre	esent							Ame	ndment				Reason
Table	92:Sta	anda	rd loading conditio cargo ł	ns for fuel oi nold region	l tanks st	rength c	heck in	Table	92:Sta	anda	rd loading conditio cargo l	ns for fuel oi nold region	l tanks st	rength c	heck in	
No	Loading		1	till water loads	1		Dynami c load cases		Loading		S	till water loads			Dynami c load cases	
NO	Pattern	Drau ght		load On deck	% of perm. SWBM	% of perm. SWSF	Midship cargo region	No	Pattern	Drau ght	Container In hold	load On deck	% of perm. SWBM	% of perm. SWSF	Midship cargo region	
Seagoi	ng conditic	ns		1				Soogoi	ng conditic							
OF1	⟨omitte d⟩	Tsc	30.5 t/FEU not- exceeding max 40 ft stack weight all ballast tanks empty all fuel oil tanks full	max 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨omitte d⟩	OF1	⟨same as the present ⟩		Max 40 ft stack weight all ballast tanks empty all fuel oil tanks full	max 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨same as the present ⟩	
OF2	⟨omitte d⟩	Tsc	30.5 t/FEU not- exceeding- max 40 ft stack weight all ballast tanks empty relevant fuel oil tanks are full and empty	max 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨omitte d⟩	OF2	⟨same as the present ⟩	Tsc	Max 40 ft stack weight all ballast tanks empty relevant fuel oil tanks are full and empty	max 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨same as the present ⟩	
OF3	⟨omitte d⟩	T _{sc}	30.5 t/FEU not exceeding max 40 ft stack weight all ballast tanks empty relevant fuel oil tanks are full and empty	max 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨omitte d⟩	OF3	⟨same as the present ⟩	T _{sc}	Max 40 ft stack weight all ballast tanks empty relevant fuel oil tanks are full and empty	max 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨same as the present ⟩	
OF4	<pre>(omitted</pre>	>		1				OF4	⟨same a	s the	present>	L				
OF5	⟨omitte d⟩	0.9 <i>T_{sc}</i>	max 20 ft stack weight,- if unavailable- 24t/TEU all ballast tanks empty all fuel oil tanks empty	max 20 ft stack weight, if mixed stowage is applicable, max 20 ft + 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨omitte d⟩	OF5	⟨same as the present ⟩		max 20 ft stack weight, all ballast tanks empty all fuel oil tanks empty	max 20 ft stack weight, if mixed stowage is applicable, max 20 ft + 40 ft stack weight	100% (sag. or min. hog.)	≤100%	⟨same as the present ⟩	
Ballast	conditions							Ballast	conditions	;						
⟨omitte	ed≽							⟨same	as the pr	esent	\rangle					

Present	Amendment	Reason
Chapter 6 Hull Local Scantling	Chapter 6 Hull Local Scantling	
Section 1 General	Section 1 General	
1. Application	1. Application	
1.1 Application	1.1 Application	
 1.1.1 ~ 1.1.3 (omitted) 1.1.4 Additional local strength requirements are provided in Ch 10 considering bow impact loads, bottom slamming loads and sloshing loads, and for fore end, machinery space and aft end. 	 1.1.1 ~ 1.1.3 (same as the present) 1.1.4 Additional local strength requirements are provided in Ch 10 considering bow impact loads, bottom slamming loads, stern slamming loads and sloshing loads, and for fore end, machinery space and aft end. 	
1.2 Acceptance criteria	1.2 Acceptance criteria	
1.2.1 Acceptance criteria set to be selected based on design load as follows: a) AC-S for design load S; static loads b) AC-SD for design load S+D; combination of static and dynamic loads c) AC-A for design load A; accidental loads (newly added)	 1.2.1 Acceptance criteria set to be selected based on design load as follows: a) AC-S for design load S; static loads b) AC-SD for design load S+D; combination of static and dynamic loads c) AC-A for design load A; accidental loads d) AC-T for design load T : tank testing loads 	

		Pres	sent					Amen	dment			Reas
	Sectio	n 2 Lo	ad Ap	plicat	ion		Sectio	n 2 Lo	ad Ap	plicat	ion	
. (omitte	d					1. (same	as the pr	esent>				
2. Design	load sets					2. Design	load sets					
2.1 Applica	ition of load	d compone	nts			2.1 Applica	tion of loa	d compone	nts			
omitted>						⟨same as the	·					
		Table 1: De	sign load	sets				Table 1: De	sign load	sets		
Structural member	Design load set	Load component	Draught	Design Ioad	Loading condition	Structural member	Design load set	Load component	Draught	Design Ioad	Loading condition	
External shell	<pre>(omitted)</pre>		· · · · ·			External shell	⟨same as the	present>				
and Exposed deck	<pre>(omitted)</pre>					and Exposed deck	⟨same as the	present>				
	WB-1	$P_{in} - P_{ex}^{(1)}$	T_{BAL}	S+D	Normal ballast condition		WB-1	$P_{in} - P_{ex}^{(1)}$	T_{BAL}	S+D	Normal ballast condition	
Water ballast	WB-2	$P_{in} - P_{ex}^{(1)}$	T_{BAL}	S+D	Normal ballast condition Water ballast exchange	Water ballast	WB-2	$P_{in} - P_{ex}^{(1)}$	T_{BAL}	S+D	Normal ballast condition Water ballast exchange	
tank	WB-3	$P_{in} - P_{ex}^{(1)}$	$0.25T_{S\!C}$	S	Harbour condition	tank	WB-3	$P_{in} - P_{ex}^{(1)}$	$0.25T_{S\!C}$	S	Harbour condition	
	WB-4	$P_{in} - P_{ex}^{(1)}$	$0.25T_{S\!C}$	<u>A</u>	Test condition		WB-4	$P_{in} - P_{ex}^{(1)}$	$0.25T_{S\!C}$	Ī	Test condition	
	TK-1	$P_{in} - P_{ex}^{(1)}$	T_{BAL}	S+D	Normal ballast condition		ТК-1	$P_{in} - P_{ex}^{(1)}$	T_{BAL}	S+D	Normal ballast condition	
Tanks other than water ballast tank	TK-2	$P_{in} - P_{ex}^{(1)}$	$0.25T_{S\!C}$	S	Harbour condition	Tanks other than water	ТК-2	$P_{in} - P_{ex}^{(1)}$	$0.25T_{S\!C}$	S	Harbour condition	
υσπαρί ιστικ	ТК-3	$P_{in} - P_{ex}^{(1)}$	$0.25T_{S\!C}$	<u>A</u>	Test condition	ballast tank	ТК-3	$P_{in} - P_{ex}^{(1)}$	$0.25T_{S\!C}$	Ī	Test condition	
Watertight boundaries	<pre>(omitted)</pre>		·			Watertight boundaries	⟨same as the	present>	1		1	
Dry space and hatch coaming	<pre>(omitted)</pre>					Dry space and hatch coaming	〈same as the	present〉				
	e considered for t applicable to ex		ly.			Notes: ⁽¹⁾ P_{ex} is to be ⁽²⁾ FD-1 is not	considered for applicable to ex	external shell only ternal shell.	у.			
omitted>						<pre>same as the</pre>						

	Pr	esent			Ame	endment		Reaso				
Sec	tion 3 Mi	nimum Thickn	ess	Sec	tion 3 Mi	nimum Thickn	ess					
1. Plating				1. Plating								
I.1 Minimum th	nickness require	ements		1.1 Minimum th	ickness require	ements						
1.1.1				1.1.1								
		nm, is to comply wit ven in Table 1.	th the appropriate			nm, is to comply wit ven in Table 1.	h the appropriate					
	Table 1 : Minimum	n net thickness for plating	g		Table 1 : Minimum	n net thickness for plating	1					
Element	Location	Area	Net thickness	Element	Location	Area	Net thickness					
	Keel	-	$7.5 + 0.03 L_2 \sqrt{k}$		Keel	-	$7.5\pm0.03L_2\sqrt{k}$					
		Fore Part	$5.5 + 0.03L_2\sqrt{k}$	_		Fore Part	$5.5\pm0.03L_2\sqrt{k}$					
Shell	Bottom Side shell Bilge	Machinery space, Aft part	$7.0 \pm 0.02 L_2 \sqrt{k}$	Shell	Bottom Side shell Bilge	Side shell	Side shell	Side shell	Side shell	Machinery space, Aft part	$7.0\pm0.02L_2\sqrt{k}$	
		Elsewhere	$\underline{4.5+0.03L_2\sqrt{k}}$			Elsewhere	$\underline{4.0 \pm 0.035 L_2 \sqrt{k}}$					
Breast hook	-	Fore part	6.5	Breast hook	-	Fore part	6.5					
Deck		<pre></pre>		Deck		⟨same as the present⟩						
Inner bottom ⁽¹⁾		<pre>(omitted)</pre>		Inner bottom ⁽¹⁾		⟨same as the present⟩						
Bulkheads		(omitted)		Bulkheads		⟨same as the present⟩						
Other members		<pre>(omitted)</pre>		Other members		⟨same as the present⟩						
⁽¹⁾ Applicable for bo	th tight and non tigh	nt members		⁽¹⁾ Applicable for bot	h tight and non tig	ht members						
omitted>				<pre>same as the pres</pre>	ent〉							

		Present					Amendment					
		Section 4 F	Plating				Section 4 Plating					
. Platin	g subjec	ted to lateral pre	ssure			1. Platin	g subjec	ted to lateral pre	ssure			
.1 Yield	ing check	(1.1 Yield	ing check	<				
.1.1 Plati omitted>	-					1.1.1 Plat 〈same as	the presen					
		able 1: Definition β , α	α and C_{a-r}	nax				able 1: Definition β , a	α and C_{a-1}	max		
Acceptance criteria set	S	tructural member	β	α	C_{a-max}	Acceptance criteria set	S	tructural member	β	α	C_{a-max}	
	Longitudinal	Longitudinally stiffened plating	0.9	0.5	0.8		Longitudinal	Longitudinally stiffened plating	0.9	0.5	0.8	
AC-S	strength members	Transversely stiffened plating	0.9	1.0	0.8	AC-S	strength members	Transversely stiffened plating	0.9	1.0	0.8	
		Other members	0.8	0	0.8			Other members	0.8	0	0.8	
	Longitudinal	Longitudinally stiffened plating	1.05	0.5	0.95		Longitudinal	Longitudinally stiffened plating	1.05	0.5	0.95	
AC-SD	strength members	Transversely stiffened plating	1.05	1.0	0.95	AC-SD	strength members	Transversely stiffened plating	1.05	1.0	0.95	
		Other members	1.0	0	1.0			Other members	1.0	0	1.0	
	Longitudinal	Longitudinally stiffened plating	1.10	0.5	1.0		Longitudinal strength	Longitudinally stiffened plating	1.10	0.5	1.0	
AC-A	strength members	Transversely stiffened plating	1.10	1.0	1.0	AC-A	members	Transversely stiffened plating	1.10	1.0	1.0	
		Other members	1.0	0	1.0			Other members	1.0	0	1.0	
omitted〉							Longitudinal	Longitudinally stiffened plating	<u>1.25</u>	<u>0.5</u>	<u>1.15</u>	
						<u>AC-T</u>	<u>strength</u> <u>members</u>	<u>Transversely</u> stiffened <u>plating</u>	<u>1.15</u>	<u>1.0</u>	<u>1.15</u>	
								Other members	<u>1.15</u>	<u>0.0</u>	<u>1.15</u>	

Present	Amendment	Reason
Section 5 Stiffeners	Section 5 Stiffeners	
1. Stiffeners subject to lateral pressure	1. Stiffeners subject to lateral pressure	
1.1 Yielding check	1.1 Yielding check	
1.1.1 Web plating The minimum net web thickness, t_w in mm, is not to be taken less than the greatest value calculated for all applicable design load sets as defined in Ch 6, Sec 2, [2], given by: $t_w = \frac{f_{shr} P s \ell_{shr}}{d_{shr} \chi C_t \tau_{eH}}$ with χC_t not to be taken greater than 1.0.	1.1.1 Web plating The minimum net web thickness, t_w in mm, is not to be taken less than the greatest value calculated for all applicable design load sets as defined in Ch 6, Sec 2, [2], given by: $t_w = \frac{f_{shr} P s \ell_{shr}}{d_{shr} \chi C_t \tau_{eH}}$ with χC_t not to be taken greater than 1.0.	
where:	where:	
f_{shr} : Shear force distribution factor taken as:	f_{shr} : Shear force distribution factor taken as:	
a) For continuous stiffeners with fixed ends, f_{shr} is not to be taken less than:	a) For continuous stiffeners with fixed ends, f_{shr} is not to be taken less than:	
- $f_{shr} = 0.5$ for horizontal stiffeners and upper end of vertical stiffeners.	• $f_{shr} = 0.5$ for horizontal stiffeners and upper end of vertical stiffeners.	
• $f_{shr} = 0.7$ for lower end of vertical stiffeners	• $f_{shr} = 0.7$ for lower end of vertical stiffeners	
b) For stiffeners with reduced end fixity, variable load or being part of grillage, the requirement in [1.2] applies.	b) For stiffeners with reduced end fixity, variable load or being part of grillage, the requirement in [1.2] applies.	
 C_t : Permissible shear stress coefficient for the design load set being considered, taken as: 	C_t : Permissible shear stress coefficient for the design load set being considered, taken as:	
a) $C_t = 0.75$ for acceptance criteria set AC-S.	a) $C_t = 0.75$ for acceptance criteria set AC-S.	
b) $C_t = 0.90$ for acceptance criteria set AC-SD.	b) $C_t = 0.90$ for acceptance criteria set AC-SD.	
c) $C_t = 1.00$ for acceptance criteria set AC-A.	c) $C_t = 1.00$ for acceptance criteria set AC-A.	
d) (newly added)	d) $C_t = 0.95$ for acceptance criteria set AC-T.	

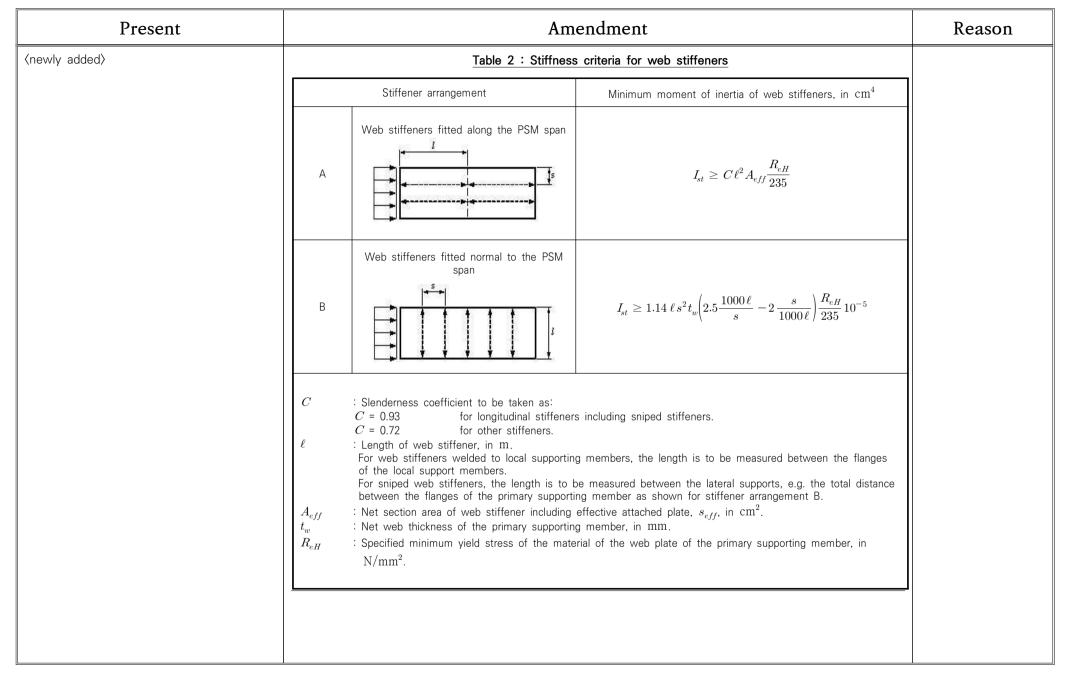
	Pre	sent				Amendment						
1.1.2 Section	n modulus				1.1.2 Sectior	1.1.2 Section modulus						
than the gre	n net section modulus, atest value calculated f a 6, Sec 2, [2.1.3], given	or all applic			than the gre	The minimum net section modulus, Z in cm ³ , is not to be taken less han the greatest value calculated for all applicable design load sets as defined in Ch 6 , Sec 2 , [2.1.3] , given by:						
$Z = \frac{ P s \ell_{bd}^2}{f_{bdg} \chi C_s R}$	$rac{g}{R_{eH}}$ with $\chi C_{\!s}$ not to b	e taken grea	ater than 1.0)	$Z = \frac{ P s \ell_{bc}^2}{f_{bdg} \chi C_s I}$	$rac{dg}{R_{eH}}$ with χC_s not to b	e taken grea	ater than 1.0				
<pre>(omitted)</pre>					<same as="" td="" the<=""><td>e present></td><td></td><td></td><td></td><td></td></same>	e present>						
β_s : Co	pefficient as defined in T	able 2.			β_s : Co	pefficient as defined in 1	Table 2.					
α_s : Co	pefficient as defined in T	able 2.			α_s : Co	pefficient as defined in T	Table 2.					
$C_{s-\max}$: Co	pefficient as defined in T	able 2.			$C_{s-\max}$: Co	pefficient as defined in T	Table 2.					
<pre>(omitted)</pre>					<same as="" td="" the<=""><td>e present></td><td></td><td></td><td></td><td></td></same>	e present>						
	Table 2: Definition of	of β_s , α_s and	d $C_{s-\max}$			Table 2: Definition	of eta_s , $lpha_s$ and	d $C_{s-\max}$				
Acceptance criteria set	Structural member	β_s	α_s	$C_{s-\max}$	Acceptance criteria set	Structural member	β_s	α_s	$C_{s-\max}$			
	Longitudinal strength member	0.85	1.0	0.75		Longitudinal strength member	0.85	1.0	0.75			
AC-S	Transverse or vertical member	0.75	0	0.75	AC-S	Transverse or vertical member	0.75	0.0	0.75			
AC-SD	Longitudinal strength member	1.0	1.0	0.9	AC-SD	Longitudinal strength member	1.00	1.0	0.90			
AC-SD	Transverse or vertical member	0.9	0	0.9	AC-SD	Transverse or vertical member	0.90	0.0	0.90			
AC-A	Longitudinal strength member	1.1	1.0	1.0	AC-A	Longitudinal strength member	1.10	1.0	1.00			
AC-A	Transverse or vertical member	1.0	0	1.0		Transverse or vertical member	1.00	0.0	1.00			
<pre>(omitted)</pre>						Longitudinal strength member	<u>1.20</u>	<u>1.0</u>	<u>1.00</u>			
					<u>AC-T</u>	<u>Transverse or vertical</u> <u>member</u>	<u>1.00</u>	<u>0.0</u>	<u>1.00</u>			
					<pre> <same as="" pre="" the<=""></same></pre>	present〉						

Present	Amendment	Reason
Chapter 7 Direct Strength	Chapter 7 Direct Strength	
Analysis	Analysis	
Section 1 Strength Assessment	Section 1 Strength Assessment	
1. General	1. General	
1.1 Application	1.1 Application	
 1.1.1 ~ 1.1.4 (omitted) 1.1.5 (mewly added) A flow diagram showing the minimum requirement of finite element analysis is shown in Figure 1. 1.1.6 (omitted) 	 1.1.1 ~ 1.1.4 (same as the present) 1.1.5 Global Analysis is to be carried out for ships of length 290 m or above in accordance with the requirements in Pt 3, Annex 3-2. Cargo Hold Analysis is to be carried out for ships of length 150 m or above in accordance with the requirements in this chapter. A flow diagram showing the minimum requirement of finite element analysis is shown in Figure 1. 1.1.6 (same as the present) 	
2. <u>Net scantling</u>	2. <u>Corrosion addition</u>	
2.1 Net scantling application	2.1 <u>General</u>	
2.1.1 FE models for cargo hold FE analyses, local fine mesh FE analysis and very fine mesh FE analyses, are to be based on the net scantling approach, applying a corrosion addition as defined in Ch 3, Sec 2, Table 1. All buckling capacity assessment are to be based on corrosion addition, as defined in Ch 3, Sec 2, Table 1. ⟨omitted⟩	<pre>2.1.1 FE models for cargo hold FE analyses, local fine mesh FE analysis and very fine mesh FE analyses, are to be based on the net scantling approach, applying a corrosion addition as defined in Ch 3, Sec 2, Table 1. All buckling capacity assessment are to be based on corrosion addition, as defined in Ch 3, Sec 2, Table 1. <same as="" present="" the=""></same></pre>	

Present	Amendment	Reason
Section 2 Cargo Hold Structural Strength Analysis	Section 2 Cargo Hold Structural Strength Analysis	
1. ~ 4. 〈omitted〉	1. ~ 4. (same as the present)	
5. Analysis criteria	5. Analysis criteria	
5.1 〈omitted〉	5.1 〈same as the present〉	
5.2 Yield strength assessment	5.2 Yield strength assessment	
5.2.1 ~ 5.2.4 (omitted) 5.2.5 Shear stress correction for cut-out Except as indicated in [5.2.6], the element shear stress in way of cut-outs in webs is to be corrected for loss in shear area in accordance with the following formula. The corrected element shear stress is to be used to calculate the von Mises stress of the element for verification against the yield criteria. $\frac{\tau_{cor} = \frac{h t_{mod-n50}}{A_{shr-n50}} \tau_{elem}}{where:}$	5.2.1 ~ 5.2.4 (same as the present) 5.2.5 Shear stress correction for cut-out Except as indicated in [5.2.6], the element shear stress in way of cut-outs in webs is to be corrected for loss in shear area in accordance with the following formula. The corrected element shear stress is to be used to calculate the von Mises stress of the element for verification against the yield criteria. $\frac{\tau_{cor}}{A_{shr}} \frac{h t_{mod}}{A_{shr}} \tau_{elem}$ where:	
$\begin{split} \tau_{cor} &: \text{Corrected element shear stress, in N/mm}^2. \\ h &: \text{Height of web of girder, in mm, in way of opening, see Table 1. Where the geometry of the opening is modelled, h is to be taken as the height of web of the girder deducting the height of the modelled opening. \\ \underline{t_{mod-n50}}: \text{Modelled web thickness, in mm, in way of opening.} \\ \underline{A_{shr-n50}}: \frac{\text{Effective net shear area}}{\text{area lost of all openings, including slots for stiffeners, calculated in accordance with Ch 3, Sec 7, [1.4.8].} \\ \tau_{elem} &: \text{Element shear stress, in N/mm}^2, before correction.} \end{split}$	 τ_{cor} : Corrected element shear stress, in N/mm². h : Height of web of girder, in mm, in way of opening, see Table Where the geometry of the opening is modelled, h is to be taken as the height of web of the girder deducting the height of the modelled opening. t_{mod} : Modelled web thickness, in mm, in way of opening. Ashr : Effective shear area of web, in mm², taken as the web area deducting the area lost of all openings, including slots for stiffeners, calculated in accordance with Ch 3, Sec 7, [1.4.8]. telement shear stress, in N/mm², before correction. 	

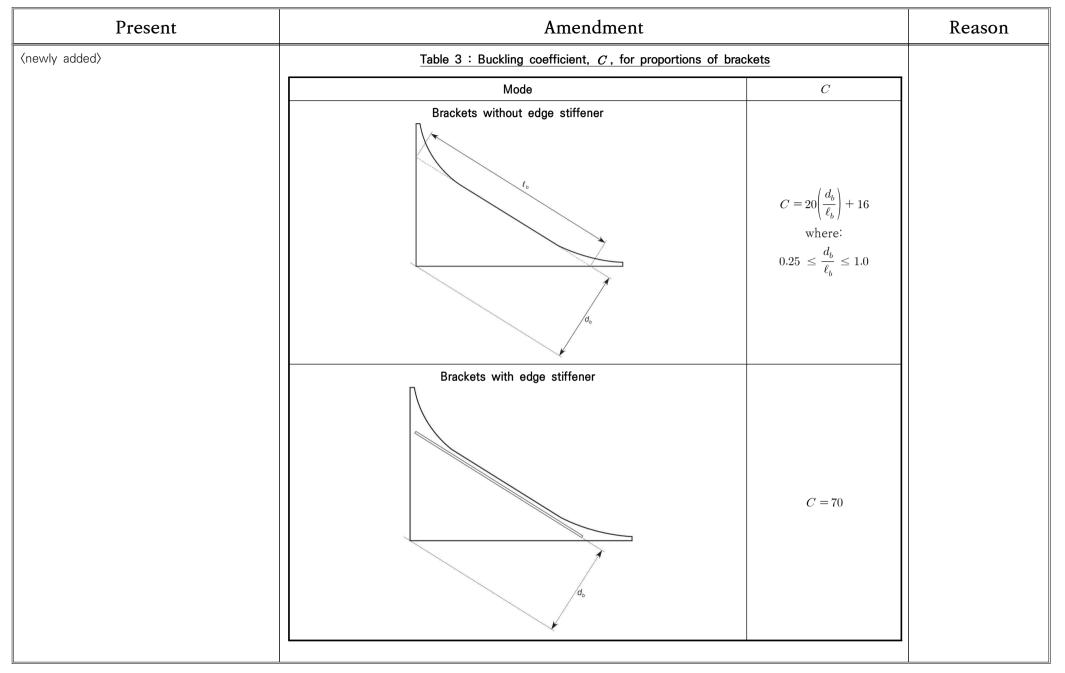
	P	resent			Am	endment		Reason
Correction of elemen required for cases g criteria given in [5.2.4]	t shear stre iven in Tabl I.	s correction for openings ass due to presence of cu e 9 provided λ_y/C_r comp s for shear stress correction		Correction of element required for cases g criteria given in [5.2.4]	t shear stre iven in Tab	s correction for openings ass due to presence of cu le 9 provided λ_y/C_r comp s for shear stress correction		
Identification	Figure	$\begin{array}{c} \mbox{Difference between modelled} \\ \mbox{shear area and the net} \\ \mbox{effective shear area in \% of} \\ \mbox{the modelled shear area} \\ \mbox{\underline{A_{FEM-n50} - A_{shr-n50}}} \bullet 100\% \end{array}$	Reduction factor for yield criteria, C_r	Identification	Figure	$\begin{array}{c} \mbox{Difference between modelled} \\ \mbox{shear area and the effective} \\ \mbox{shear area in \% of the} \\ \mbox{modelled shear area} \\ \hline \hline \frac{A_{FEM} - A_{shr}}{A_{FEM}} \cdot 100\% \end{array}$	Reduction factor for yield criteria, C_r	
Upper and lower slots for local support stiffeners fitted with lugs or collar plates	(omitted)	〈 15%	0.85	Upper and lower slots for local support stiffeners fitted with lugs or collar plates	⟨same as the present⟩	〈 15%	0.85	
Upper or lower slots for local support stiffeners fitted with lugs or collar plates	(omitted)	〈 20%	0.80	Upper or lower slots for local support stiffeners fitted with lugs or collar plates	⟨same as the present⟩	< 20%	0.80	
In way of opening; upper and lower slots for local support stiffeners fitted with collar plates	(omitted)	< 40%	0.60	In way of opening; upper and lower slots for local support stiffeners fitted with collar plates	〈same as the present〉	< 40%	0.60	
deducting	the area lost	a of web, in mm ² , taken as t of all openings, including slots with Ch 3, Sec 7, [1.4.8] .		$\frac{A_{shr}}{the area lost c} \stackrel{:}{\underset{accordance with}{\underline{A_{shr}}}} \stackrel{:}{\underset{accordance with}{\underline{A_{shr}}}}$	f all openings	in mm ² , taken as the web a , including slots for stiffeners, [1.4.8].	rea deducting calculated in	
<pre>(omitted)</pre>				〈same as the present	>			

Present	Amendment	Reason
Section 3 Local Structural Strength Analysis	Section 3 Local Structural Strength Analysis	
4. Analysis criteria	4. Analysis criteria	
4.2 Stress assessment	4.2 Stress assessment	
4.2.1 Verification of stress results against the acceptance criteria is to be carried out in accordance with [4.1] . The structural assessment is to demonstrate that the stress complies with the following criteria: $\lambda_f \leq \lambda_{fperm}$ where: $\lambda_f : \langle \text{omitted} \rangle$ $\sigma_{em} : \langle \text{omitted} \rangle$ $\sigma_{axial} : \langle \text{omitted} \rangle$ $\lambda_{fperm} : \langle \text{omitted} \rangle$ $f_f : \text{Fatigue factor, taken as:}$ • $f_f = 1.0$ in general, • $f_f = 1.2$ for details assessed by very fine mesh analysis complying with the fatigue assessment criteria given in Ch 9, Sec 2. Note 1: $\langle \text{omitted} \rangle$ Note 2: $\langle \text{omitted} \rangle$ Note 3: $\langle \text{omitted} \rangle$	4.2.1 Verification of stress results against the acceptance criteria is to be carried out in accordance with [4.1] . The structural assessment is to demonstrate that the stress complies with the following criteria: $\lambda_f \leq \lambda_{fperm}$ where: λ_f : (same as the present) σ_{cm} : (same as the present) σ_{axial} : (same as the present) λ_{fperm} : (same as the present) f_f : Fatigue factor, taken as: • $f_f = 1.0$ in general, including the free edge of base material. • $f_f = 1.2$ for details assessed by very fine mesh analysis complying with the fatigue assessment criteria given in Ch 9, Sec 2 . Note 1: (same as the present) Note 2: (same as the present) Note 3: (same as the present)	


Present Amendment Reason Chapter 8 Buckling Chapter 8 Buckling Section 1 (omitted) Section 1 (same as the present) Section 2 Slenderness requirements Section 2 (newly added) **Symbols** For symbols not defined in this section, refer to Ch 1, Sec 4, b_{f-out} : Maximum distance, in mm, from mid thickness of the web to the flange edge, as shown in Figure 1. : Depth of stiffener web, in mm, as shown in Figure 1. h_{w} : Length of stiffener between effective supports, in m : Effective width of attached plate of stiffener, in mm, taken s_{eff} equal to: $s_{eff} = 0.8 \ s$: Net flange thickness, in mm. t_{f} : Net thickness of plate, in mm. : Net web thickness, in mm. 1. Structural elements 1.1 General 1.1.1 All structural elements are to comply with the applicable slenderness and proportion requirements given in [2] and [3].

Present	Amendment	Reason
(newly added)	2. Plates	
	2.1 Net thickness of plate panels	
	$\begin{array}{c} \textbf{2.1.1}\\ \hline \text{The net thickness of plate panels is to satisfy the following criteria:}\\ \hline t_p \geq \frac{b}{C}\\ \hline where:\\ \hline C & : \text{Slenderness coefficient taken as:}\\ \hline C = 100 & \text{for hull envelope}\\ \hline C = 125 & \text{for other structures.}\\ \hline \text{This requirement does not apply to the bilge plates within the cylindrical} \end{array}$	
	part of the ship and radius gunwale.	
	<u>3. Stiffeners</u>	
	3.1 Proportions of stiffeners	
	3.1.1 Net thickness of all stiffener typesThe net thickness of stiffeners is to satisfy the following criteria:a) Stiffener web plate:	
	$t_w \geq \frac{h_w}{C_w} \sqrt{\frac{R_{eH}}{235}}$	
	b) Flange: $t_{f} \geq \frac{b_{t-out}}{C_{f}} \sqrt{\frac{R_{eH}}{235}}$	
	where: C_w , C_f : Slenderness coefficients given in Table 1 .	

Present	Amendment	Reason
<newly added=""></newly>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Figure 1 : Stiffener scantling parameters	
	Table 1: Slenderness coefficients	
	Type of Stiffener C_w C_f	
	Angle, L2 and L3 bars 75 12	
	T-bars 75 12	
	Bulb bars 45 -	
	Flat bars 22 -	
	3.1.2 Net dimensions of angle and T-bars The total flange breadth b_f in mm, for angle and T-bars is to satisfy thefollowing criterion: $b_f \ge 0.25 h_w$ 3.1.3 Bending stiffness of stiffeners The net moment of inertia, in cm ⁴ , of the stiffener with the effectivewidth of attached plate, about the neutral axis parallel to the attachedplating, is not to be less than the minimum value given by: $I_{st} \ge C\ell^2 A_{eff} \frac{R_{eH}}{235}$ where: A_{eff} : Net sectional area of stiffener including effective attached plate, $\frac{s_{eff}$, in cm ² . R_{eH} : Specified minimum yield stress of the material of the attached plate, in N/mm ² .	


Present	Amendment	Reason
(newly added)	C : Slenderness coefficient taken as:	
	C = 0.93 for longitudinal stiffeners including sniped stiffeners.	
	C = 0.72 for other stiffeners.	
	4. PRIMARY SUPPORTING MEMBERS	
	4.1 Proportions and stiffness	
	4.1.1 Proportions of web plate and flange	
	The net thicknesses of the web plates and flanges of primary supporting members are to satisfy the following criteria:	
	a) Web_plate:	
	$t_w \geq rac{s_w}{C_w} \sqrt{rac{R_{eH}}{235}}$	
	b) Flange:	
	$t_f \geq rac{b_{f-out}}{C_f} \sqrt{rac{R_{eH}}{235}}$	
	where:	
	s_w : Plate breadth, in mm, taken as the spacing of the web	
	stiffeners. C_w : Slenderness coefficient for the web plate taken as:	
	$C_w = 125$ for double skin construction	
	$C_w = 100$ elsewhere	
	C_f : Slenderness coefficient for the flange taken as:	
	$C_f = 12$	

Present	Amendment	Reason
<pre> (newly added) </pre>	4.1.2 Deck transverse primary supporting members The net moment of inertia for deck transverse primary supporting members, $I_{psm=n50}$, in cm ⁴ , supporting deck longitudinals subject to axial compressive hull girder stress, is to comply, within its central half of the bending span, with the following criterion: $I_{psm=n50} \ge 300 \frac{\ell_{hdg}^4}{S^3 s} I_{st}$ where: $I_{psm=n50}$: Net moment of inertia, in cm ⁴ , of deck transverse primary supporting member, with effective width of attached plate equal to $0.8 S$. ℓ_{hdg} : Effective bending span of deck transverse primary supporting member, in m, as defined in Ch 3, Sec 7. S : Spacing of deck transverse primary supporting members, in m, as defined in Ch 3, Sec 7. I_{et} : Moment of inertia of deck stiffeners within the central half of the bending span, in cm ⁴ , as given in [3.1.3].	
	 4.2 Web stiffeners of primary supporting members 4.2.1 Proportions of web stiffeners The net thickness of web and flange of web stiffeners fitted on primary supporting members is to satisfy the requirements specified in [3.1.1] and [3.1.2]. 4.2.2 Bending stiffness of web stiffeners The net moment of inertia, in cm⁴, of web stiffener, <i>I_{st}</i>, fitted on primary supporting members, with effective attached plate, <i>s_{eff}</i>, is not to be less than the minimum moment of inertia defined in Table 2. 	

Present	Amendment	Reason
(newly added)	5. BRACKETS	
	5.1 Tripping brackets	
	5.1.1 Unsupported flange length The unsupported length of the flange of the primary supporting member, in m, i.e. the distance between tripping brackets, is not to be greater than: $a_{f-n50} = \binom{235}{2}$	
	$S_{b} = b_{f}C \sqrt{\frac{A_{f-n50}}{\left(A_{f-n50} + \frac{A_{w-n50}}{3}\right)} \left(\frac{235}{R_{eH}}\right)}, \text{ but need not be less than } S_{b-\min}$ where:	
	b_f : Flange breadth of primary supporting members, in mm.	
	<u>C</u> : Slenderness coefficient taken as:	
	C=0.022 for symmetrical flanges.	
	$\underline{\qquad \qquad C=0.033 \qquad \text{for asymmetrical flanges.}}$	
	\underline{A}_{f-n50} : Net cross sectional area of flange, in cm ² .	
	A_{w-n50} : Net cross sectional area of the web plate, in cm ² .	
	$\underline{R_{eH}}$: Specified minimum yield stress of the PSM material, in N/mm ² .	
	$S_{b-\min}$: Minimum unsupported flange length taken as:	
	$S_{b-\min} = 3.0 \text{ m}$ for the cargo hold region, on hold boundaries or	
	the hull envelope including external decks.	
	$S_{b-\min} = 4.0 \mathrm{m}$ for other areas.	
	5.1.2 Edge stiffening	
	Tripping brackets on primary supporting members are to be stiffened by a flange or edge stiffener if the effective length of the edge, ℓ_b as defined	
	in Table 3, in mm, is greater than:	
	$\frac{\ell_b = 75 t_b}{t_b}$	
	where:	
	t_b : Bracket net web thickness, in mm.	

Present	Amendment	Reason
(newly added)	5.2 End brackets	
	5.2.1 Proportions	
	The net web thickness of end brackets, in mm, subject to compressive	
	stresses is not to be less than:	
	$t_b = \frac{d_b}{C} \sqrt{\frac{R_{eH}}{235}}$	
	where:	
	$\underline{d_b}$: Depth of brackets, in mm, as defined in Table 3 .	
	<u>C</u> : Slenderness coefficient as defined in Table 3 .	
	R_{eH} : Specified minimum yield stress of the end bracket material, in	
	<u>N/mm².</u>	
	5.3 Edge reinforcement	
	5.3.1 Edge reinforcements of bracket edges	
	The depth of stiffener web, h_w in mm, of edge stiffeners in way of	
	bracket edges is not to be less than:	
	$h_w = \frac{C \ell_b}{1000} \sqrt{\frac{R_{eH}}{235}}$ or 50 mm, whichever is greater.	
	where:	
	<u>C</u> : Slenderness coefficient taken as:	
	C=75 for end brackets.	
	$\underline{\qquad C=50 \qquad \text{for tripping brackets.}}$	
	R_{eH} : Specified minimum yield stress of the stiffener material, in	
	<u>N/mm².</u> 5.2.2 Propertiese of odge stiffeners	
	5.3.2 Proportions of edge stiffeners The net thickness of the web plate and flange of the edge stiffener is to satisfy the requirements specified in [3.1.1] and [3.1.2].	

Present	Amendment	Reason
<pre>(newly added)</pre>	6. OTHER STRUCTURES	
	6.1 Pillars	
	 6.1.1 Proportions of I-section pillars For I-sections, the thickness of the web plate and the flange thickness are to comply with requirements specified in [3.1.1] and [3.1.2]. 6.1.2 Proportions of box section pillars The thickness of thin walled box sections is to comply with the 	
	requirements specified in item (a) of [3.1.1]. 6.1.3 Proportions of circular section pillars The net thickness, t, of circular section pillars, in mm, is to comply with the following criterion:	
	$\frac{t \ge \frac{r}{50}}{\text{where:}}$ $\frac{r}{r}$: Mid thickness radius of the circular section, in mm.	
	6.2 Edge reinforcement in way of openings	
	<u>6.2.1 Depth of edge stiffener</u> When fitted as shown in Figure 2 , the depth of web, h_w in mm, of edge stiffeners in way of openings is not to be less than: $h_w = C \ell \sqrt{\frac{R_{eH}}{235}}$ or 50 mm, whichever is greater. where:	
	$\frac{C}{C} : \text{Slenderness coefficient taken as:}$ $\frac{C}{R_{eH}} : \text{Specified minimum yield stress of the edge stiffener material,}}$ $\frac{\text{in N/mm}^2}{\text{.}}$	
	6.2.2 Proportions of edge stiffeners The net thickness of the web plate and flange of the edge stiffener is to satisfy the requirements specified in [3.1.1] and [3.1.2]. - 105 -	

Present	Amendment	Reason
<pre>{newly added}</pre>	Figure 2 : Typical edge reinforcements	
Section <u>2</u> Prescriptive buckling requirements Section <u>3</u> Buckling requirements for DSA Section <u>4</u> Buckling capacity	Section <u>3</u> Prescriptive buckling requirements Section <u>4</u> Buckling requirements for DSA Section <u>5</u> Buckling capacity	
1. General	1. General	
1.1 Scope	1.1 Scope	
1.1.1 This section contains the methods for determination of the buckling capacity of plate panels, stiffeners, primary supporting members and pillars. (newly added) (omitted)	1.1.1 This section contains the methods for determination of the buckling capacity of plate panels, stiffeners, primary supporting members and pillars. As accepted by the Society, assessment of local plate panel can only be performed in accordance with Ch 8, Sec 4. (same as the present)	
Section <u>5</u> Stress based reference stresses $\langle \text{omitted} \rangle$	Section <u>6</u> Stress based reference stresses $\langle \text{same as the present} \rangle$	

Present	Amendment	Reason
Chapter 9 Fatigue	Chapter 9 Fatigue	
Section 1 General Considerations	Section 1 General Considerations	
1. Rule Application for Fatigue Requirements	1. Rule Application for Fatigue Requirements	
1.1 Scope	1.1 Scope	
1.1.1 General	1.1.1 General	
This chapter provides requirements applicable to ships having rule length L between 150 m and 500 m to evaluate fatigue strength of the ship's structural details considering an operation time in <u>North Atlantic environment</u> equal to the design fatigue life, T_{DF} .	This chapter provides requirements applicable to ships having rule length L between 150 m and 500 m to evaluate fatigue strength of the ship's structural details considering an operation time in <u>North Atlantic or worldwide environment</u> equal to the design fatigue life, T_{DF} .	
<pre>{omitted}</pre>	〈same as the present〉	

Present			Amendment	Reason
Section 2 (or	itted>		Section 2 〈same as the present〉	
Section 3 Fatigue	Evaluation		Section 3 Fatigue Evaluation	
Symbols		Symbo	ols	
For symbols not defined in this section, refer	to Ch 1, Sec 4.	For symb	pols not defined in this section, refer to Ch 1, Sec 4.	
(i) : $\langle \text{omitted} \rangle$ (j) : $\langle \text{omitted} \rangle$		(i) (j)	: (same as the present) : (same as the present)	
T_C : Time in corrosive environment, in	years, according to Table 5.	T_C	: Time in corrosive environment, in years, according to Table 5.	
T_D : Design life, in years, to be taken	as 25 years.	T_D	: Design life, in years, to be taken as 25 years.	
$T_{D\!F}$: Design fatigue life, in year, as def	ined in Ch 9, Sec 1.	T_{DF}	: Design fatigue life, in year, as defined in Ch 9, Sec 1.	
T_F : Fatigue life, in year, calculated acc	ording to [5].	T_F	: Fatigue life, in year, calculated according to [5].	
<i>m</i> : Inverse slope of the design S-N in-air environment and in Table 3 f		m	: Inverse slope of the design S-N curve, as given in Table 2 for in-air environment and in Table 3 for corrosive environment.	
The inverse slope for S-N curve from m to m+2 at N = 10^7 cycles			The inverse slope for S-N curves in-air environment changes from m to m+2 at N = 10^7 cycles.	
 n_{LC} : Number of applicable loading cond 1, [6.2]. 	itions, as defined in Ch 9, Sec	n_{LC}	: Number of applicable loading conditions, as defined in Ch 9, Sec 1, [6.2].	
f_c : Correction factor as defined in Ch	9, Sec 1, [5.1.2].	f_c	: Correction factor as defined in Ch 9, Sec 1, [5.1.2].	
f_{thick} : Correction factor for plate thickness	s effect given in [3.3].	f_{thick}	: Correction factor for plate thickness effect given in [3.3].	
$f_{mean,i(j)}$: Correction factor for mean stress	effect given in [3.2].	$f_{mean, i(j)}$: Correction factor for mean stress effect given in [3.2].	
<newly added=""></newly>		f_e	: Environmental factor, to be taken as:	
			$f_e = 1.0$ for North Atlantic wave environment	
			$f_e = 0.8$ for worldwide wave environment	

Present	Amendment	Reason
3. Reference Stresses for Fatigue Assessment	3. Reference Stresses for Fatigue Assessment	
3.1 Fatigue stress range	3.1 Fatigue stress range	
3.1.1 (omitted) 3.1.2 Welded joints For welded joints, the fatigue stress range $\Delta \sigma_{FS_i(j)}$, in N/mm ² , corrected for mean stress effect this/mean effect and worping effect is taken as:	3.1.1 (same as the present) 3.1.2 Welded joints For welded joints, the fatigue stress range $\Delta \sigma_{FS,i(j)}$, in N/mm ² , corrected for mean stress affect thickness effect and warring effect is taken as	
 for mean stress effect, thickness effect and warping effect, is taken as: For simplified stress analysis: 	for mean stress effect, thickness effect and warping effect, is taken as: • For simplified stress analysis: $\Delta \sigma_{FS,i(j)} = f_{mean,i(j)} \cdot f_{thick} \cdot f_{warp} \cdot f_e \cdot \Delta \sigma_{HS,i(j)}$	
$ \underline{\Delta\sigma_{FS,i(j)}} = f_{mean,i(j)} \bullet f_{thick} \bullet f_{warp} \bullet \Delta\sigma_{HS,i(j)} $ • For FE analysis: For web-stiffened cruciform joints: $ \Delta\sigma_{FS,i(j)} = f_w \bullet f_s \bullet \max(\Delta\sigma_{FSI,i(j)}, \Delta\sigma_{FS2,i(j)}) $ For other joints: $ \Delta\sigma_{FS,i(j)} = \max_{(SideL,SideR)} [\max(\Delta\sigma_{FSI,i(j)}, \Delta\sigma_{FS2,i(j)})] $	• For FE analysis: • For veb-stiffened cruciform joints: $\Delta \sigma_{FS,i(j)} = f_w \bullet f_s \bullet \max(\Delta \sigma_{FS1,i(j)}, \Delta \sigma_{FS2,i(j)})$ For other joints: $\Delta \sigma_{FS,i(j)} = \max_{(SdeL, SdeR)} [\max(\Delta \sigma_{FS1,i(j)}, \Delta \sigma_{FS2,i(j)})]$	
where: f_W : (omitted)	where: f_W : (same as the present)	
f_S : (omitted) $\Delta \sigma_{HS,i(j)}$: Hot spot stress range, in N/mm ² , due to dynamic loads in load case (<i>i</i>) of loading condition (<i>j</i>) given in Ch9 , Sec 4 , [2.1.1]. $\Delta \sigma_{FSI,i(j)}$: Fatigue stress range, in N/mm ² , due to the principal hot spot stress range $\Delta \sigma_{HSI,i(j)}$	f_S : (same as the present) $\Delta \sigma_{HS,i(j)}$: Hot spot stress range, in N/mm ² , due to dynamic loads in load case (<i>i</i>) of loading condition (<i>j</i>) given in Ch9, Sec 4, [2.1.1]. $\Delta \sigma_{FS1,i(j)}$: Fatigue stress range, in N/mm ² , due to the principal hot spot stress range $\Delta \sigma_{HS1,i(j)}$	
$\Delta \sigma_{F\mathfrak{D},i(j)} = f_{mean,i(j)} \bullet f_{thick} \bullet f_c \bullet \Delta \sigma_{H\mathfrak{D},i(j)}$ $\Delta \sigma_{F\mathfrak{D},i(j)} : \text{Fatigue stress range, in N/mm}^2, \text{ due to the principal hot spot} \text{ stress range } \Delta \sigma_{H\mathfrak{D},i(j)}$ $\Delta \sigma_{F\mathfrak{D},i(j)} = 0.9 \bullet f_{mean2,i(j)} \bullet f_{thick} \bullet f_c \bullet \Delta \sigma_{H\mathfrak{D},i(j)}$	$\Delta \sigma_{F\mathfrak{D},i(j)} = f_{mean.i(j)} \bullet f_{thick} \bullet f_c \bullet f_e \bullet \Delta \sigma_{H\mathfrak{D},i(j)}$ $\Delta \sigma_{F\mathfrak{D},i(j)} : \text{Fatigue stress range, in N/mm}^2, \text{ due to the principal hot spot}$ stress range $\Delta \sigma_{H\mathfrak{D},i(j)}$ $\Delta \sigma_{F\mathfrak{D},i(j)} = 0.9 \bullet f_{mean2.i(j)} \bullet f_{thick} \bullet f_c \bullet f_e \bullet \Delta \sigma_{H\mathfrak{D},i(j)}$	
Side L, Side R : $\langle \text{omitted} \rangle$ $\langle \text{omitted} \rangle$	Side L, Side R : (same as the present) (same as the present)	

Present	Amendment	Reason
3.2 Mean stress effect	3.2 Mean stress effect	
3.2.1 Correction factor for mean stress effect The mean stress correction factor to be considered for each principal hot spot stress range of welded joint. $\Delta \sigma_{BSi(j)}$, or for local stress range at free edge, $\Delta \sigma_{BSi(j)}$, is taken as: a) For welded joint: (omitted) b) For base material: (omitted) where: $\sigma_{mCor,i(j)} = \begin{cases} \sigma_{mean,i(j)} & \text{for } \sigma_{max} \leq R_{eEj} \\ R_{eEj} - \sigma_{max} + \sigma_{mean,i(j)} & \text{for } \sigma_{max} > R_{eEj} \end{cases}$ $\sigma_{max} = \begin{cases} \max_{i,(j)} (\Delta \sigma_{BSi(j)} + \sigma_{mean,i(j)}) & \text{for } base material \end{cases}$ $R_{eEj} = \max(315; ReE)$ $\sigma_{mean,i(j)}$: Fatigue mean stress, in N/mm², for base material according to [3.2.2] or welded joint calculated according to [3.2.3] or [3.2.4] as applicable. (omitted)	3.2.1 Correction factor for mean stress effect The mean stress correction factor to be considered for each principal hot spot stress range of welded joint, $\Delta \sigma_{HSi}(j)$, or for local stress range at free edge, $\Delta \sigma_{DSi}(j)$, is taken as: a) For welded joint: (same as the present) b) For base material: (same as the present) where: $\sigma_{mCor,i(j)} = \begin{cases} \sigma_{mean,i(j)} & \text{for } \sigma_{max} \leq R_{eEl} \\ R_{eEl} - \sigma_{max} + \sigma_{mean,i(j)} & \text{for } \sigma_{max} > R_{eEl} \end{cases}$ $\sigma_{max} = \begin{cases} \max_{i,(j)} (\Delta \sigma_{HSi}(j) + \sigma_{mean,i(j)}) & \text{for } base material \\ \max_{i,(j)} (\Delta \sigma_{DSi}(j) + \sigma_{mean,i(j)}) & \text{for } base material \\ R_{eEl} = \max(315; R_{eH}) \end{cases}$ $\sigma_{mean,i(j)} : Fatigue mean stress, in N/mm², for base material according to [3.2.2] or welded joint calculated according to [3.2.3] or [3.2.4] as applicable. (same as the present)$	

Present		Amendmen	it	Reason
4. 〈omitted〉		4. (same as the present)		
5. Fatigue Damage Calculation		5. Fatigue Damage Calculation		
5.1 ~ 5.2 〈 omitted〉		5.1 ~ 5.2 〈same as the present〉		
5.3 Combined fatigue damage		5.3 Combined fatigue damage		
5.3.1 The combined fatigue damage in protecular protected corrosive environment for each calculated as follows: $D_{(j)} = D_{E,air(j)} \cdot \frac{T_D - T_C}{T_D} + D_{E,corr(j)} \cdot \frac{T_C}{T_D}$ where: $D_{E,air(j)}$: The elementary fatigue damage loading condition (j) given in [5.2, $D_{E,corr(j)}$: The elementary fatigue damage loading condition (j) as calculated as follows:	loading condition (<i>j</i>) is to be e for in-air environment for 2.1]. for corrosive environment for	5.3.1 The combined fatigue damage in protect unprotected corrosive environment for each calculated as follows: $D_{(j)} = D_{E,air(j)} \cdot \frac{T_D - T_C}{T_D} + D_{E,corr(j)} \cdot \frac{T_C}{T_D}$ where: $D_{E,air(j)} : \text{ The elementary fatigue damage}$ loading condition (j) given in [5.2] $D_{E,corr(j)} : \text{ The elementary fatigue damage}$ loading condition (j) as calculate	loading condition (<i>j</i>) is to be e for in-air environment for 2.1]. for corrosive environment for	
Table 5 : Time in corrosive e	nvironment, T _C	Table 5 : Time in corrosive e	nvironment, T _C	
Location of weld joint or structural detail	Time in corrosive environment T_C , in years	Location of weld joint or structural detail	Time in corrosive environment T_C , in years	
Water ballast tank	10	Water ballast tank	5	
Cargo hold	<u></u>	Cargo hold		
Void space Other areas	<u>5</u>	Void space Other areas	<u>0</u>	

Present	Amendment	Reason
Section 5 Finite Element Stress Analysis	Section 5 Finite Element Stress Analysis	
1. ~ 3. (omitted)	1. ~ 3. (same as the present)	
4. Hot Spot Stress for Web-Stiffened Cruciform Joint	4. Hot Spot Stress for Web-Stiffened Cruciform Joint	
4.1 〈omitted〉	4.1 〈same as the present〉	
4.2 Calculation of hot spot stress at the flange	4.2 Calculation of hot spot stress at the flange	
4.2.1	4.2.1	
For hot spot at the flange of web-stiffened cruciform joints, the surface principal stress is to be read out from a point shifted away from the intersection line between the considered member and abutting member to the position of the actual weld toe and multiplied by 1.12. The intersection line is taken at the mid-thickness of the cruciform joint assuming a median alignment.	For hot spot at the flange of web-stiffened cruciform joints, the surface principal stress is to be read out from a point shifted away from the intersection line between the considered member and abutting member to the position of the actual weld toe and multiplied by 1.12. The intersection line is taken at the mid-thickness of the cruciform joint assuming a median alignment.	
The hot spot stress, in N/mm ² , is to be obtained as:	The hot spot stress, in N/mm ² , is to be obtained as:	
$\sigma_{\rm HS} = 1.12 \sigma_{shift}$	$\sigma_{HS} = 1.12 \sigma_{shift}$	
where:	where:	
$\sigma_{\it shift}$: Surface principal stress, in N/mm², at shifted stress read out position.	σ_{shift} : Surface principal stress, in N/mm², at shifted stress read out position.	
The stress read out point shifted away from the intersection line is obtained as:	The stress read out point shifted away from the intersection line is obtained as:	
$\underline{x_{shift} = \frac{t_{1-n50}}{2} \times x_{Wt}}$	$x_{shift} = \frac{t_{1-n50}}{2} + x_{wt}$	
where:	where:	
t_{1-n50} : Net plate thickness of the plate number 1, in mm, as shown in Figure 10.	t_{1-n50} : Net plate thickness of the plate number 1, in mm, as shown in Figure 10.	
x_{wt} : Extended fillet weld leg length, in mm, as defined in Figure 10, not taken larger than t_{1-n50} .	x_{wt} : Extended fillet weld leg length, in mm, as defined in Figure 10, not taken larger than t_{1-n50} .	
<pre>(omitted)</pre>	〈same as the present〉	

Present	Amendment	Reason
Section 6 Detail Design Standard	Section 6 Detail Design Standard	
1. General	1. General	
1.1 〈omitted〉	1.1 (same as the present)	
1.2 Application	1.2 Application	
 1.2.1 The structural details described in this section are to be designed according to the given design standard but alternative detail design configurations may be accepted subject to demonstration of satisfactory fatigue performance. For the details given in Ch 9, Sec 2, Table 3, the fatigue assessment by very fine mesh finite element analysis may be omitted if the detail is designed in accordance with the design standard given in this section. 	1.2.1 The structural details described in this section are to be designed according to the given design standard but alternative detail design configurations may be accepted subject to demonstration of satisfactory fatigue performance.	
2. Stiffener-Frame Connections	2. Stiffener-Frame Connections	
2.1 Design standard A	2.1 Design standard A	
2.1.1 Designs for cut outs in cases where web stiffeners are omitted or not connected to the longitudinals are <u>required</u> to adopt tight collar or the improved design standard "A" as shown in Table 1 or equivalent, for the following members: • Side shell below $1.1T_{SC}$.	2.1.1 Designs for cut outs in cases where web stiffeners are omitted or not connected to the longitudinals are <u>recommended</u> to adopt tight collar or the improved design standard "A" as shown in Table 1 or equivalent, for the following members: • Side shell below $1.1T_{SC}$.	
• Bottom. • Inner hull longitudinal bulkhead below $1.1T_{SC}$.	• Bottom. • Inner hull longitudinal bulkhead below $1.1T_{SC}$	
 Inner bottom. For designs that are different from those shown in Table 1, satisfactory fatigue performance may be demonstrated by, e.g., using comparative FE analysis according to [2.2]. (omitted) 	 Inner bottom. For designs that are different from those shown in Table 1, satisfactory fatigue performance may be demonstrated by, e.g., using comparative FE analysis according to [2.2]. (same as the present) 	

Present	Amendment	Reason
Chapter 10 Other Structures	Chapter 10 Other Structures	
Section 1 Fore Part	Section 1 Fore Part	
Symbols	Symbols	
For symbols not defined in this section, refer to Ch 1, Sec 4. $\langle \text{omitted} \rangle$ n_s : $\langle \text{omitted} \rangle$	For symbols not defined in this section, refer to Ch 1, Sec 4. $\langle \text{same as the present} \rangle$ n_s : $\langle \text{same as the present} \rangle$ $\underline{d_{shr}}$: Effective web depth of stiffener, in mm, as defined in Ch 3 , <u>Sec 7 [1.4.3]</u>	
3. Structure subjected to impact loads	3. Structure subjected to impact loads	
3.1 (omitted)	3.1 (same as the present)	
3.2 Bottom slamming	3.2 Bottom slamming	
3.2.1 Application Where the minimum draughts forward, T_{F-e} or T_{F-f} , as specified in Ch 4, Sec 5, [3.2.1] , are less than 0.045L, the bottom forward is to be additionally strengthened to resist bottom slamming pressures.	3.2.1 Application Where the minimum draughts forward, T_F , as specified in Ch 4 , Sec 5 , [3.2.1], are less than 0.045 <i>L</i> , the bottom forward is to be additionally strengthened to resist bottom slamming pressures.	
The draughts for which the bottom has been strengthened are to be indicated on the shell expansion plan and loading guidance information, as required in Ch 1, Sec 5.	The draughts for which the bottom has been strengthened are to be indicated on the shell expansion plan and loading guidance information, as required in Ch 1, Sec 5.	
The load calculation point of the primary supporting members is specified in Ch 3, Sec 7, [4].	The load calculation point of the primary supporting members is specified in Ch 3, Sec 7, [4].	
3.2.2 (omitted)	3.2.2 (same as the present)	
3.2.3 Design to resist bottom slamming loads	3.2.3 Design to resist bottom slamming loads	
The design of end connections of stiffeners in the bottom slamming region is to provide end fixity, either by making the stiffeners continuous through supports or by providing end brackets complying with Ch 3 , Sec 6 , [3.2] .	The design of end connections of stiffeners in the bottom slamming region is to provide end fixity, either by making the stiffeners continuous through supports or by providing end brackets complying with Ch 3, Sec 6, [3.2] .	

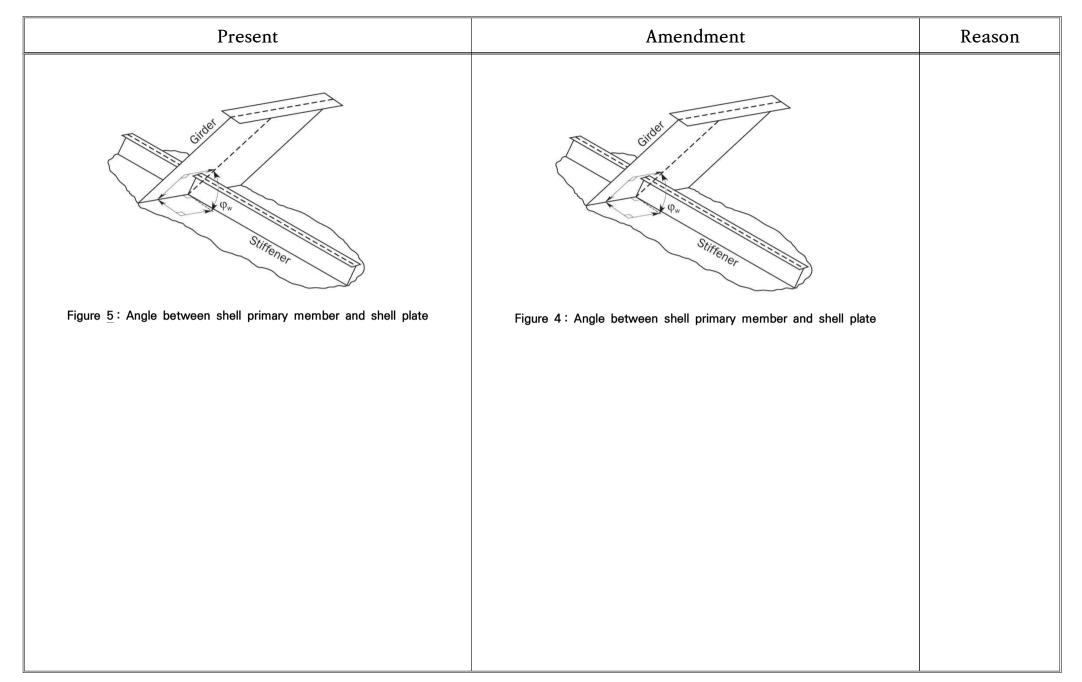
Present	Amendment	Reason
Where it is not practical to comply with this requirement, the net plastic section modulus, Z_{pl-alt} , in cm ³ , for alternative end fixity arrangements is not to be less than:		
$Z_{pl-alt} = \frac{16Z_{pl}}{f_{blq}}$		
where:		
Z_{pl} : Net plastic section modulus, in cm ³ , as required by [3.2.5].		
Scantlings and arrangements of primary supporting members, including bulkheads in way of stiffeners, are to comply with [3.2.7] .	Scantlings and arrangements of primary supporting members, including bulkheads in way of stiffeners, are to comply with [3.2.6] .	
3.2.4 Shell plating	3.2.4 Shell plating	
The net thickness of the hull envelope plating, t , in mm, except for the transversely stiffened bilge plating within the cylindrical part of the ship, is not to be less than:	The net thickness of the hull envelope plating, t in mm, except for the transversely stiffened bilge plating within the cylindrical part of the ship, is not to be less than:	
$\underline{t = \frac{0.0158\alpha_p b}{C_d} \sqrt{\frac{P_{SL}}{C_a R_{eH}}}}$	$\underline{t = \frac{0.0158\alpha_p b}{C_d} \sqrt{\frac{P_{SL}}{R_{eH}}}}$	
where:	C_d : Plate capacity correction coefficient taken as:	
C_d : plate capacity correction coefficient taken as:	$C_d = 1.22$	
$\frac{C_d = 1.3.}{C_d = 1.3}$		
C_a : Permissible bending stress coefficient taken as:		
$\frac{C_a = 1.0 \text{ for acceptance criteria set AC-I}}{\text{The transversely stiffened bilge plating within the cylindrical part of the ship is to comply with the requirement given in Ch 6, Sec 4, [2.2].}$		

Present	Amendment	Reason
3.2.5 Shell stiffeners	3.2.5 Shell stiffeners	
The shell stiffeners within the strengthening area defined in [3.2.2] are to comply with the following criteria:	The shell stiffeners within the strengthening area defined in [3.2.2] are to comply with the following criteria:	
a) The net plastic section modulus, $Z_{ hold l}$, in ${ m cm}^3$,is not to be less than:	a) The net web thickness, t_w in mm, is not to be less than:	
$Z_{pl} = rac{P_{SL} s \ell_{blg}^2}{f_{blg} C_s R_{eH}}$	$t_w = \frac{0.35 P_{SL} s \ell_{shr}}{d_{shr} \tau_{eH}}$	
where :	a) The net plastic section modulus, Z_{pl} in cm ³ , is not to be less than:	
C_s : Permissible bending stress coefficient taken as: $C_s = 0.9$ for acceptance criteria set AC-I.	$Z_{pl} = rac{0.6 P_{SL} s \ell_{bdg}^2}{f_{bdg} R_{eH}}$	
b) The net web thickness, t_w , in mm, is not to be less than:		
$t_w = \frac{P_{S\!L} s \ell_{shr}}{2d_{shr} C_t \tau_{eH}}$		
where:		
C_t : Permissible shear stress coefficient taken as:		
$C_t = 1.0$ for acceptance ariteria set AC-I.		
3.2.6 Bottom slamming load area for primary supporting members	3.2.6 〈del〉	
The scantlings of primary supporting members according to [3.2.7] are based on the application of the slamming pressure defined in Ch 4, Sec 5,		
[3.2] to an idealised slamming load area of hull envelope plating, $A_{S\!L}$, in		
m ² , given by:		
$A_{SL} = \frac{1.1 LB C_b}{1000}$		

Present	Amendment	Reason
2.7 Primary supporing members	3.2.6 Primary supporting members	
ne size and number of openings in web plating of the floors and girders to be minimised considering the required shear area as given in a):	The size and number of openings in web plating of the floors and girders is to be minimised considering the required shear area. The shear area,	
a) Net shear area The net shear area, $A_{shr-n50}$, in cm ² , of each primary supporting member web at any position along its span is not to be less than: $A_{shr-n50} = 10 \frac{Q_{SL}}{C_t \tau_{eH}}$		
where : Q _{SL} : The greatest shear force due to slamming for the position being cosidered, in kN, based on the application of a patch load, F_{SL} to the most onerous location, as determined in accordance with b) or c). C_r : Permissible shear stress coefficient taken as:		
C_t		
For simple arrangements of primary supporting members, where the grillage affect may be ignored, the shear force, Q_{SL} , in kN, is given by:		
$Q_{SL} = f_{pt} f_{dist} F_{SL}$		
where: f_{pt} : Correction factor for the proportion of patch load acting on a single primary supporting member, taken as: 		
f_{SL} : Patch load modification factor taken as: $f_{SL} = 0.5 \frac{b_{SL}}{S}$		
<i>f_{dist}</i> : Factor for the greatest shear force distribution along the span, according to Figure 3		

Present	Amendment	Reason
$F_{SL} = P_{SL}t_{SL}b_{SL}$ $f_{SL} = P_{SL}t_{SL}b_{SL}$ $f_{SL} = f_{SL} = P_{SL}t_{SL}b_{SL}$ $f_{SL} = f_{SL} = P_{SL}t_{SL}b_{SL}$ $f_{SL} = f_{SL} = f_{SL}t_{SL}b_{SL}$ $f_{SL} = f_{SL} = f_{SL}t_{SL}b$		

Present	
c) Direct calculation method for slamming shear force For complex arrangements of primary supporting greatest shear force, Q_{SL} , at any location along the primary supporting member is to be derived by direct accordance with Table 1 . d) Web thickness of primary supporting member The net web thickness, t_w , in mm, of primary supporting adjacent to the shell is not to be less than: $t_w = \frac{s_W}{70} \sqrt{\frac{R_{eH}}{235}}$ where: s_W : plate breath, in mm, taken as the sp	span of each t calculation in prting members
analysis Woder extent Beam- theory Overall span of member between effective- bending supports. Fixed at a Double- Longitudinal extent to be one cargo tank- length Floors and	ends ends d girders to be- boundaries of- et. mary supporting n a square area span.


Present	Amendment	Reason
3.3 Bow impact	3.3 Bow impact	
3.3.1 Application The side structure in the ship forward area is to be strengthened against bow impact pressures. The strengthening isto extend forward of 0.1 <i>L</i> from the FP and vertically above the minimum design ballast draught, T_{BAL} , defined in Ch 1, Sec 4, [3.1.5] and forecastle deck if any. See Figure 4. Outside the strengthening area the scantlings are to be tapered to maintain continuity of longitudinal and/or transverse strength.	3.3.1 Application The side structure in the ship forward area is to be strengthened against bow impact pressures. 3.2.2 Extent of strengthening The strengthening is to extend forward of 0.1 <i>L</i> from the FP and vertically above the minimum design ballast draught, T_{BAL} , defined in Ch 1, Sec 4, [3.1.5] and forecastle deck if any. See Figure 3. If the flare angle, α as defined in Ch 4, Sec 5, [3.3.1] , is greater than 40° at 0.1 <i>L</i> from F.E., the bow impact area shall be extended to 0.15 <i>L</i> from F.E. Outside the strengthening area the scantlings are to be tapered to maintain continuity of longitudinal and/or transverse strength.	
Figure 4: Extent of strengthening against bow impact	Figure 3: Extent of strengthening against bow impact	
3.3.2 Design to resist bow impact loads	3.3.3 Design to resist bow impact loads	
a) In the bow impact strengthening area, longitudinal framing is to be carried as far forward as practicable. The design of end connections of stiffeners in the bow impact region are to ensure end fixity, either by making the stiffeners continuous through supports or by providing end brackets complying with Ch 3 , Sec 6 , [3.2]. Where it is not practical to comply with this requirement, the net plastic section modulus, Z_{pl-alt} , in cm ³ , for alternative end fixity arrangements is not to be less than:	 a) In the bow impact strengthening area, longitudinal framing is to be carried as far forward as practicable. The design of end connections of stiffeners in the bow impact region are to ensure end fixity, either by making the stiffeners continuous through supports or by providing end brackets complying with Ch 3, Sec 6, [3.2]. 	

Present	Amendment	Reason
$\begin{split} & -Z_{pl-alt} = \frac{16Z_{pl}}{f_{bdg}} \\ & \text{where:} \\ & Z_{pl} & \vdots & \text{Effective net plastic section modulus, in cm}^3, \text{ required} \end{split}$		
 by [3.3.4]. b) Scantlings and arrangements of primary supporting members, including decks and bulkheads, in way of the stiffeners, are to comply with [3.3.6]. In areas of the greatest bow impact load, the web stiffeners arranged perpendicular to the hull envelope plating and the double sided lug connections are to be provided. 	 b) Scantlings and arrangements of primary supporting members, including decks and bulkheads, in way of the stiffeners, are to comply with [3.3.6]. In areas of the greatest bow impact load, the web stiffeners arranged perpendicular to the hull envelope plating and the double sided lug connections are to be provided. 	
The main stiffening direction of decks and bulkheads supporting shell framing is to be arranged parallel to the span direction of the supported shell frames, to protect against buckling.	The main stiffening direction of decks and bulkheads supporting shell framing is to be arranged parallel to the span direction of the supported shell frames, to protect against buckling.	
3.3.3 Side shell plating	3.3.4 Side shell plating	
The net thickness of the side shell plating, t , in mm is not to be less than:	The net thickness of the side shell plating, t in mm is not to be less than:	
$\underline{t=0.0158\alpha_p b}\sqrt{\frac{P_{FB}}{C_a R_{eH}}}$	$\underline{t = \frac{0.0158\alpha_p b}{C_d} \sqrt{\frac{P_{FB}}{R_{eH}}}}$	
where:	C _d : Plate capacity correction coefficient taken as:	
C _a : Permissible bending stress coefficient taken as:	$C_d = 1.22$	
$C_a = 1.0$ for acceptance criteria set AC-I.		
3.3.4 Side shell stiffeners	3.3.5 Side shell stiffeners	
The side shell stiffeners within the strengthening area defined in [3.3.1] are to comply with the following criteria:	The side shell stiffeners within the strengthening area defined in [3.3.2] are to comply with the following criteria:	
a) The effective net plastic section modulus, Z_{pl} , in cm ³ in association with the effective plating to which it is attached, is not to be less than:	a) The net web thickness, t_w in mm, is not to be less than: $t_w = \frac{0.35 P_{FB} s \ell_{shr}}{d_{shr} \tau_{eH}}$	
$Z_{pl} = rac{P_{FB} s \ell_{bdg}^2}{f_{bdg} C_s R_{eH}}$		
where:-		
C_s : Permissible bending stress coefficient taken as:		
$C_s = 0.9$ for acceptance criteria set AC-I.		

Present	Amendment	Reason
b) The net web thickness, t_w , in mm, is not to be less than:	b) The net plastic section modulus, Z_{pl} in ${ m cm}^3$, is not to be less than:	
$t_w = \frac{P_{FB} s \ell_{shr}}{2 d_{shr} C_t \tau_{cH}}$	$Z_{pl} = rac{0.6 P_{FB} s \ell_{bdg}^2}{f_{bdg} R_{eH}}$	
where:		
d_shr: Effective web depth of stiffener, in mm, as defined in Ch 3, Sec 7, [1.4.3].		
C_t : Permissible shear stress coefficient taken as:		
3.3.5 Bow impact load area for primary supporting members	3.3.5 (del)	
The scantlings of primary supporting members according to [3.3.6] are based on the application of the bow impact pressure, as defined in Ch 4, Sec 5, [3.3.1], to an idealised bow impact load area of hull envelope plating, A_{BI} , in m ² , is given by: $A_{BI} = \frac{1.1 LB C_b}{1000}$		
3.3.6 Primary supporting members	3.3.6 Primary supporting members	
 a) The section modulus of the primary supporting member is to apply along the bending span clear of end brackets and cross sectional areas of the primary supporting member are to be applied at the ends/supports and may be gradually reduced along the span and clear of the ends/supports following the distribution of f_{dist}, indicated 		
in Figure 3.		
b) Primary supporting members in the bow impact strengthening area are to be configured to provide effective continuity of strength and the avoidance of hard spots.	 a) Primary supporting members in the bow impact strengthening area are to be configured to provide effective continuity of strength and the avoidance of hard spots. 	
c) End brackets of primary supporting members are to be suitably stiffened along their edge. Consideration is to be given to the design of bracket toes to minimise abrupt changes of cross section.	 b) End brackets of primary supporting members are to be suitably stiffened along their edge. Consideration is to be given to the design of bracket toes to minimise abrupt changes of cross section. 	
d) Tripping arrangements are to comply with Ch 8, Sec 2, [5.1.1] . In addition, tripping brackets are to be fitted at the toes of end brackets and at locations where the primary supporting member flange is knuckled or curved.	c) Tripping brackets are to be fitted at the toes of end brackets and at locations where the primary supporting member flange is knuckled or curved.	

Present	Amendment	Reason
) The net section modulus of each primary supporting member, Z_{n50} , in cm ³ , is not to be less than: $Z_{n50} = 1000 \frac{f_{bdg-pt} P_{FB} b_{BI} f_{BI} \ell_{bdg}^2}{f_{bdg} C_s R_{eH}}$ where: f_{bdg-pt} : Correction factor for the bending moment at the ends and considering the patch load taken as: $f_{bdg-pt} = 3f_{BI}^3 - 8f_{BI}^2 + 6f_{BI}$ f_{BI} : Patch load modification factor taken as: $f_{BI} = \ell_{BI}$ $\ell_{BI} = \ell_{BI}$ $\ell_{BI} = \sqrt{A_{BI}}$ but not to be taken as greater than ℓ_{bdg} . b_{BI} : Breadth of impact load area, in m, supported by the primary supporting member, to be taken as the spacing between primary supporting members, <i>S</i> , as defined in Ch 1 , Sec 4 , Table 5 , but not to be taken	$ \begin{array}{c} \underline{d} \mbox{ The net thickness of Primary supporting members in way of bow impact strengthening area defined in [3.3.1], t_w, in mm, is not to be less than: t_w = \frac{b}{75} \sqrt{\frac{R_{eH}}{235}} \ \\ \underline{k_w} = \frac{b}{7} \sqrt{\frac{R_{eH}}{245}} \ \\ \underline{k_w} = \frac{2 \cdot 8 \frac{P_{FB} S \ell_{shr}}{\tau_{eH}}}{\frac{\pi}{7}} \ \\ \underline{k_w} = \frac{2 \cdot 8 \frac{P_{FB} S \ell_{shr}}{\tau_{eH}}}{\frac{\pi}{7}} \ \\ \underline{k_w} = \frac{b}{7} \sqrt{\frac{R_{eH}}{245}} \ \\ \underline{k_w} = \frac{b}{7} \sqrt{\frac{R_{eH}}{245$	
as greater than ℓ_{BI} . A_{BI} : Bow impact load area, in m^2 , as defined in [3.3.5]. f_{bdg} : Bending moment factor taken as: $f_{bdg} = 12$ for primary supporting members with endfixed continuous flange or where brackets at both ends are fitted inaccordance with Ch 3, Sec 6, [4.4]. C_s : Permissible bending stress coefficient taken as: $C_s = 0.8$ for acceptance criteria set AC-I.		

Present	Amendment	Reason
f) The net shear area of the web, $A_{shr-n50}$, in cm ² , of each primary supporting member at the support/toe of end brackets is not to be less than:		
$A_{shr-n50} = \frac{5f_{PL}P_{FB}b_{BI}\ell_{shr}}{C_t\tau_{eH}}$		
where:		
f _{PL} : Patch load modification factor taken as:		
ℓ_{BI} : Extent of bow impact load area, in m, along the span taken as:		
$\ell_{BI} = \sqrt{A_{BI}}$ but not greater than ℓ_{shr} .		
C_t : Permissible shear stress coefficient taken as:		
$C_t = 0.75$ for acceptance criteria set AC-I.		
g) The net web thickness of each primary supporting member, t_w , in mm, including decks/bulkheads in way of the side shell is not to be less than:		
$t_w = \frac{P_{FB} b_{BI}}{\sin \varphi_w \sigma_{cr}}$		
where :		
φ_w : Angle, in deg, between the primary supporting member web and the shell plate, see Figure 5 .		
σ_{cr} : Critical buckling stress in compression of the web of		
the primary supporting member or deck/bulkhead panel in way of the applied load given by Ch 8, Sec 5, [1.1.3], in N/mm ² . In the calculation, both σ_x and σ_y given in Ch 8, Sec 5, [1.1.3] are to be considered and		
UP-B is to be applied.		

Present	Amendment	Reason
Section 3 Aft part	Section 3 Aft part	
4. (omitted)	4. (same as the present)	
5. (newly added)	5. Structure subjected to impact loads	
	5.1 General	
	5.1.1 Application The requirements of this sub-section cover the strengthening requirements for local impact loads that may occur in the stern bottom structure of the ships with length $L \ge 150$ m. The stern slamming loads, P_{SS} , to be applied in [5.2] are described in Ch 4, Sec 5, [3]. The requirements of [5.2] are to be applied in addition to applicable scantling requirements in Ch 6.	
	5.2 Stern slamming	
	5.2.1 Application The stern bottom structure is to be strengthened against stern slamming pressures. 5.2.2 Extent of strengthening In general the strengthening is to extend aft of 0.1 <i>L</i> forward of AE and vertically above the minimum design ballast draught, T_{AE} , defined in Ch 1, Sec 4, Table 2. Outside the strengthening area the scantlings are to be tapered to maintain continuity of longitudinal and / or transverse strength. 5.2.3 Side shell plating The net thickness of the side shell plating, <i>t</i> in mm, is not to be less than: $\frac{t = \frac{0.0158\alpha_p b}{C_d} \sqrt{\frac{P_{SS}}{R_{eH}}}$ C_d : Plate capacity correction coefficient taken as: $\frac{C_d = 1.22}$	

Present	Amendment	Reason
	5.2.4 Side shell stiffeners	
	The side shell stiffeners within the strengthening area defined in [5.2.2] are to comply with the following criteria:	
	a) The net web thickness, t_w in mm, is not to be less than:	
	$t_w = \frac{0.35 P_{S\!S} s\ell_{shr}}{d_{shr}\tau_{eH}}$	
	b) The net plastic section modulus, Z_{pl} in cm ³ , is not to be less than:	
	$Z_{pl} = \frac{0.6 P_{S\!S} s \ell_{bdg}^2}{f_{bdg} R_{eH}}$	
	5.2.5 Primary supporting members	
	The size and number of openings in web plating of the floors and girders is to be minimised considering the required shear area as given:	
	<u>a) Section modulus</u>	
	The section modulus of each primary supporting member, Z in cm^3 , is not to be less than:	
	$Z = \frac{400 P_{SS} S \ell_{bdg}^2}{f_{bdg} R_{eH}} \text{with} \ f_{bdg} \text{ is not to be taken less than 10}$	
	<u>b) Shear area</u>	
	The shear area, A_{shr} , in cm ² , of each primary supporting member web at any position along its span	
	is not to be less than: $A_{shr} = \frac{2.8 P_{SS} S \ell_{shr}}{\tau_{eH}}$	

	Reason
Section 4 Tanks subject to sloshing	
Symbols	
For symbols not defined in this section, refer to Ch 1, Sec 4. α_p : Correction factor for the panel aspect ratio to be taken as: $\alpha_p = 1.2 - \frac{b}{2.1a}$ but not to be taken as greater than 1.0 a : Length of plate panel, in mm, as defined in Ch 3, Sec 7, [2.1.1]. b : Breadth of plate panel, in mm, as defined in Ch 3, Sec 7, [2.1.1]. ℓ_{bdg} : Effective bending span, as defined in Ch 3, Sec 7, [1.1.2], in m. ℓ_{tk-h} : Effective sloshing length, in m, as defined in Ch 4, Sec 6, [3.3.2]. b_{tk-h} : Effective sloshing breadth, in m, as defined in Ch 4, Sec 6, [3.4.2]. (same as the present)	
1. General	
1.1 Application	
 1.1.1 The requirements of this section cover the strengthening requirements for localised sloshing loads that may occur in tanks. Sloshing loads due to the free movement of liquid in tanks are given in Ch 4, Sec 6, [3]. 	
	SymbolsFor symbols not defined in this section, refer to Ch 1, Sec 4. α_p : Correction factor for the panel aspect ratio to be taken as: $\alpha_p = 1.2 - \frac{b}{2.1a}$ but not to be taken as greater than 1.0a: Length of plate panel, in mm, as defined in Ch 3, Sec 7,[2.1.1].b: Breadth of plate panel, in mm, as defined in Ch 3, Sec 7,[2.1.1]. $\ell_{ide/p}$: Effective bending span, as defined in Ch 3, Sec 7,[2.1.1]. $\ell_{ide/p}$: Effective sloshing length, in m, as defined in Ch 4, Sec 6,[3.3.2].b: Effective sloshing breadth, in m, as defined in Ch 4, Sec 6,[3.4.2].(same as the present)1. General1.1 Application1.1.1The requirements of this section cover the strengthening requirements for localised sloshing loads that may occur in tanks.Sloshing loads due to the free movement of liquid in tanks are given in

Present	Amendment	Reason
1.2 General requirements	1.2 General requirements	
1.2.1 Filling heights of fuel oil and ballast tanks The scantlings of all cargo and ballast tanks are to comply with the sloshing requirements given in this section for <u>the following cases</u> : -a) Unrestricted filling height for ballast tanks; -b) Unrestricted filling height for fuel oil tanks with cargo density equal to p_{L} , as defined in Ch 4, Sec 6 ; -c) All filling levels up to h_{part} for cargo tanks with cargo density equal to p_{part} taken as: $h_{part} = \frac{h_{tk}\rho_L f_{CD}}{\rho_{part}}$ where: $h_{part} = \frac{h_{tk}\rho_L f_{CD}}{\rho_{part}}$ $h_{tk} = :$ Maximum permissible filling height, in m, associated with a partial filling of the considered cargo tank with a high liquid density equal to ρ_{part} . $h_{tk} = :$ Maximum tank height, in m. $p_L = :$ Fuel oil density as defined in Ch 4, Sec 6 : $f_{al} = :$ Factor defined in Ch 4, Sec 6 : $p_{part} = :$ Maximum permissible high liquid density as defined in Ch 4, Sec 6 :	1.2.1 Filling heights of fuel oil and ballast tanks The scantlings of all ballast tanks are to comply with the sloshing requirements given in this section for the unrestricted filling height for ballast tanks.	
1.2.2 Structural details Local scantling increases due to sloshing loads are to be made with due consideration given to details and avoidance of hard spots, notches and other harmful stress concentrations.	1.2.2 Structural details Local scantling increases due to sloshing loads are to be made with due consideration given to details and avoidance of hard spots, notches and other harmful stress concentrations.	

Present	Amendment	Reason
1.3 Application of sloshing pressure	1.3 Application of sloshing pressure	
1.3.1 General	1.3.1 General	
The structural members of the following tanks are to be assessed for the design sloshing pressures $P_{slh-lng}$ and P_{slh-t} in accordance with [1.3.4] and [1.3.5].	The structural members of the following tanks are to be assessed for the design sloshing pressures $P_{slh-lng}$ and P_{slh-t} in accordance with [1.3.4] and [1.3.5].	
a) Fore peak and aft peak ballast tanks.	a) Fore peak and aft peak ballast tanks.	
 b) Other tanks which allow free movement of liquid, e.g. ballast tanks, fuel oil bunkering tanks and fresh water tanks, etc. 	 b) Other tanks which allow free movement of liquid, e.g. ballast tanks, fuel oil bunkering tanks and fresh water tanks, etc. 	
Where the effective sloshing length, $\underline{\ell_{slh}}$ is less than $0.03L$, calculations involving $P_{slh-\ln g}$ are not required and where the effective sloshing breadth b_{slh} is less than $0.32B$, calculations involving P_{slh-t} are not required.	Where the effective sloshing length, $\underline{\ell_{tk-h}}$ is less than 0.03 <i>L</i> , calculations involving $P_{slh-lng}$ are not required and where the effective sloshing breadth b_{tk-h} is less than 0.32 <i>B</i> , calculations involving P_{slh-t} are not required.	
1.3.2 Minimum sloshing pressure	1.3.2 Minimum sloshing pressure	
The minimum sloshing pressure, $P_{slh-min}$, as defined in Ch 4 , Sec 6 , [6.2] is to apply to tanks in which the effective sloshing length, $\underline{\ell_{slh}}$ or breadth $\underline{b_{slh}}$, is less than defined in [1.3.1].	The minimum sloshing pressure, $P_{slh-min}$, as defined in Ch 4 , Sec 6 , [3.2] is to apply to tanks in which the effective sloshing length, $\underline{\ell}_{tk-h}$ or breadth \underline{b}_{tk-h} , is less than defined in [1.3.1].	
1.3.3 Structural members to be assessed	1.3.3 Structural members to be assessed	
The following structural members are to be assessed:	The following structural members are to be assessed:	
a) Plates and stiffeners forming boundaries of tanks.	a) Plates and stiffeners forming boundaries of tanks.	
b) Plates and stiffeners on wash bulkheads.	b) Plates and stiffeners on wash bulkheads.	
 c) Web plates and web stiffeners of primary supporting members located in tanks. 	 c) Web plates and web stiffeners of primary supporting members located in tanks. 	
d) Tripping brackets supporting primary supporting members in tanks.	d) Tripping brackets supporting primary supporting members in tanks.	
1.3.4 Application of design sloshing pressure due to longitudinal liquid motion	1.3.4 Application of design sloshing pressure due to longitudinal liquid motion	
The design sloshing pressure due to longitudinal liquid motion, $P_{slh-lng}$, as defined in Ch 4, Sec 6, [6.3.3] is to be applied to the following members as shown in Figure 1 .	The design sloshing pressure due to longitudinal liquid motion, $P_{slh-lng}$, as defined in Ch 4 , Sec 6 , [3.3.2] is to be applied to the following members as shown in Figure 1 .	
a) Transverse tight bulkheads.	a) Transverse tight bulkheads.	
b) Transverse wash bulkheads.	b) Transverse wash bulkheads.	
c) Stringers on transverse tight and wash bulkheads.	c) Stringers on transverse tight and wash bulkheads.	

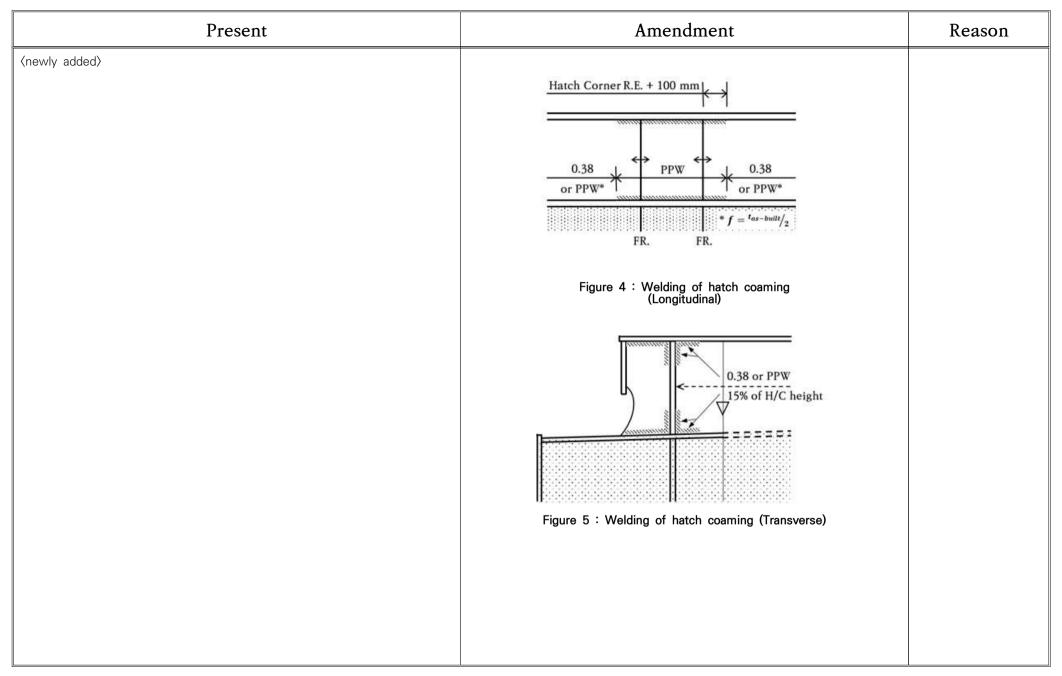
Present	Amendment	Reason
d) Plating and stiffeners on the longitudinal bulkheads, deck and inner hull within a distance from the transverse bulkhead taken as:	d) Plating and stiffeners on the longitudinal bulkheads, deck and inner hull within a distance from the transverse bulkhead taken as:	
• $0.25 \ell_{slh}$	• $0.25 \ell_{tk-h}$	
 The distance between the transverse bulkhead and the first web frame if located inside the tank at the considered level, 	• The distance between the transverse bulkhead and the first web frame if located inside the tank at the considered level,	
whichever is less.	whichever is less.	
In addition, the first web frame next to a transverse tight or wash bulkhead if the web frame is located within $0.25\ell_{slh}$ from the bulkhead, as shown in Figure 1 , is to be assessed for the web frame reflected sloshing pressure, P_{slh-wf} , as defined in Ch 4 , Sec 6 , [6.3.4].	In addition, the first web frame next to a transverse tight or wash bulkhead if the web frame is located within $0.25 \ell_{tk-h}$ from the bulkhead, as shown in Figure 1 , is to be assessed for the web frame reflected sloshing pressure, P_{slh-wf} , as defined in Ch 4 , Sec 6 , [3.3.3].	
The minimum sloshing pressure, $P_{slh-min}$, as defined in Ch 4, Sec 6, [6.2] is to be applied to all other members.	The minimum sloshing pressure, $P_{slh-min}$, as defined in Ch 4, Sec 6 , [3.2] is to be applied to all other members.	
<pre>{omitted></pre>	〈same as the present〉	
1.3.5 Application of design sloshing pressure due to transverse liquid motion	1.3.5 Application of design sloshing pressure due to transverse liquid motion	
The design sloshing pressure due to transverse liquid motion, P_{shl-t} , as defined in Ch 4, Sec 6, [6.4.3] , is to be applied to the following members as shown in Figure 2 .	The design sloshing pressure due to transverse liquid motion, P_{shl-t} , as defined in Ch 4 , Sec 6 , [3.4.2], is to be applied to the following members as shown in Figure 2.	
a) Longitudinal tight bulkhead.	a) Longitudinal tight bulkhead.	
b) Longitudinal wash bulkhead.	b) Longitudinal wash bulkhead.	
c) Horizontal stringers on longitudinal tight and wash bulkheads.	c) Horizontal stringers on longitudinal tight and wash bulkheads.	
 Plating and stiffeners on the transverse tight bulkheads including stringers and deck within a distance from the longitudinal bulkhead taken as: 	d) Plating and stiffeners on the transverse tight bulkheads including stringers and deck within a distance from the longitudinal bulkhead taken as:	
• 0.25 b _{slh}	• $0.25b_{tk-h}$	
• The distance between the longitudinal bulkhead and the first girder if located inside the tank at the considered level,	 The distance between the longitudinal bulkhead and the first girder if located inside the tank at the considered level, 	
whichever is less.	whichever is less.	
	- 131 -	

Present	Amendment	Reason
In addition, the first girder next to the longitudinal tight or wash bulkhead if the girder is located within $0.25 b_{slh}$ from longitudinal bulkhead, as shown in Figure 2 , is to be assessed for the reflected sloshing pressure, $P_{slh-grd}$ as defined in Ch 4 , Sec 6, [6.4.4].	In addition, the first girder next to the longitudinal tight or wash bulkhead if the girder is located within $0.25 b_{tk-h}$ from longitudinal bulkhead, as shown in Figure 2 , is to be assessed for the reflected sloshing pressure, $P_{slh-grd}$ as defined in Ch 4 , Sec 6 , [3.4.3].	
The minimum sloshing pressure, $P_{slh-min}$, as defined in Ch 4, Sec 6 , [6.2], is to be applied to all other members.	The minimum sloshing pressure, $P_{slh-min}$, as defined in Ch 4, Sec 6 , [3.2], is to be applied to all other members.	
<pre>(omitted)</pre>	〈same as the present〉	
(omitted) 1.3.6 Combination of transverse and longitudinal fluid motion The sloshing pressures due to transverse and longitudinal fluid motion are assumed to act independently. Structural members are therefore to be evaluated based on the greatest sloshing pressure due to longitudinal and transverse fluid motion. 1.3.7 Additional sloshing impact assessment For tanks with effective sloshing breadth, $\underline{b_{slh}}$, greater than 0.56 <i>B</i> or effective sloshing length, $\underline{\ell_{slh}}$, greater than 0.13 <i>L</i> , an additional sloshing impact assessment is to be carried out in accordance with the individual Society' procedures.	1.3.6 Combination of transverse and longitudinal fluid motion The sloshing pressures due to transverse and longitudinal fluid motion are assumed to act independently. Structural members are therefore to be evaluated based on the greatest sloshing pressure due to longitudinal and transverse fluid motion. 1.3.7 Additional sloshing impact assessment For tanks with effective sloshing breadth, b_{tk-h} , greater than 0.56 <i>B</i> or effective sloshing length, ℓ_{tk-h} , greater than 0.13 <i>L</i> , an additional sloshing impact assessment is to be carried out in accordance with the individual Society' procedures.	

Present	Amendment	Reason
Chapter 11 Superstructure,	Chapter 11 Superstructure,	
Deckhouses and Hull Outfitting	Deckhouses and Hull Outfitting	
Section 1 Superstructures, Deckhouses and Companionways	Section 1 Superstructures, Deckhouses and Companionways	
Symbols	Symbols	
For symbols not defined in this Section, refer to Ch 1, Sec 4. (omitted) P_A : External pressure for end bulkheads of superstructure and deckhouse walls, in kN/m ² according to Ch 4, Sec 5, [4.4.1]. ℓ_{bdg} : Effective bending span, in m, as defined in Ch 3, Sec 7. ℓ_{shr} : Effective shear span, in m, as defined in Ch 3, Sec 7. c : Coefficient taken as: c = 0.75 for beams, girders and transverses which are simply supported in one or both ends. c = 0.55 in other cases. m_a : Coefficient taken as: $m_a = 0.204 \frac{s}{1000 \ell_{bdg}} \left[4 - \left(\frac{s}{1000 \ell_{bdg}} \right)^2 \right]$ with $\frac{s}{1000 \ell_{bdg}} \le 1$	For symbols not defined in this Section, refer to Ch 1 , Sec 4 . (same as the present) P_A : External pressure for end bulkheads of superstructure and deckhouse walls, in kN/m ² according to Ch 4 , Sec 5 , [4.4.1] . C_w : Wave coefficient, as defined in Ch 4 , Sec 4 . ℓ_{bdg} : Effective bending span, in m, as defined in Ch 3 , Sec 7 . ℓ_{shr} : Effective shear span, in m, as defined in Ch 3 , Sec 7 . $\ell = 0.75$ for beams, girders and transverses which are simply supported in one or both ends. c = 0.55 in other cases. m_a : Coefficient taken as: $m_a = 0.204 \frac{s}{1000 \ell_{bdg}} \left[4 - \left(\frac{s}{1000 \ell_{bdg}} \right)^2 \right]$ with $\frac{s}{1000 \ell_{bdg}} \leq 1$	

Present	Amendment	Reason
Section 2 Bulwark, Guard Rails and Breakwater	Section 2 Bulwark, Guard Rails and Breakwater	
1. ~ 3. 〈omitted〉	1. ~ 3. (same as the present)	
4. Breakwater	4. Breakwater	
4.1 General	4.1 General	
4.1.1 ⟨omitted⟩ 4.1.2 Dimensions of the breakwater a) The recommended height of the breakwater is as following. $\frac{h_w = 0.8 (b c_1 - z) (m) (h_{w \min} = 0.6 (b c_1 - z))}{where}$ z : the vertical distance (m) between the summer load line and the bottom line of the breakwater. $b = 1.0 + 2.75 \left(\frac{x}{L} - 0.45}{C_B + 0.2}\right)^2 \qquad (0.6 \le C_B \le 0.8)$ x : distance (m) from aft end of L to breakwater $c_1 : \text{Wave coefficient}$ $\frac{10.75 - \left(\frac{300 - L}{100}\right)^{1.5}}{10.75 - \left(\frac{L - 300}{150}\right)^{1.5}} \text{ where } 350 < L \le 500 \text{ m}$ The average height of whalebacks or turtle decks has to be determined analogously according to Figure 1. ⟨omitted⟩	4.1.1 (same as the present) 4.1.2 Dimensions of the breakwater a) The recommended height of the breakwater is as following. $\frac{h_w = 0.8 (b C_w - z) \qquad \text{but not less than } h_{w \min}}{\text{where:}}$ $\frac{h_{w \min} = 0.6 (b C_w - z)}{z : \text{the vertical distance (m) between the summer load line and the bottom line of the breakwater. b = 1.0 + 2.75 \left(\frac{x}{L} - 0.45}{(C_B + 0.2)}\right)^2 \qquad \text{with } 0.6 \le C_B \le 0.8 x : \text{distance (m) from aft end of } L \text{ to breakwater} The average height of whalebacks or turtle decks has to be determined analogously according to Figure 1.(same as the present)$	

Present	Amendment	Reason
4.1.4 Loads	4.1.4 Loads	
a) The loads for dimensioning are to be determined according to following formula.	a) The loads for dimensioning, in $\rm kN/m^2,$ are to be determined according to following formula.	
$\underline{p_A = nc \left(b c_1 - z \right) \qquad (kN/m^2)}$	$\underline{P_A = n c \left(b C_w - z \right)}$	
$p_{\boldsymbol{A}}$ is not to be less than following values	${\cal P}_{\!A}$ is not to be less than following values	
$25 + rac{L}{10}$ where $L \le 250$ m	$25 + rac{L}{10}$ where $L \le 250$ m	
50 where $L > 250$ m	50 where $L > 250$ m	
$\underline{n = 10 + L/20}$ where $L \leq 300$ m, if L is greater than 300 m, L is to be taken as 300 m	$\frac{n = 10 + \frac{L_2}{20}}{c = \sin \alpha_w}$	
$c = \sin \alpha_w$ (α_w is to be determined on centre line)	where;	
4.1 E. Dista this largest and stiffer and	α_w : Inclining angle, in deg, of breakwater at centre line	
4.1.5 Plate thickness and stiffeners	4.1.5 Plate thickness and stiffeners	
a) <u>The plate thickness has to be determined according to following</u> <u>formula.</u>	a) <u>The net thickness of plate, in mm, has to be determined according to</u> <u>following formula.</u>	
$t = t' + t_k (mm)$		
$t' = 0.9 s \sqrt{p_A K}$	$t = 0.9 s \sqrt{P_A k} \cdot 10^{-3}$ but not less than $t_{\rm min}$	
$t_k = 1.5$ where $t' \le 10$ mm	where;	
$t_k = 0.1 t' / \sqrt{K} + 0.5$ where $t' > 10$ mm	$t_{\min} = (3.5 + \frac{L_2}{100})\sqrt{k}$	
$t_{\min} = (5.0 + \frac{L}{100})\sqrt{K}$ (mm) (where $L \leq 300$ m, if L is greater than		
300 m, <i>L</i> is to be taken as 300 m)		
b) The <u>section modulus</u> of stiffeners are to be calculated according to following formula. Stiffeners are to be connected on both ends to the structural members supporting them.	b) The <u>net section modulus</u> of stiffeners, in cm ³ , are to be calculated according to following formula. Stiffeners are to be connected on both ends to the structural members supporting them.	
$\underline{Z = 0.35 s l^2 p_A K \qquad (\text{cm}^3)}$	$Z = 0.07 \frac{s \ \ell_{bdg}^2 P_A}{R_{eH}}$	
<u>l</u> : span (m) of stiffeners <u>s</u> : spacing (m) of stiffeners	-135 -	


Present	Amendment	Reason
c) For whalebacks with an inclining angle α_w of less than 20° the scantlings of plates and stiffeners are to be in accordance with the discretion of the Society.	c) For whalebacks with an inclining angle α_w of less than 20° the scantlings of plates and stiffeners are to be in accordance with the discretion of the Society.	
<pre>(omitted)</pre>	〈same as the present〉	
4.1.6 Primary supporting members	4.1.6 Primary supporting members	
For primary supporting members of the structure, a stress analysis has to be carried out. The permissible equivalent stress, σ_v is $230/K$ (kN/m ²).	For primary supporting members of the structure, a stress analysis has to be carried out. The permissible equivalent stress, σ_{vm} in N/mm ² , shall not exceed R_{Y} .	
4.1.7 Proof of buckling strength	4.1.7 Proof of buckling strength	
Structural members' buckling strength has to be proved according to Ch 8, Sec 5.	Structural members' buckling strength has to be proved according to Ch 8, Sec 5.	

Present	Amendment	Reason
Chapter 12 Construction	Chapter 12 Construction	
Section 1 ~ 2 〈omitted〉 Section 3 Design of Weld Joints	Section 1 ~ 2 〈same as the present〉 Section 3 Design of Weld Joints	
1. 〈omitted〉	1. 〈same as the present〉	
2. Tee or Cross Joint	2. Tee or Cross Joint	
2.1 ~ 2.3 (omitted)	2.1 ~ 2.3 (same as the present)	
2.4 Partial or full penetration welds	2.4 Partial or full penetration welds	
 2.4.1 (omitted) 2.4.2 Partial or full penetration welding In areas with high tensile stresses or areas considered critical, full or 	 2.4.1 (same as the present) 2.4.2 Partial or full penetration welding In areas with high tensile stresses or areas considered critical, full or 	
partial penetration welds are to be used. In case of full penetration welding, the root face is to be removed, e.g. by gouging before welding of the back side. For partial penetration welds the root face, f , is, to be taken between 3 mm and $t_{as-buill}/3$.	partial penetration welds are to be used. In case of full penetration welding, the root face is to be removed, e.g. by gouging before welding of the back side. For partial penetration welds the root face, f , is, to be taken between 3.0 mm and $t_{as-built}/3$.	
The groove angle α made to ensure welding bead penetrating up to the root of the groove is usually from 40° to 60°.	The groove angle α made to ensure welding bead penetrating up to the root of the groove is usually from 40 ° to 60 °.	
The welding bead of the full/partial penetration welds is to cover root of the groove.	The welding bead of the full/partial penetration welds is to cover root of the groove.	
Examples of partial penetration welds are given on Figure 2 . The weld size of partial penetration is to satisfy the following equation.	Examples of partial penetration welds are given on Figure 2 . The weld size of partial penetration <u>for extremely thick steel</u> is to satisfy the following equation.	
<pre>(omitted)</pre>	⟨same as the present⟩	

Present	Amendment	Reason
$t_{p1} + t_{p2} \geq 2(f_{yd} \bullet f_c \bullet f_{ten} \bullet t_{as-built} + t_{gap})$	$t_{p1} + t_{p2} \ge 2(f_{yd} \bullet f_c \bullet f_{ten} \bullet t_{as-built} + t_{gap})$	
t_{p1},t_{p2} : The weld size in Figure 2	t_{p1}, t_{p2} : The weld size in Figure 2	
f_c : Position coefficient, which is 1.1 for ballast tank and bilge well and 1.0 for elsewhere	f_c : Position coefficient, which is 1.1 for ballast tank and bilge well and 1.0 for elsewhere	
f_{ten} : 0.44 as the welding factor	f_{ten} : welding factor	
	$f_{ten} = 0.22 + 0.66 \ f / t_{as-built}$	
2.4.3 ~ 2.4.4 (omitted)	2.4.3 ~ 2.4.4 (same as the present)	
2.4.5 Locations required for full penetration welding	2.4.5 Locations required for full penetration welding	
Full penetration welds are to be used in the following locations and elsewhere as required by the rules :	Full penetration welds are to be used in the following locations and elsewhere as required by the rules :	
a) Radiused hatch coaming plate at corners to deck.	a) Radiused hatch coaming plate at corners to deck.	
b) Edge reinforcement or pipe penetration both to strength deck, sheer strake and bottom plating within $0.6L$ amidships, when the dimensions of the opening exceeds 300 mm.	b) Edge reinforcement or pipe penetration both to strength deck, sheer strake and bottom plating within $0.6 L$ amidships, when the dimensions of the opening exceeds 300 mm.	
c) Abutting plate panels with as-built thickness less than or equal to 12 mm, forming outer shell boundaries below the scantling draught, including but not limited to: sea chests, rudder trunks, and portions of transom. For as-built thickness greater than 12 mm, partial penetration in accordance with [2.4.2].	 c) Abutting plate panels with as-built thickness less than or equal to 12.0 mm, forming outer shell boundaries below the scantling draught, including but not limited to: sea chests, rudder trunks, and portions of transom. d) Crane pedestals and associated bracketing and support structure. 	
d) Crane pedestals and associated bracketing and support structure.	e) For toe connections of longitudinal hatch coaming end bracket to the	
e) For toe connections of longitudinal hatch coaming end bracket to the deck plating, full penetration weld for a distance of 0.15 H_c from toe	deck plating, full penetration weld for a distance of $0.15 H_c$ from toe of side coaming termination bracket is required, where H_c is the hatch coaming height.	
of side coaming termination bracket is required, where H_c is the hatch coaming height.	f) Rudder horns and shaft brackets to shell structure.	
f) Rudder horns and shaft brackets to shell structure.		
g) Thick flanges of long transverse web frames to side web frames. Thick flanges of long longitudinal girder to bulkhead web frames.		
h) Brackets connecting face plates of cross decks and deck girders		
I) Cross deck structures to transverse web frames(recommendation)		

Present	Amendment	Reason
2.4.6 Locations required for partial penetration welding	2.4.6 Locations required for partial penetration welding	
Partial penetration welding as defined in [2.4.2] , is to be used in the following locations.	Partial penetration welding as defined in [2.4.2] , is to be used in the following locations.	
a) Longitudinal/transverse bulkhead primary supporting member end connections to the double bottom.	rimary supporting member end a) Abutting plate panels with as-built thickness greater than 12mm, forming outer shell boundaries below the scantling draught, including	
b) Structural elements in double bottom below bulkhead primary supporting members.	but not limited to : sea chests, rudder trunks, and portions of transom.	
c) Horizontal stringers on bulkheads in way of their bracket toe and the heel.		

Present			Amendment						Reason			
2.5 V	2.5 Weld size criteria			2.5	2.5 Weld size criteria							
					2.5.1 (same as the present)							
2.5.2					2.5.2							
<omitte< td=""><td></td><td>_</td><td></td><td></td><td colspan="4">〈same as the present〉</td><td></td></omitte<>		_			〈same as the present〉							
	Table 2: Weld	factor	s for different structural members	1			Ta	ble 2 : Weld	factor	s for different structural members		
Hull			Connection	f_{weld}	Н	_			1	Connection	f_{weld}	
area	of		to	• acta	ar	ea		of		to	• actu	
⟨omitt	ed>				⟨sa	ime a	as the	present>	1			
	Stren $t_{as-built} \ge 13$	Si	de shell plating within 0.6L midship	PPW ⁽³⁾			Stren	$t_{as-built} \ge 13$	Sic	le shell plating within 0.6 L midship	PPW ⁽³⁾	
	gth deck		Elsewhere	0.48			gth deck			Elsewhere	0.48	
	$t_{as-built} < 13$		Side shell plating	0.48			ueck	$t_{as-built} < 13$		Side shell plating	0.48	
	Other deck		Side shell plating/bulkhead	0.38				Side shell plating/bulkhead 0.38		0.38		
	Other deck		Stiffeners	0.20			Other deck		Stiffeners		0.20	
Deck	Hatch coamings	Longitudinal hatch coaming corners of hatchways in a length of 15% of the hatch coaming heigth	<u>FPW⁽¹⁾⁽⁴⁾</u> or PPW ⁽³⁾	Deck				End of hatch corner curvature radius (R.E) + 100 mm See Figure 4	PPW ⁽³⁾			
		Longitudinal hatch coaming on a length starting from 15% of the hatch coaming height from the corners of hatchways up to 15% of the hatch length	<u>0.48 or</u> <u>PPW⁽³⁾</u>			Hatch coamings ⁽¹⁾	h coamings <u>(1)</u>	Deck platin g	Transverse hatch coaming <u>15% of hatch coaming height⁽⁵⁾</u> <u>See Figure 5</u>	0.38 orPW ⁽³⁾		
			Elsewhere	0.38 or PPW ⁽³⁾						<u>Elsewhere</u>	<u>0.38</u> <u>or PPW⁽⁴⁾</u>	
	Web stiffeners		Coaming webs	0.20 ⁽²⁾			We	b stiffeners		Coaming webs	0.20 ⁽²⁾	
<pre>(omitted)</pre>			〈same as the present〉									
(2) Co (3) PP (4) FP (5) Bu	ntinuous welding. W: Partial penetration v W: Full penetration wel	velding ding in ure and	ther than in cargo holds. in accordance with [2.4.2]. accordance with [2.4.2]. d deckhouse are to be considered in th e and deck house".	he row	(2) (3) (4) (5) (5)	Contir PPW <u>PPW</u> <u>Need</u> Bulkh	nuous : Part <u>: Part</u> not t neads	welding. ial penetration v ial penetration v to be taken gre of superstructu	welding welding eater th re and	ther than in cargo holds. in accordance with [2.4.2]. in accordance with [2.4.2], with $f = t_{as}$ ian 250 mm deckhouse are to be considered in the and deck house".		

Present			Amendm	Reaso		
Table 3 : Weld factors for miscella	neous fittings and equipm	ent	Table 3 : Weld factors for miscella	ent		
Item Connection to f_{weld}			ltem	Connection to	${f}_{weld}$	
	Watertight/oil-tight joints	0.48		Watertight/oil-tight joints	0.48	
Hatch cover	At ends of stiffeners	0.38	Hatch cover	At ends of stiffeners	0.38	
	Elsewhere	0.24		Elsewhere	0.24	
Mast, derrick post, crane pedestal, etc.	Deck / Underdeck reinforced structure	0.43	Mast, derrick post, crane pedestal, etc.	Deck / Underdeck reinforced structure	0.43	
Deck machinery seat	Deck	0.24	Deck machinery seat	Deck	0.24	
Mooring equipment seat	Deck	0.43	Mooring equipment seat	Deck	0.43	
Ring for access hole type cover	Anywhere	0.43	Ring for access hole type cover	Anywhere	0.43	
Stiffening of side shell doors and weathertight doors	Anywhere	0.24	Stiffening of side shell doors and weathertight doors	Anywhere	0.24	
Frames of shell and weathertight doors	Anywhere	0.43	Frames of shell and weathertight doors	Anywhere	0.43	
Coaming of ventilator and air pipe	Deck	0.43	Coaming of ventilator and air pipe	Deck	0.43	
Ventilators, etc., fittings	Anywhere	0.24	Ventilators, etc., fittings	Anywhere	0.24	
Ventilators, air pipes, etc., coaming to deck	Deck	0.43	Ventilators, air pipes, etc., coaming to deck	Deck	0.43	
Scupper and discharge	Deck	0.55	Scupper and discharge	Deck	0.55	
Bulwark stay	Deck	0.24	Bulwark stay	Deck	0.24	
Bulwark plating	Deck	0.43	Bulwark plating	Deck	0.43	
Guard rail, stanchion	Deck	0.43	Guard rail, stanchion	Deck	0.43	
(newly added)	1	1	Cell guide backing bracket	Bulkhead	<u>0.24</u>	
(newly added)			<u>Cone bracket</u>	Deck and Girder	<u>0.43</u>	
(newly added)			Lashing bridge, Container stanchion	Deck		
Cleats and fittings	Hatch coaming and hatch cover	0.60	Cleats and fittings	Hatch coaming and hatch cover	<u>0.24⁽²⁾</u>	
(1) Minimum weld factor. Where $t_{as-built}$ > 11 $t_{as-built}$. Penetration welding may be require	.5mm, $\ell_{\leq q}$ need not exceed ().62	$ \begin{array}{c} \stackrel{(1)}{\overset{(1)}{(2)}} \text{PPW} : \text{Partial penetration welding in accordance} \\ \hline \stackrel{(2)}{\overset{(2)}{(2)}} \text{Minimum weld factor. Where } t_{as-built} > 11.1 \\ \hline t_{as-built}. \text{ Penetration welding may be required} \\ \hline \end{array} $	$5\mathrm{mm}$, ℓ_{leg} need not exceed ().62	

Present	Amendment	Reason
Chapter 13 Ship in Operation –	Chapter 13 Ship in Operation -	
Renewal Criteria	Renewal Criteria	
Section 1 Principles and Survey Requirements	Section 1 Principles and Survey Requirements	
1. Principles	1. Principles	
1.1 ~ 1.2 〈omitted〉	1.1 ~ 1.2 (same as the present)	
1.3 Requirements for documentation	<u>1.3 (del)</u>	
1.3.1 Plans	<u>1.3.1 (del)</u>	
The plans to be supplied onboard the ship, as required in Ch 1, Sec 3 , are to include, for each structural element, both the as-built and renewal thickness as defined in Sec 2 . Any thickness for voluntary addition is also to be clearly indicated on the plans.		
1.3.2 Hull girder sectional properties	<u>1.3.2 (del)</u>	
The Midship section plan to be supplied onboard the ship is to include the minimum required hull girder sectional properties, as defined in Ch 5, Sec 1, for the representative transverse sections of all cargo holds.		
2. Hull Survey Requirements	2. Hull Survey Requirements	
2.1 General	2.1 General	
2.1.1 Minimum hull survey requirements	2.1.1 Minimum hull survey requirements	
The minimum hull survey requirements including thickness measurements for the maintenance of class are given in Pt 1. Refer to [1.1.4] .	The minimum hull survey requirements including thickness measurements for the maintenance of class are given in Pt 1. Refer to [1.1.4] .	

Present	Amendment	Reason
Section 2 Acceptance Criteria	Section 2 Acceptance Criteria	
Symbols	Symbols	
$\begin{array}{l}t_{as-built}: \mbox{ As built thickness, in mm.}\\ \underline{t_c: \mbox{ Corrosion addition in mm, as defined in } \mbox{ Ch 3, } \mbox{ Sec 2.}\\ \hline t_{res}: \mbox{ Reserve thickness, taken equal to } 0.5 \mbox{ mm.}\\ t_{vol-add}: \mbox{ Thickness for voluntary addition, in mm.}\end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
1. 〈omitted〉	1. 〈same as the present〉	
2. Renewal Criteria	2. Renewal Criteria	
2.1 Local corrosion	2.1 Local corrosion	
2.1.1 Renewal thickness of local structural elements Local structural elements include local supporting members and primary supporting members.	2.1.1 Renewal thickness of local structural elements Local structural elements include local supporting members and primary supporting members.	
Steel renewal is required if the measured thickness, t_m in mm, is less than the renewal thickness, t_{ren} defined as:	Steel renewal is required if the measured thickness, t_m in mm, is less than the renewal thickness, t_{ren} defined as:	
$\underline{t_{ren} = t_{as-built} - t_c - t_{vol-add}}$	$\underline{t_{ren}} = t_{as-built} - t_{c-m} - t_{vol-add}$	
	<u>where:</u> $\underline{t_{c-m} = (t_{as-built} - t_{vol-add}) C_{Wear-limit}}_{C_{Wear-limit}} : \text{Local wear limit defined in Table 1.}$	

Present		Amendment						
<pre>(newly added)</pre>		Table 1 : Local wear limit, $C_{Wear-limit}$						
		Name of member	Wear limit					
			Class I					
		Strength deck plating and Sheer strake including welded longitudinals, Side and bottom shell plating Stringer deck plating						
		Inner bottom plating						
		Longitudinal and Side longitudinal bulkhead plating						
		Bulkhead plating of deep tank	0.2					
		Floor and Girder of double bottom						
		Transverse web frame and Side stringer of double side						
		Longitudinal deck girder						
	Local	Web and face of primary supporting member						
	Wear	Web, face and brackets of frames in cargo hold						
	Limit	Effective deck plating (3)						
		Superstructure deck plating						
		Deck plating inside the line of cargo hatch openings	0.05					
		Watertight bulkhead plating other than bulkhead plating of deep tank,	0.25					
		Hatch cover(including stiffeners) and Hatch coaming(including stiffeners),						
		Web, face and brackets of secondary stiffener ⁽²⁾						
		Partial corrosion (e.g pitting)	0.3					
		⁽¹⁾ For ships classed through the Classification Survey after Construction, the sepa by the Society are to be applied.	arate requirements specified					
		⁽²⁾ Secondary stiffener refers to the member which is supported by the primary su not support another reinforcement member.	upporting member and does					
		⁽³⁾ Definition of effective deck is specified in Pt 3, Ch 5, 103. of the Rules.						
omitted〉	<pre> same as</pre>	s the present>						

RULES FOR CLASSIFICATION(STEEL SHIPS) (Part 14 Structural Rules for Container Ships)

Hull Rule Development Team

- Main Amendments -

(1) Enter into force on 1 January 2021 (the contract date for ship construction)

- To reflect Request for Establishment/Revision of Classification Technical Rules
 - To reflect UR S33 Rev.2

	Amendment				
Chapter 12 Construction	Chapter 12 Construction				
Section 1 \sim Section 3 <omitted></omitted>	Section 1 \sim Section 3 <omitted></omitted>				
Section 4 Use of Extremely Thick Steel	Section 4 Use of Extremely Thick Steel				
. Application	1. Application				
1.1 General	1.1 General				
1.1.1 〈Omitted〉	1.1.1 (same as the present rule)				
$1.1.2 \langle \text{Omitted} \rangle$	1.1.2 (same as the present rule)				
1.1.3	1.1.3				
This requirements gives the basic concepts for application of	This requirements gives the basic concepts for application of extremely thick				
extremely thick steel plates to longitudinal structural members in the					
uppder deck and hatch coaming structural region (i.e. uppder deck	1.1.4				
plating, hatch side coaming and hatch coaming top).	This requirements defines the following methods to apply to the extremely				
1.1.4	thick plates of container ships for preventing the crack initiation and				
The application of the measures specified in [2], [3] and [4] of this	propagation:				
requirements is to be in accordance with [5].	a) Non-Destructive Testing(NDT) during construction detailed in [2]				
$1.1.5 \langle \text{New} \rangle$	b) Welding to increase toughness in [3]				
	<u>c) Brittle crack arrest design detailed in [4]</u>				
	The application of the measures specified in [2], [3] and [4] of this				
	requirements is to be in accordance with [5].				
	<u>1.1.5</u>				
	For the application of this requirements, the upper deck region means the				
	upper deck plating, hatch side coaming plating, hatch coaming top plating				
1.2 Steel Grade	and their attached longitudinals.				
1.2.1					
This requirements is to be applied to when any of YP36, YP40 and					
YP47 steel plates are sued for the longitudinal structure members.					
1.2.2 〈Omitted〉	This requirements is to be applied to when any of YP36, YP40 and YP47				
1.2.3	steel plates are sued for the longitudinal structure members in the upper				
In the case that YP47 steel plates are used for longitudinal structural					
members in the upper deck region such as upper deck plating, hatch					
side coaming and hatch coaming top and their attached longitudinals,					
the grade of YP47 steel plates is to be EH47 specified in Pt 2, Ch	In case YP47 steel plates are used for longitudinal structural members in the - 3 pper deck region, the steel plates <u>are</u> to be EH47 specified in Pt 2, Ch 1,				
1, Sec 3.	Sec 3.				

1.3 〈Omitted〉 2. ~ 3. 〈Omitted〉	1.2 (come on the present rule)
$2 \sim 2$ (Omittad)	1.3 <same as="" present="" rule="" the=""></same>
	2. \sim 3. <same as="" present="" rule="" the=""></same>
4. Brittle crack arrest design(Measure No. 3, 4 and 5 of [5])	4. Brittle crack arrest design(Measure No. 3, 4 and 5 of [5])
4.1 General	4.1 General
4.1.1	4.1.1
Measures for prevention of brittle crack propagation , which is th	e The brittle crack arrest steel method detailed in [4] may be used when the
same meaning as Brittle crack arrest design, are to be taken with	
the cargo hold region.	the upper deck is not higher than YP40. Otherwise other means for
4.1.2	preventing the crack initiation and propagation shall be aagreed with the
The approach given in this section generally applies to th	e <u>Society.</u>
block-to-block joints but it should be noted that cracks can initial	e <u>4.1.2</u>
and propagate away from such joints. Therefore, appropriat	Measures for prevention of brittle crack propagation are to be taken within
measures should be considered in accordance with [4.2.2.b].	the cargo hold region. A brittle crack arrest design means a design using
4.1.3	these measures.
Brittle crack arrest steel is defined in Pt 2, Ch 1, Sec 3. Only f e	or <u>4.1.3</u>
the scope of this Guidance, the definition in Pt 2, Ch 1, Sec 3 als	
applies to YP36 and YP40 steels.	joints but it should be noted that cracks can initiate and propagate away
	from such joints. Therefore, appropriate measures should <u>also</u> be considered
	for the cases specified in [4.2.2.b].
	<u>4.1.4</u>
	Brittle crack arrest steels are defined in Pt 2, Ch 1, Sec 3.
4.2 Functional requirements of brittle crack arrest design	4.0 Europhianal naminamenta of builthle analy annual design
The purpose of the brittle crack design is aimed at arrestin	
propagation of a rack at a proper position and to prevent large sca	
fracture of the hull girder.	a rack at a proper position and to prevent large scale fracture of the hull
4.2.1 The point of a brittle crack initiation is to be considered in th	e 4.2.1
block to block butt joints both of hatch side coaming and upper	
deck.	the block-to-block butt weld joints either on hatch side coaming or on
uun,	upper deck plating. Other locations in block fabrication where joints are
	aligned may also present higher opportunity for crack initiation and
	propagation along butt weld joints.

Present	Amendment
4.2.2	4.2.2
Both of the following cases are to be considered:	Both of the following cases are to be considered:
a)~b) 〈Omitted〉	a)~b) <same as="" present="" rule="" the=""></same>
c) "Other weld areas " in (b) includes the following(refer to Figure	c) "Other weld" in (b) includes the following(refer to Figure 4):
4):	1 Fillet welds <u>between</u> hatch side coaming plating, including top plating,
1 Fillet weld s where hatch side coaming plating, including top	and longitudinals;
plating, meet longitudinals;	2 Fillet welds between hatch side coaming plating, including top plating
2 Fillet weld s where hatch side coaming plating, including top plating and longitudinals, meet attachments. (e.g., Fillet welds	and longitudinals, <u>and</u> attachments. (e.g., Fillet welds <u>between</u> hatch side top plating and hatch cover pad plating.);
where hatch side top plating meet hatch cover pad plating.);	3 Fillet welds between hatch side coaming top plating and hatch side
3 Fillet weld s where hatch side coaming top plating meet hatch	coaming plating:
side coaming plating;	4 Fillet welds between hatch side coaming plating and upper deck plating;
4 Fillet weld s where hatch side coaming plating meet upper deck	5 Fillet welds between upper deck plating and inner hull/bulkheads;
plating;	6 Fillet welds between upper deck plating and longitudinals; and
5 Fillet weld s where upper deck plating meet inner hull/bulkheads;	7 Fillet welds between sheer strakes and upper deck plating.
6 Fillet weld s where upper deck plating meet longitudinals; and	
7 Fillet weld s where sheer strakes meet upper deck plating.	4.3 Concept examples of brittle crack arrest design
	The followings are considered to be acceptable examples of measures that
4.3 Concept examples of brittle crack arrest design	can be used on a brittle crack arrest-design to prevent brittle crack
The following are considered to be acceptable examples of brittle	propagations. The detail design arrangements are to be submitted to the
crack arrest design . The detail design arrangements are to be	Society for their approval. Other measures may be considered and accepted
submitted for approval by the Society . Other concept designs may	for review by <u>the</u> Society.
be considered and accepted for review by each Classification Society.	
	4.3.1 \sim 4.3.5 (same as the present rule)
$4.3.1 \sim 4.3.5 \langle \text{Omitted} \rangle$	
4.5.1 ~ 4.5.3 (Officied)	

Present	Amendment					
4.4 <new></new>	4.4 Selection of brittle crack arrest steels					
	4.4.1 The brittle crack arrest steels fitted in the upper deck region of					
	container ships are to comply with Table 1 where suffixes BCA1 and					
	BCA2 are defined in Rule Part 2.					
	<u>4.4.2 The brittle crack arrest steel property is to be selected for each individual structural member with thickness above 50mm according to Table</u>					
	<u>1.</u>					
	Table 1 Brittle crack arrest steel requirement in function of structural					
	members and thickness					
	Structural Members plating ⁽¹⁾ Thickness(mm) Brittle crack arrest steel requirement					
	Upper deck $50 < t \le 100$ Steel grade YP36 or 40 with suffix BCA1					
	Hatch coaming side $50 < t \le 80$ Steel grade YP40 or 47 with suffix BCA1					
	$80 < t \le 100$ Steel grade YP40 or 47 with suffix BCA2					
	Note (1)Excluding their attached longitudinals					
	4.4.3 When brittle crack arrest steels as specified in Table 1 are used, the					
	weld joints between the hatch coaming side and the upper deck are to be					
	partial penetration weld details approved by the Society. In the vicinity of ship block joints, alternative weld details may be used					
	for the deck and hatch coaming side connection provided additional means					
	for preventing the crack propagation are implemented and agreed by the					
	Society in this connection area.					

Present	Amendment				
5. Measures for Extremely Thick Steel Plates	5. Measures for Extremely Thick Steel Plates				
The thickness and the yield strength shown in the Table 1 apply to the hatch coaming top plating and side plating, and are the controlling parameters for the application of countermeasures. If the as built thickness of the hatch coaming top plating and side plating is below the values contained in the table, countermeasures are not necessary regardless of the thickness and yield strength of the upper deck.	The thickness and the yield strength shown in the Table 2 apply to the hatch coaming top plating and side plating, and are the controlling parameters for the application of countermeasures. <u>These controlling parameters are not applicable for the upper deck.</u> If the as built thickness of the hatch coaming top plating and side plating is below the values contained in the table, countermeasures are not necessary regardless of the thickness and yield strength of the upper deck.				
Table 1: Measures for extremely thick steel plates	Table $\underline{2}$ Measures for extremely thick steel plates				
Yield strengthThickness (mm)OptionMeasures	Yield strengthThickness (mm)OptionMeasures				
36 40 47(FCAW) 47	36 40 47(FCAW)				
47(EGW)	47(EGW)				
NO. Measures 1	NO. Measures 1				

Amendments of Guidance

Pt. 14 Structural Rules for Container Ships

2021. 2. Hull Rule Development Team

Present	Amendment	Reason
(Newly added)	Annex 14-1 Strength assessment of flooded condition for	
	fire-fighting	
	1. General	
	1.1 Application	
	1.1.1 Scope In addition to the Rules, this Annex applies to the strength assessment of container ships with flooding requirements for fire-fighting in cargo holds in accordance with Pt 8, Annex 8-9, 405. 5 of Guidance relating to Rules for the Classification of Steel Ships.	
	1.1.2 LimitationsThe cargo hold flooding condition is regarded as an accident condition and the design load and acceptance criteria are applied.The ship is assumed to be intact and upright.	
	1.2 Loading Manual and Loading Instrument	
	1.2.1 Loading Manual	
	The maximum flooding level of each hold is to be specified in the loading manual according to the strength assessment results based on this annex.	
	It is to be specified in the loading manual to ensure that the permissible vertical bending moment and shear force in [2.2] are not exceeded under actual loading conditions and flooding level when filling the cargo hold with water.	
	1.2.2 Loading instrument The loading instrument shall be equipped with a function to check the vertical still water bending moment, the vertical still water shear force, and the intact stability at specified read-out points when any cargo hold is completely or partially flooded.	

Present	Amendment	Reason						
(Newly added)	2. Loads							
	2.1 Application							
	2.1.1							
	For requirements not described in this Article, refer to Ch 4 of the Rules.							
	2.1.2 Coefficient for strength assessment							
	For the flooded condition for fire-fighting, the coefficient for strength assessment is to be taken as 0.8.							
	2.2 Hull girder loads							
	2.2.1 Permissible vertical still water bending moment in flooded condition for fire-fighting Permissible vertical still water bending moment, M_{sw-FSC} , in flooded condition for fire-fighting is calculated as:							
	$M_{sw-FSC} = M_{sw} + M_{wv} (1 - f_{ps})$							
	where:							
	<i>M_{sw}</i> : Permissible hogging and sagging vertical still water bending moment in seagoing operation, in kNm, at the hull transverse section considered, defined in Ch 4 , Sec 4 , [2.2.2] of the Rules.							
	M _{wv} : Vertical wave bending moment in seagoing condition, in kNm, in seagoing operation at the hull transverse section considered, defined in Ch 4 , Sec 4 , [3.2.1] of the Rules.							
	f_{ps} : The coefficient for strength assessment in flooded condition for fire-fighting, refer to [2.1.2].							

Present	Amendment	Reason								
(Newly added)	2.2.2 Permissible vertical still water shear force in flooded condition for fire-fighting Permissible vertical still water shear force, Q_{sw-ESC} , in flooded condition for fire-fighting is calculated as:									
	$Q_{sw-FSC} = Q_{sw} + Q_{wv}(1 - f_{ps})$									
	where:									
	Q _{sw} : Permissible positive or negative still water shear force for seagoing operation, in kN, at the hull transverse section considered, as defined in Ch 4 , Sec 4 , [2.3.1] of the Rules.									
	Q _{wv} : Vertical wave shear force in seagoing condition, in kN, at the hull transverse section considered, defined in Ch 4, Sec 4, [3.3.1] of the Rules.									
	f_{ps} : The coefficient for strength assessment in flooded condition for fire-fighting, refer to [2.1.2].									
	2.3 Internal loads									
	2.3.1 Pressures for the strength assessment of flooded conditions for fire-fighting									
	The internal pressure in flooded condition for fire-fighting, in kN/m^2 , acting on any load point of the watertight boundary of a hold for the flooded static (S) design load scenarios, given in [2.4] is to be taken as:									
	$P_{in} = P_{FSC}$									
	$P_{FSC} = \rho g h$									
	ho : Density of seawater, taken equal to 1.025 t/m ³									
	g : Gravity acceleration, taken equal to 9.81 m/s ²									
	h : Pressure height, in m, in flooded condition, to be taken as:									
	$h = z_{FSC} - z$									
	where:									
	z_{FSC} : Vertical distance from the top of inner bottom plating to the maximum flooding level, in m									
	z : Vertical distance from the top of inner bottom plating to the load point, in m									

Present			Reason			
Newly added>	2.4 Des	sign load sce				
		gn load scenaric	s for strei	or strength assessment in flooded ngth assessment in flooded condition for ad scenarios for strength assessment in	or fire-fighting are given in Tab	le
				sign load scenario	Flooded condition (for fire-fighting)	
			L	oad components	Accidental (A)	
				VBM	M_{sw-FSC}	
		Hull Girder	HBM - VSF - TM -		-	
		Hull Girder			-	
					-	
			P_{ex}	External deck for green sea	-	
		-	- ex	Hull envelope	-	
				Ballast tanks	-	
			P_{in}	Other tanks	-	
		Local Loads		Watertight boundaries	P_{FSC}	
			F_{con}	Container	-	
				Internal decks for dry spaces	-	
			P_{dk}	External deck for distributed loads	-	
				External deck for heavy units	-	

Present				Amendme	ent				Reason	
(Newly added)	2.5 Lo	bading conditions								
		fire-fighting		argo hold strengt ssessment in flooded						
		Table 3 : Loadi	ng condi	tions for cargo holds s	strength check to	o cargo hol	d region			
				Still	water loads			Dynamic Ioad cases		
	No	Loading Pattern	Draught	Container In hold	load On deck	% of perm. SWBM	% of perm. SWSF	Midship cargo region		
	Floode	ed condition(for fire-fig	hting)							
	A2		T _{SC}	centre: flooded adjacent: 40t/FEU all ballast tanks empty	max 40 ft stack weight	100% (sag. or min. hog.)	_	Static		
	heavy cargo light cargo MARCONS ballast tank fuel oil tank									
		III local scantling								
		cal scantlings for car ince with Ch 6 of the		region in flooded co	ondition for fire-	fighting ar	e to be	evaluated in		

Present	Amendment	Reason
(Newly added)	3.2 Load combination	
	3.2.1 Design load sets for plating, stiffeners and PSM in flooded condition for fire-fighting Design load sets for plating, stiffeners and primary supporting members in flooded condition for fire-fighting are given in Table 3.	
	Table 3: Design load sets in flooded condition for fire-fighting	
	Structural memberDesign load setLoad componentDraughtDesign loadLoading condition	
	Watertight boundaries FD-2 P _{in} - A Flooded condition (for fire-fighting)	
	 4.1 Application 4.1.1 Cargo hold structural strength analysis is to be carried out in accordance with Ch 7, Sec 1 and 2 of the Rules. 4.2 Design load combinations 4.2.1 The loading condition for cargo hold structural strength analysis in flooding condition for fire-fighting is in accordance with Table 2. 	

Present	Amendment	Reason
Newly added>	4.3 Internal loads	
	4.3.1 Internal pressure in flooded condition	
	The internal pressure is calculated according to [2.3.1] for the design load scenarios in flooded condition for fire-fighting in Table 1.	
	4.4 Hull girder loads	
	4.4.1	
	The hull girder loads is to be taken as the still water vertical bending moment according to Table 2.	
	4.4.2 Target hull girder vertical bending moment in flooded condition for fire-fighting	
	The target hull girder vertical bending moment, M_{v-targ} , in kNm, at a longitudinal position for a given FE load combination is taken as:	
	$M_{v-targ} = M_{sw-FSC}$	
	where:	
	M_{sw-FSC} : Permissible still water bending moments in kNm, at the considered longitudinal position in flooded condition for fire-fighting as defined in [2.2.1] .	
	The values of M_{v-targ} are taken as the maximum hull girder bending moment within the mid-hold(s) for each individual cargo hold for each given FE load combination as defined in Table 2 .	
	4.5 Alternative methods	
	4.5.1 Strength assessment for PSM in flooded condition for fire-fighting	
	In evaluating the strength of the primary supporting members in flooded condition for fire-fighting, a method that considers the plasticity of the material using nonlinear finite element analysis can be used as an alternative evaluation method. In this case, evaluation procedures and methods are to be submitted to the Society for consultation in advance.	