RULES FOR CLASSIFICATION(STEEL SHIPS)

(Ministry of Oceans and Fisheries)

Part 14 Structural Rules for Container Ships

2022. 1. 26

Hull Rule Development Team

- Main Amendments -

(1) Enter into force on 1 July 2022 (the contract date for ship construction)

- To reflect Request for Establishment/Revision of Classification Technical Rules
- The regulations for liquefied natural gas fuel tank is newly added
- Coefficients and factors are improved for local scantling based on numerical assessment
- To clarify the requirements for the Cargo Hold Analysis
- To improve the fraction of time for the Fatigue Strength Assessment

Ψ

Present				Amendment			Note	
Chapter 1 General	Princip	oles	Cha	apter 1 General	Princip	oles		
Section 1 (omit	:ed>		S	Section 1 〈same as the present〉				
Section 2 Rule Pri	nciples			Section 2 Rule Principles				
1. ~ 3. (omitted)			1. ~ 3. (sa	1. ~ 3. (same as the present)				
4. Rule design method	4. Rule de	sign method						
4.1 ~ 4.2 (omitted)			4.1 ~ 4.2 <	same as the present>				
4.3 Load-capacity based requirements			4.3 Load-ca	apacity based requirements				
4.3.1 (omitted)	.3.1 〈omitted〉			4.3.1 (same as the present)				
4.3.2 Design loads for SLS, ULS and ALS			4.3.2 Design					
<pre>(omitted)</pre>			<pre> same as the</pre>					
Table 1: Load scenarios and correspond	ng rule requirer	ments	Table					
Operation Load type	Design load scenario	Acceptance criteria	Operation	Load type	Design load scenario	Acceptance criteria		
Seagoing operations								
〈omitted〉								
Harbour and sheltered operative	tions							
<pre></pre>				(same as the present)				
Accidental condition				Accidental condition	1			
<newly added=""></newly>			Collision conditions	Maximum loads on internal watertight subdivision structure including cofferdam bulkheads in collision	A	<u>AC-A</u>	 the accidental condition for container ship 	
Flooded conditions Typically maximum loads on internal watertight subdivision structure in accidental flooded conditions	A	AC-A	Flooded conditions	Typically maximum loads on internal watertight subdivision structure in accidental flooded conditions	A	AC-A	with liquefied natural gas fuel tank is newly	
Testing condition				Testing condition				
Tank testing Typical maximum loads during tank testing operations	Т	AC-T	Tank testing	Typical maximum loads during tank testing operations	Т	AC-T		

condition riteria set	y Yield	lied for the	e design loa requirement	ads in tank	4.4.1 Gen (same as t d) The acc accident e) The acc testing	ptance criteria eral the present> ceptance criteria se cal condition ceptance criteria se condition. Table 2 : Acceptar	t AC-T is applie	ed for the		-	condition but also					
condition riteria set Acceptance anels and rt members	AC-T is app ee criteria - p (1) Primary s mem) Yield	lied for the rescriptive r supporting bers ⁽¹⁾	e design loa requirement	ads in tank	(same as t d) The acc accident e) The acc testing	the present> ceptance criteria se cal condition ceptance criteria se condition.	t AC-T is applie	ed for the		-	condition but also collision condition					
condition riteria set Acceptance anels and rt members	AC-T is app ee criteria - p (1) Primary s mem) Yield	lied for the rescriptive r supporting bers ⁽¹⁾	e design loa requirement	ads in tank	d) The acc accident e) The acc testing	eptance criteria se al condition ceptance criteria se condition.	t AC-T is applie	ed for the		-	condition but also collision condition					
anels and rt members	Primary s mem Yield	supporting bers ⁽¹⁾		S		Table 2 : Acceptar					accidental					
rt members	y Yield	bers ⁽¹⁾	Hull girde				ice criteria - pre	scriptive r	equirement	s	condition, AC-A for container					
Buckling		Buckling	1	r members	Acceptance criteria	Plate panels and local support member	rs ⁽¹⁾ Primary sup membe	porting rs ⁽¹⁾	Hull girde	r members	ships with liquefied natural					
			Yield	Buckling	Citteria	Yield Bucklin	g Yield	Buckling	Yield	Buckling	gas fuel tank					
	<omi< td=""><td>tted></td><td></td><td></td><td colspan="4">AC-S AC-SD AC-A AC-T</td><td>- adopted the direct analysis for</td></omi<>	tted>			AC-S AC-SD AC-A AC-T				- adopted the direct analysis for							
	<pre>(omitted)</pre>				⟨omitted⟩ AC−I ⁽²⁾ ⟨same					AC-I ⁽²⁾ (same as the present)				e present>		
		·		leckhouses	and hull	outfitting sary, direct analysis g	uidance specified	Classificatio	n Society ca		members subjected impact loads.					
	•			alysis		Cargo bo	•			alvsis	- the screening					
	Buckling		Yield	-	Acceptance criteria	Yield	Buckling		Yield	,	criteria in					
		r: Screenin	c 3, [6]		AC-S, AC-SD, AC-A AC-T	Permissible stress: Ch 7, Sec 2, [5]	Allowable buckling utilisation factor: Ch 8, Sec 1, [3]			es stress:	acceptance criteria for FE analysis is removed					
	ble 3 : Ac	ble 3 : Acceptance crite Cargo hold analysis ield Buckling sible Allowable buckling utilisation facto	ble 3 : Acceptance criteria – FE an Cargo hold analysis F ield Buckling sible Allowable Permiss buckling utilisation factor: Ch 7, Se Sec 2 [5]	ble 3 : Acceptance criteria – FE analysis Cargo hold analysis Fine mesh an ield Buckling Yield sible Allowable buckling utilisation factor: Ch 7, Sec 3, [6] Screening criteria: Ch	Cargo hold analysis Fine mesh analysis ield Buckling Yield sible Allowable Permissible Von Mises stress: buckling utilisation factor: Ch 7, Sec 3, [6]	ble 3 : Acceptance criteria – FE analysis Cargo hold analysis Fine mesh analysis ield Buckling Yield sible Allowable Dermissible Von Mises stress: Ch 7, Sec 3, [6] Screening criteria: Ch 7, Sec 3, AC-SD, AC-A	ble 3 : Acceptance criteria - FE analysis Table 3 : Acceptance criteria - FE analysis Cargo hold analysis Fine mesh analysis ield Buckling sible Allowable buckling Permissible Von Mises stress: Ch 7, Sec 3, [6] AC-S, Sec 2 [5]	and hull outfitting (2) If necessary, direct analysis guidance specified applied. (3) Cargo hold analysis (a) Buckling (a) Buckling (b) Sible (c) Allowable (c) Cargo hold analysis (c) Cargo hold analysis	and hull outfitting (2) If necessary, direct analysis guidance specified Classification applied. (2) If necessary, direct analysis guidance specified Classification applied. (2) If necessary, direct analysis guidance specified Classification applied. (2) If necessary, direct analysis guidance specified Classification applied. (2) If necessary, direct analysis guidance specified Classification applied. (2) If necessary, direct analysis guidance specified Classification applied. (3) Cargo hold analysis Fine mesh analysis (a) Buckling Yield (a) Sible Allowable (b) buckling Permissible Von Mises stress: (c) Allowable Permissible Von Mises stress: (b) buckling Ch 7, Sec 3, [6] (c) Allowable Screening criteria: Ch 7, Sec 3, [6] (c) Allowable Duckling (c) Allowable Duckling	and hull outfitting (2) If necessary, direct analysis guidance specified Classification Society can applied. (2) If necessary, direct analysis guidance specified Classification Society can applied. (2) If necessary, direct analysis guidance specified Classification Society can applied. (2) If necessary, direct analysis guidance specified Classification Society can applied. (2) If necessary, direct analysis guidance specified Classification Society can applied. (3) Cargo hold analysis Fine mesh analysis (a) Buckling Yield (b) Sible Allowable buckling Permissible Von Mises stress: (c) T, Sec 3, [6] AC-S, AC-A Screening criteria: Ch 7, Sec 3, [6] Permissible stress: (2) AC-A Ch 7, Sec 3, [6]	and hull outfitting (2) If necessary, direct analysis guidance specified Classification Society can be applied. (2) If necessary, direct analysis guidance specified Classification Society can be applied. (2) If necessary, direct analysis guidance specified Classification Society can be applied. (2) If necessary, direct analysis guidance specified Classification Society can be applied. (2) If necessary, direct analysis guidance specified Classification Society can be applied. (3) Cargo hold analysis Fine mesh analysis (a) Gargo hold analysis Fine mesh analysis (a) Buckling Yield (b) Cargo hold analysis Fine mesh analysis (c) Fine mesh analysis Fine mesh analysis <					

Section 3 Verification of Compliance	
•	
1. (same as the present)	
2. Document to be submitted	
2.1 (same as the present)	
2.2 Submission of plans and supporting calculations	
2.2.1 ~ 2.2.2 (same as the present)	
2.2.3 Plans and instruments to be supplied onboard the ship	
d As a minimum, the following plans and instrument are to be supplied onboard:	
 p each structural item is to be supplied onboard the ship: plans of midship ft sections, construction profiles, shell expansion, transverse bulkheads, aft and fore part structures, machinery space structures, superstructures, deckhouses and casing. 	
c) One copy of the final approved loading instrument, see [2.1.1].	
 e) Details of the extent and location of higher tensile steel together with details of the specification and mechanical properties, and any recommendations for welding, working and treatment of these steels. 	
 f) Details and information on use of special materials, such as an aluminium alloy, used in the hull construction. g) Towing and mooring arrangements plan. 	- Ch 11, Sec 3 amended or dele
〈same as the present〉	ed
t n	 2. Document to be submitted 2.1 (same as the present) 2.2 Submission of plans and supporting calculations 2.2.1 ~ 2.2.2 (same as the present) 2.2.3 Plans and instruments to be supplied onboard the ship As a minimum, the following plans and instrument are to be supplied onboard: a) One copy of the following plans indicating the newbuilding thickness for each structural item is to be supplied onboard the ship: plans of midship sections, construction profiles, shell expansion, transverse bulkheads, aft and fore part structures, machinery space structures, superstructures, deckhouses and casing. b) One copy of the final approved loading manual, see [2.1.1]. c) One copy of the final approved loading instrument, see [2.1.1]. d) Welding. th or petails of the extent and location of higher tensile steel together with details of the specification and mechanical properties, and any recommendations for welding, working and treatment of these steels. f) Details and information on use of special materials, such as an aluminium alloy, used in the hull construction. g) Towing and mooring arrangements plan.

Present	Amendment	Note
Chapter 3 Structural Design	Chapter 3 Structural Design	
Principles	Principles	
Section 1 ~ 2 〈omitted〉 Section 3 Corrosion Additions	Section 1 ~ 2 〈same as the present〉 Section 3 Corrosion Additions	
1. General	1. General	
1.1 〈omitted〉	1.1 〈same as the present〉	
1.2 Corrosion addition determination	1.2 Corrosion addition determination	
1.2.1	1.2.1	
<pre>(omitted)</pre>	⟨same as the present⟩	
In case of stainless clad steel, the corrosion additions, t_{c1} , for the carbon	In case of stainless clad steel, the corrosion additions, t_{cl} , for the carbon	
steel side and t_{c2} , for the stainless steel side are respectively to be taken as:	steel side and t_{c2} , for the stainless steel side are respectively to be taken as:	
a) t_{c1} as specified for the corresponding compartment in Table 1	a) t_{c1} as specified for the corresponding compartment in Table 1	
b) $t_{c2} = 0.0$	b) $t_{c2} = 0.0$	
The total corrosion addition, t_c in mm, need not to be taken more than 20 %		- move to 1.2.4
of gross offered thickness, t_{qr_off} in mm.		
1.2.3 (omitted)	1.2.3 (same as the present)	
1.2.4 Maximum of corrosion addition	1.2.4 Corrosion addition limit	- revised the
Considering the renewal criteria specified in Ch 13, Sec 2, the corrosion	Considering the renewal criteria specified in Ch 13, Sec 2, the total corrosion	subtitle
addition satisfy the following condition:	addition, t_c in mm, need not to be taken more than 20% of gross offered	
	thickness, t_{gr_off} in mm. The corrosion addition satisfy the following condition:	
$t_c \leq 0.2 \; t_{gr_off}$ with nearest half millimetre	$t_c \leq 0.2 t_{gr_off}$ with nearest half millimetre	
For examples;	For examples;	
$0.75 \leq t$ (1.25mm, the corrosion addition, t_c , is 1.0mm.	$0.75 \leq t_c \langle 1.25 \text{mm}, \text{ the corrosion addition, } t_c, \text{ is } 1.0 \text{mm}.$	– typo
$1.25 \leq t \langle 1.75 \text{ mm}, \text{ the corrosion addition}, t_c, \text{ is } 1.5 \text{ mm}.$	$1.25 \leq \underline{t_c} \langle 1.75 \text{ mm}, \text{ the corrosion addition, } t_c, \text{ is } 1.5 \text{ mm}.$	

Amendment	Note
Section 5 Limit States	
1. General	
1.1 Limit states	
1.1.1 ~ 1.1.4 〈same as the present〉	
1.1.5 Accidental limit state	
Accidental limit states are concerned with the ability of the structure to resist accident situations or abnormal events. <u>As described in Pt 7, Ch 5, this limit states are concerned with the collision loads imposed on a liquefied natural gas fuel containment system and its supporting structure in intact (undamaged) conditions as follows: • 0.5g in the forward direction in full condition. • 0.25g in the aft direction in full condition.</u>	 Collision load is included in accidental limit states for liquefied natural gas fuel containment
 Where, g is gravitational acceleration. Flooded conditions of any compartment without progression of the flooding to another compartment are considered. The limit states are concerned with the following in intact (undamaged) conditions with accidental or abnormal loads, or in damaged conditions with environmental loads the ship meets during a limited time frame: The safety of life. Environment. Property (ship and cargo). Accidental limit state includes: Loss of structural strength without loss of containment. Same as the present> 	system and its supporting structures.
	Section 5 Limit States 1. General 1.1 Limit states 1.1.1 ~ 1.1.4 (same as the present) 1.1.5 Accidental limit state Accidental limit states are concerned with the ability of the structure to resist accident situations or abnormal events. As described in Pt 7, Ch 5, this limit states are concerned with the collision loads imposed on a liquefied natural gas fuel containment system and its supporting structure in intact (undamaged) conditions as follows:

	Prese	ent				Amend	ment			Note
1.2 Failure modes					1.2 Failure modes					
1.2.1					1.2.1					
A number of possible failure he ship structure. For each elevant. The failure modes structural safety with relation	failure mod to be cons	e, one or m sidered for	iore limit sta the assessm	ates may be nent of ship		failure moc to be con	le, one or n sidered for	nore limit sta the assessm	ates may be nent of ship	
Table 13 : Failure modes	in relation t			considered	Table 14 : Failure modes	in relation t			considered	
Possible failure modes to be		Limit s	states ⁽¹⁾	1	Possible failure modes to be	Limit states ⁽¹⁾			- Possible failure	
considered	SLS	ULS	FLS	ALS	considered	SLS	ULS	FLS	ALS	mode due to
Yielding	Y	Y	-	Y	Yielding	Y	Y	-	Y	buckling is removed in ALS
Plastic collapse	-	Y	-	Y	Plastic collapse	-	Y	-	Y	removed in ALS
Buckling	Y	Y	-	<u>Y</u>	Buckling	Y	Y	-	=	
Rupture	-	Y	-	Y	Rupture	-	Y	-	Y	
Fatigue cracking	-	-	Y	-	Fatigue cracking	-	-	Y	-	
Brittle fracture ⁽²⁾	-	-	-	-	Brittle fracture ⁽²⁾	-	-	-	-	
 ⁽¹⁾ "Y" indicates that the structu ⁽²⁾ Controlled by the material ru 1.2.2 ~ 1.2.3 (omitted) 					⁽¹⁾ "Y" indicates that the structu ⁽²⁾ Controlled by the material ru 1.2.2 ~ 1.2.3 (same as the	le requiremen				

Present	Amendment	Note
1.2.4 Buckling	1.2.4 Buckling	
The buckling failure mode is the instability phenomena of structural members under compressive loads. When the stress in structural members just attains the elastic buckling stress, elastic (reversible) buckling occurs during the compressive load. This buckling failure mode is controlled in SLS. By further increasing the compressive load, stress redistribution occurs due to buckling of the weakest structural member and the stress in some structural members reaches the yield stress. This buckling failure mode with large elastic deflection is controlled in ULS or ALS. When compression is unloaded, no consequence of failure due to buckling is seen. On the other hand, plastic (irreversible) buckling occurs when the stress in structural members exceeds the yield stress. As a result, the substantial permanent deflections due to plastic buckling appear. This irreversible buckling failure mode is controlled only in ULS or ALS for global hull girder strength. (omitted)	The buckling failure mode is the instability phenomena of structural members under compressive loads. When the stress in structural members just attains the elastic buckling stress, elastic (reversible) buckling occurs during the compressive load. This buckling failure mode is controlled in SLS. By further increasing the compressive load, stress redistribution occurs due to buckling of the weakest structural member and the stress in some structural members reaches the yield stress. This buckling failure mode with large elastic deflection is controlled in ULS. When compression is unloaded, no consequence of failure due to buckling is seen. On the other hand, plastic (irreversible) buckling occurs when the stress in structural members exceeds the yield stress. As a result, the substantial permanent deflections due to plastic buckling appear. This irreversible buckling failure mode is controlled only in ULS for global hull girder strength. (same as the present)	 need not to be considering the buckling failure mode in ALS
2. Criteria	2. Criteria	
2.1 ~ 2.4 (omitted)	2.1 ~ 2.4 (same as the present)	
2.5 Accidental limit state	2.5 Accidental limit state	
2.5.1 (newly added) 2.5.1 Plating, stiffeners and PSM The plating, stiffeners and PSM are to be assessed in flooded conditions in accordance with Ch 6 and Ch 7 for yielding criteria. (omitted)	 2.5.1 Bulkhead structure The fore and aft cofferdam transverse bulkheads in liquefied natural gas fuel tank boundary, are to be assessed for regarding bow/stern collision loads in accordance with Ch 6 and Ch 7 for yielding criteria. 2.5.2 Plating, stiffeners and PSM The plating, stiffeners and PSM are to be assessed in flooded conditions in accordance with Ch 6 and Ch 7 for yielding criteria. (same as the present) 	 collision load is considering in accidental limit states for bulkhead structure of liquefied natural gas fuel tank

Present	Amendment	Note
Section 6 Structural Detail Principles	Section 6 Structural Detail Principles	
1. ~ 2. 〈omitted〉	1. ~ 2. (same as the present)	
3. Stiffeners	3. Stiffeners	
3.1 ~ 3.3 〈omitted〉	3.1 ~ 3.3 〈same as the present〉	
3.4 Sniped ends	3.4 Sniped ends	
3.4.1	3.4.1	
Sniped ends may be used where dynamic loads are small, provided the net thickness of plating supported by the stiffener, t_p in mm, is not less than:	Sniped ends may be used where dynamic loads are small, provided the net thickness of plating supported by the stiffener, t_p in mm, is not less than:	
$t_p = c_1 \sqrt{(1000 \ \ell - \frac{s}{2}) \frac{s \ P k}{10^6}} \mathrm{t}.$	$t_p = c_1 \sqrt{(1000 \ \ell - \frac{s}{2}) \frac{s \ P k}{10^6}} t.$	
 where: P : Design pressure for the stiffener for the design load set being considered, in kN/m². c₁ : Coefficient for the design load set being considered, to be taken as: c₁ = 1.2 for acceptance criteria set AC-S. c₁ = <u>1.1</u> for acceptance criteria set <u>AC-SD and AC-T</u>. Sniped stiffeners are not to be used on structures in the vicinity of engines or generators in the machinery space, propeller impulse zone in the stern area nor on the shell envelope. 〈omitted〉 	<pre>where: P : Design pressure for the stiffener for the design load set being</pre>	 improving the coefficient for the design load set and newly adding the missing AC-A for sniped ends

Present	Amendment	Note
5. Intersection of stiffeners and primary supporting mem- bers	5. Intersection of stiffeners and primary supporting mem- bers	
5.1 〈omitted〉	5.1 (same as the present)	
5.2 Connection of stiffeners to PSM	5.2 Connection of stiffeners to PSM	
5.2.1 ~ 5.2.2 (omitted)	5.2.1 ~ 5.2.2 (same as the present)	
5.2.3	5.2.3	
The load, W_2 , in kN, transmitted through the PSM web stiffener is to be	The load, W_2 , in kN, transmitted through the PSM web stiffener is to be	
taken as:	taken as:	
• If the web stiffener is connected to the intersecting stiffener:	• If the web stiffener is connected to the intersecting stiffener:	
$W_{2} = W \left(1 - \alpha_{a} - \frac{A_{1}}{4 f_{c} A_{W} + A_{1}} \right)$	$W_{2} = W \left(1 - \alpha_{a} - \frac{A_{1}}{4 f_{c} A_{W} + A_{1}} \right)$	
• If the web stiffener is not connected to the intersecting stiffener:	• If the web stiffener is not connected to the intersecting stiffener:	
$W_2 = 0.0$	$W_2 = 0.0$	
<pre>(omitted)</pre>	$\langle same as the present angle$	
where:	where:	
(omitted)	$\langle \text{same as the present} \rangle$	
A_{wc} : Effective net area, in cm ² , of the PSM web stiffener in way of the weld as shown in Figure 8 .	A_{wc} : Effective net area, in cm ² , of the PSM web stiffener in way of the weld as shown in Figure 8 .	
σ_{perm} : Permissible direct stress given in Table 1 for AC-S, AC-SD, AC-I	σ_{perm} : Permissible direct stress given in Table 1 for <u>AC-S, AC-SD, AC-I</u> ,	- to represent the
and AC-T, in N/mm ² .	AC-A and AC-T, in N/mm ² .	missing AC-A
$ au_{perm}$: Permissible shear stress given in Table 1 for <u>AC-S, AC-SD, AC-I</u>	$ au_{perm}$: Permissible shear stress given in Table 1 for AC-S, AC-SD, AC-I,	
and AC-T, in N/mm^2 .	<u>AC-A and AC-T</u> , in N/mm^2 .	

Table 1 : Permissible stre Di Item	Direct stress		between s	stiffeners and	1 PSMs		
		s, σ_{nerm} , in					
Item	Accepta	, perm,	N/mm^2	shear str	ess, $ au_{perm}$, in	N/mm^2	
Item		nce criteria	a set	Accer	otance criteria	a set	
		AC-SD			<u>AC-SD</u>		
A	AC-S	<u>and</u> <u>AC-T</u>	AC-I	AC-S	<u>and</u> <u>AC-T</u>	AC-I	
PSM web stiffener 0.83	$83R_{eH}^{(2)}$	R_{eH}	R_{eH}	_	-	-	
PSM web stiffener to intersecting stiffener in way of weld connection: • Double continuous fillet 0.58	$58R_{eH}^{(2)}$ 0.	$R_{eH}^{(2)} = R_{eH}^{(1)}$	$egin{array}{l} R_{eH} \ R_{eH} \end{array}$			- -	
PSM stiffener to intersecting 0.8 stiffener in way of lapped welding	$.50R_{eH}$	$0.60R_{eH}$	R_{eH}	-	-	-	
Shear connection including lugs or collar plates: • Single sided connection • Double sided connection	-	-	-	$\begin{array}{c} 0.71 \tau_{eH} \\ 0.83 \tau_{eH} \end{array}$	$0.85 au_{eH}$ $ au_{eH}$	$ au_{eH} \ au_{eH}$	

Present		Note								
	Table 1 : Permissible	Table 1 : Permissible stresses for connection between stiffeners and PSMs								
		Direct stress, σ_{perm} , in N/mm ² sl					shear stress, $ au_{perm}$, in $\mathrm{N/mm^2}$			
		Acceptance criteria set			Acce	ptance criter				
	Item	AC-S	<u>AC-SD</u> <u>AC-A</u> <u>AC-T</u>	AC-I	AC-S	<u>AC-SD</u> <u>AC-A</u> <u>AC-T</u>	AC-I	- to represent th missing AC-A		
	PSM web stiffener	$0.83 R_{eH}^{(2)}$	R_{eH}	R_{eH}	-	-	-			
	PSM web stiffener to intersecting stiffener in way of weld connection:Double continuous filletPartial penetration weld	$0.58 R_{eH}^{}^{(2)}$ $0.83 R_{eH}^{}^{(1)(2)}$	$0.70 {R_{eH}}^{(2)} {R_{eH}}^{(1)}$	$egin{array}{c} R_{eH} \ R_{eH} \end{array}$						
	PSM stiffener to intersecting stiffener in way of lapped welding	$0.50R_{eH}$	$0.60R_{eH}$	R_{eH}	_	-	-			
	Shear connection including lugs or collar plates: • Single sided connection • Double sided connection	-	-	-	$0.71 au_{eH}$ $0.83 au_{eH}$	$0.85 au_{eH}$ $ au_{eH}$	$ au_{eH} \ au_{eH}$			
	⁽¹⁾ The root face is not to be greater ⁽²⁾ Permissible stresses may be increated pSM web stiffener.	than one th ased by 5%	ird of the gr	oss thickne oft heel is	ss of the PS provided in v	SM stiffener. way of the I	heel of the			

Pro	esent		Ame	Amendment			
5.2.4 ~ 5.2.7 (omitted)			5.2.4 ~ 5.2.7 (same as the prese	nt〉			
5.2.8 The size of the fillet welds is to be based on the weld factors given in shear connection the size is not to web plate for the location under cons	Table 2. For the weld be less than that red	ling in way of the	5.2.8 The size of the fillet welds is to be based on the weld factors given in shear connection the size is not to web plate for the location under con	Table 2.For the weldbe less than that req	ling in way of the		
Table 2: Weld factors for conn	ection between stiffen	ers and PSMs	Table 2: Weld factors for con	nection between stiffen	ers and PSMs		
Item	Acceptance criteria	Weld factor	Item Acceptance criteria Weld factor				
PSM stiffener to intersecting stiffener	AC-S, AC-SD, AC-I and AC-T	$0.6 \; \sigma_{wc} / \; \sigma_{perm}$ not to be less than 0.38	PSM stiffener to intersecting stiffener	<u>AC-S, AC-SD.</u> <u>AC-I, AC-A and AC-T</u>	$0.6 \; \sigma_{wc} / \; \sigma_{perm}$ not to be less than 0.38	- to represent the	
Shear connection inclusive of lug or collar plate	<u>AC-S, AC-SD,</u> <u>AC-I and AC-T</u>	0.38	Shear connection inclusive of lug or collar plate	<u>AC-S, AC-SD,</u> <u>AC-I, AC-A and AC-T</u>	0.38	missing AC-A	
Shear connection inclusive of lug or collar plate, where the web stiffener of the PSM is not connected to the intersection stiffener	<u>AC-S, AC-SD,</u> <u>AC-I and AC-T</u>	$\begin{array}{c} 0.6 \; \tau_w / \; \tau_{perm} \\ \mathrm{not \; to \; be \; less} \\ \mathrm{than \; 0.44} \end{array}$	Shear connection inclusive of lug or collar plate, where the web stiffener of the PSM is not connected to the intersection stiffener	<u>AC-S, AC-SD,</u> <u>AC-I, AC-A and AC-T</u>	$\begin{array}{c} 0.6 \; \tau_w \; / \; \tau_{perm} \\ \mathrm{not \; to \; be \; less} \\ \mathrm{than \; 0.44} \end{array}$		
$ \begin{aligned} \tau_w & : \text{Shear stress, in } \text{N/mm}^2, \text{ as defin} \\ \sigma_{wc} & : \text{Stress, in } \text{N/mm}^2, \text{ as defin} \\ \tau_{pcrm} & : \text{Permissible shear stress, in} \\ \sigma_{perm} & : \text{Permissible direct stress, in} \\ W & : \text{Load, in } \text{kN, as defined in} \\ A_1 & : \text{Effective net shear area, in} \\ A_w & : \text{Effective net cross sectiona} \end{aligned} $	ned in [5.2.3]. N/mm ² , see Table 1. N/mm ² , see Table 1. [5.2.2]. cm ² , as defined in [5.2.		$ \begin{array}{lll} \tau_w & : \mbox{Shear stress, in N/mm}^2, \\ \sigma_{wc} & : \mbox{Stress, in N/mm}^2, \mbox{as def} \\ \tau_{perm} & : \mbox{Permissible shear stress, in} \\ \sigma_{perm} & : \mbox{Permissible direct stress, in} \\ W & : \mbox{Load, in kN, as defined in} \\ A_1 & : \mbox{Effective net shear area, in} \\ A_w & : \mbox{Effective net cross section} \end{array} $	ined in [5.2.3]. In N/mm^2 , see Table 1. In N/mm^2 , see Table 1. In [5.2.2]. In cm^2 , as defined in [5.2.	-		

Present	Amendment	Note
Chapter 4 Loads Section 1 ~ 3 〈omitted〉 Section 4 Hull girder loads	Chapter 4 Loads Section 1 ~ 3 〈same as the present〉 Section 4 Hull girder loads	
Symbols	Symbols	
For symbols not defined in this section, refer to Ch 1, Sec 4.	For symbols not defined in this section, refer to Ch 1, Sec 4.	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	x : X coordinate, in m, of the calculation point with respect to the reference coordinate system defined in Ch 4, Sec 1, [1.2.1]. f_{β} : Heading correction factor, to be taken as: a) For strength assessment: $f_{\beta} = 1.0$ in general $f_{\beta} = 0.8$ for BSR and BSP load cases for the extreme sea loads design load scenario. (deleted) (deleted)	 to simplify the application of factor
b) For fatigue assessment: $f_{\beta} = 1.0$ (omitted)	b) For fatigue assessment: $f_\beta \ = \ 1.0$ (same as the present)	

Present	Amendment	Note
1. (omitted)	1. (same as the present)	
2. Vertical still water hull girder loads	2. Vertical still water hull girder loads	
2.1 ~ 2.2 (omitted)	2.1 ~ 2.2 (same as the present)	
2.3 Vertical still water shear force	2.3 Vertical still water shear force	
2.3.1 (omitted)	2.3.1 (same as the present)	
2.3.2 Permissible still water shear force in harbour/sheltered water and tank testing condition	2.3.2 Permissible still water shear force in harbour/sheltered water condition	- tank testing condition in 2.3.2
The permissible vertical still water shear forces, $Q_{\scriptscriptstyle sw-p}$, in the harbour/	The permissible vertical still water shear forces, $Q_{\!sw-p}$, in the harbour/	is moved to
sheltered water and tank testing condition at any longitudinal position are to envelop:	sheltered water at any longitudinal position are to envelop:	2.3.4.
 a) The most severe still water shear forces, positive or negative, for the harbour / sheltered water loading conditions defined in Ch 4, Sec 8. b) The most severe still water shear forces for the harbour / sheltered water loading conditions defined in the loading manual. 2.3.3 (omitted) 	 a) The most severe still water shear forces, positive or negative, for the harbour / sheltered water loading conditions defined in Ch 4, Sec 8. b) The most severe still water shear forces for the harbour / sheltered water loading conditions defined in the loading manual. 2.3.3 (same as the present) 	
2.3.4 (newly added)	2.3.4 Permissible still water shear force in tank testing condition	
	 The permissible vertical still water shear forces, Q_{sw-t}, in tank testing condition at any longitudinal position are to envelop: a) The most severe still water shear forces for the tank testing conditions defined in the tank testing procedure. b) When the still water shear forces are not defined in the tank testing procedure, the permissible still water shear force may be taken the values as defined in [2.3.1]. 	- the Q_{sw-t} for the tank testing condition is newly added

Present	Amendment	Note
2.4 Torsional still water moment	2.4 Torsional still water moment	
2.4.1	2.4.1	
The value and distribution of still water moment torsional, M_{st} , are to be specified by designer and are not to be less than minimum design value to still water torsional moment. The minimum design value of still water torsional moment, M_{st} , in kNm, at any position along the ship is defined as: $M_{st} = 0.11 f_{st} B W_{total-cont} (1-L/500)$ where: f_{st} : Distribution factor along the ship length. To be taken as: $f_{st} = 0.0$, for $x \le 0$ $f_{st} = 1.0$, for $0.2L \le x \le 0.8L$ $f_{st} = 0.0$, for $x \ge L$ Intermediate values of f_{sw-t} are to be obtained by linear interpolation. W_{cont} : maximum total container weight of vessel, in ton	The value and distribution of still water moment torsional, M_{st} , are to be specified by designer and are not to be less than minimum design value to still water torsional moment. The minimum design value of still water torsional moment, M_{st} , in kNm, at any position along the ship is defined as: $M_{st} = 0.11 f_{st} B W_{total-cont} (1 - L/500)$ where: $f_{st} = 0.0$, for $x \le 0$ $f_{st} = 1.0$, for $0.2L \le x \le 0.8L$ $f_{st} = 0.0$, for $x \ge L$ Intermediate values of f_{st} are to be obtained by linear interpolation. $\frac{W_{total-cont}}{W_{total-cont}} = n \cdot W_{cont}$ where: n = : Maximum number of containers $\frac{W_{cont}}{W_{cont}} = :$ Maximum weight of 20 ft container, in ton	 typo (f_{sw-t}→f_{st}) for clarification of definition for the maximum total container weight

Present	Amendment	Note
3. Dynamic hull girder loads	3. Dynamic hull girder loads	
3.1 ~ 3.3 (omitted)	3.1 ~ 3.3 (same as the present)	
3.4 Horizontal wave bending moment	3.4 Horizontal wave bending moment	
3.4.1	3.4.1	
The horizontal wave bending moment at any longitudinal position, in $k{\rm Nm},$ is to be taken as:	The horizontal wave bending moment at any longitudinal position, in $k{\rm Nm},$ is to be taken as:	
$M_{wh} = 0.25 f_{nlh} f_R f_p L^2 T_{LC} C_w \left(\frac{1.2L}{1000} + 1\right) f_{m-H}$	$M_{wh} = 0.25 f_R f_p L^2 T_{LC} C_w \left(\frac{1.2L}{1000} + 1\right) f_{m-H}$	
where:	where:	- the coefficient
f_{nlh} : Coefficient considering nonlinear effect to be taken as:	<pre> <deleted></deleted></pre>	$f_{\it nlh}$ is removed
$\frac{f_{nlh} = 1.0}{\text{(omitted)}}$	〈same as the present〉	for simplification.
3.5 Horizontal wave shear force	3.5 Horizontal wave shear force	
3.5.1	3.5.1	
The horizontal wave shear force at any longitudinal position with respect to the ship baseline, in kNm , is to be taken as:	The horizontal wave shear force at any longitudinal position with respect to the ship baseline, in kNm , is to be taken as:	
$Q_{wh} = f_{nlh} f_R f_p L T_{LC} C_B C_w \left(\frac{17L}{10000} + 1.27\right) f_{q-H}$	$Q_{wh} = f_R f_p L T_{LC} C_B C_w \left(\frac{17L}{10000} + 1.27\right) f_{q-H}$	- the coefficient f_{nlh} is removed
where:	where:	for simplification.
f_{nlh} : Coefficient considering nonlinear effect to be taken as:	<pre> <deleted></deleted></pre>	
$\frac{f_{nlh} = 1.0}{\text{(omitted)}}$	〈same as the present〉	

3.6 Wave torsional moment3.6 Wave torsional moment3.6 Wave torsional moment3.6.1The wave torsional moment at any longitudinal position with respect to the ship baseline, in kNm, is to be taken as:3.6 Wave torsional moment at any longitudinal position with respect to the ship baseline, in kNm, is to be taken as: $d_{stat} = f_{stb} f_{a} f_{b} LBC_{w} T_{LC} \left(\frac{5B}{1000} + 0.44\right) f_{m-2} f_{sc}}{\frac{5B}{1000} + 0.44} f_{m-2} f_{sc}}$ - the coefficient $f_{stb} = f_{ab} f_{a} f_{b} Coefficient to be taken as:M_{stat} = f_{a} f_{b} LBC_{w} T_{LC} \left(\frac{5B}{1000} + 0.44\right) f_{m-2} f_{sc}}{\frac{f_{\mu}}{100} + 0.44} f_{m-2} f_{sc}}- the coefficient f_{stb} is removed for simplification.f_{\mu} = f_{\mu}: Coefficient to be taken as:f_{\mu} = f_{\mu} f_{\mu} LBC_{w} T_{LC} (5f_{T} - 4.25)B \times 10^{-4})for strength assessment.f_{\mu} = 0.9[0.2 + (5f_{T} - 4.25)B \times 10^{-4}]for fatigue assessment.f_{\mu} = 0.9[0.2 + (5f_{T} - 4.25)B \times 10^{-4}]for fatigue assessment.(omitted)$	Present	Amendment	Note
The wave torsional moment at any longitudinal position with respect to the ship baseline, in kNm, is to be taken as: $ \frac{M_{wt} = f_{nlh} f_R f_p LB C_w T_{LC} \left(\frac{5B}{1000} + 0.44\right) f_{m-T} f_{sc}}{where:} $ $ \frac{f_p = f_{ps}}{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]} \text{ for fatigue assessment.} $ $ \frac{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]}{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]} \text{ for fatigue assessment.} $ $ The wave torsional moment at any longitudinal position with respect to the ship baseline, in kNm, is to be taken as: $ $ \frac{M_{wt} = f_R f_p LB C_w T_{LC} \left(\frac{5B}{1000} + 0.44\right) f_{m-T} f_{sc}}{f_p = f_{ps}} + Coefficient to be taken as: $ $ \frac{M_{wt} = f_R f_p LB C_w T_{LC} \left(\frac{5B}{1000} + 0.44\right) f_{m-T} f_{sc}}{f_p = f_{ps}} + Coefficient to be taken as: $ $ \frac{f_p = f_{ps}}{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]} + Coefficient to be taken as: $ $ \frac{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]}{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]} + Coefficient to be taken as: $ $ \frac{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]}{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]} + Coefficient to be taken as: $ $ \frac{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]}{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]} + Coefficient to be taken as: $ $ \frac{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]}{f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}]} + Coefficient to be taken as: $	3.6 Wave torsional moment	3.6 Wave torsional moment	
ship baseline, in kNm, is to be taken as:ship baseline, in kNm, is to be taken as:- the coefficient f_{nlh} is removed $M_{wt} = f_{nlh}$ $f_R f_p LB C_w T_{LC} \left(\frac{5B}{1000} + 0.44\right) f_{m-T} f_{sc}}$ - the coefficient f_{nlh} is removedwhere: $M_{wt} = f_R f_p LB C_w T_{LC} \left(\frac{5B}{1000} + 0.44\right) f_{m-T} f_{sc}}$ - the coefficient f_{nlh} is removed f_p : Coefficient to be taken as: $f_p = f_{ps}$ for strength assessment. $f_p = f_{ps}$ $f_p = 0.9[0.2 + (5f_T - 4.25)B \times 10^{-4}]$ for fatigue assessment. $f_p = 0.9[0.2 + (5f_T - 4.25)B \times 10^{-4}]$ for fatigue assessment.	3.6.1	3.6.1	
	3.6.1 The wave torsional moment at any longitudinal position with respect ship baseline, in kNm, is to be taken as: $\frac{M_{wt} = f_{nlh} f_R f_p LB C_w T_{LC} \left(\frac{5B}{1000} + 0.44\right) f_{m-T} f_{sc}}{\text{where:}}$ $f_p \qquad : \text{ Coefficient to be taken as:}$ $f_p = f_{ps} \qquad \qquad \text{for strength assessment.}$ $f_p = 0.9 [0.2 + (5f_T - 4.25)B \times 10^{-4}] \qquad \text{for fatigue assessment.}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$f_{\it nlh}$ is removed

Present	Amendment	Note
Section 5 (omitted)	Section 5 〈same as the present〉	
Section 6 Internal loads	Section 6 Internal loads	
Symbols	Symbols	
For symbols not defined in this section, refer to Ch 1, Sec 4.	For symbols not defined in this section, refer to Ch 1, Sec 4 .	
$\begin{split} z_{top} &: Z \text{ coordinate of the highest point of tank, excluding small hatchways, in m.} \\ \rho_L &: \text{Density of liquid in the tank, in t/m}^3, but not less than: \\ \underline{\rho_L = 1.025} \\ \end{split}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	 the density of liquefied natural gas fuel for strength assessment and for fatigue assessment is
as: $\rho_{slh} = \rho_L$ (omitted)	as: $\rho_{slh} = \rho_L$ (same as the present)	newly added

Present	Amendment	Note
1. Pressure due to liquids	1. Pressure due to liquids	
1.1 〈omitted〉	1.1 (same as the present)	
1.2 Static liquid pressure	1.2 Static liquid pressure	
1.2.1 Normal operations at sea	1.2.1 Normal operations at sea	
The static pressure due to liquid in tanks, P_{ls} during normal operations at sea,	The static pressure due to liquid in tanks, P_{ls} during normal operations at sea,	
in kN/m^2 , is to be taken as:	in kN/m^2 , is to be taken as:	
<pre>(newly added)</pre>	$\underline{P_{ls}} = \rho_L g(z_{top} - z) + P_{PV}$ for liquefied natural gas fuel tank	- newly adding the
$P_{ls} = \rho_L g(z_{top} - z) \qquad \qquad \text{for other cases}$	$P_{ls} = \rho_L g(z_{top} - z) \qquad \qquad \text{for other cases}$	static pressure at
1.2.2 Harbour / sheltered water operations	1.2.2 Harbour / sheltered water operations	sea, harbour and sheltered water
The static pressure, P_{ls} due to liquid in tanks for harbour/sheltered water	The static pressure, P_{ls} due to liquid in tanks for harbour/sheltered water	for liquefied
operations, in kN/m^2 , is to be taken as:	operations, in kN/m ² , is to be taken as:	natural gas fuel
(newly added)	$\underline{P_{ls}} = \rho_L g(z_{top} - z) + P_{PV} \qquad \text{for liquefied natural gas fuel tank}$	tank
$P_{ls} = \rho_L g(z_{top} - z)$ for other cases	$P_{ls} = \rho_L g(z_{top} - z) \qquad \qquad \text{for other cases}$	
<pre>(omitted)</pre>	〈same as the present〉	
1.3 Dynamic liquid pressure	1.3 Dynamic liquid pressure	
1.3.1	1.3.1	
The dynamic pressure, P_{ld} due to liquid in tanks, in ${\rm kN/m^2}$, is to be taken	The dynamic pressure, P_{ld} due to liquid in tanks, in kN/m ² , is to be taken	
as:	as:	- newly adding the
$P_{ld} = f_{\beta} \rho_L[a_Z (z_0 - z) + f_{ull - l} a_X (x_0 - x) + f_{ull - t} a_Y (y_0 - y)]$	$P_{ld} = f_{\beta} \rho_L[a_Z (z_0 - z) + f_{ull - l} a_X (x_0 - x) + f_{ull - t} a_Y (y_0 - y)]$	factors for
where:	where:	dynamic liquid pressure for
f_{ull-l} : Longitudinal acceleration correction factor to account for the ullage	f_{ull-l} : Longitudinal acceleration correction factor to account for the ullage	liquefied natural
space above the liquid in tanks, taken as $f_{ull-l} = 1.0 \label{eq:full-l}$	space above the liquid in tanks, taken as	gas fuel tank
<u> </u>	• For strength assessment: $f_{ull-l} = 0.62$ for liquefied natural gas fuel tank and	
	fuel oil tank.	
	$f_{ull-l} = 1.0$ for other cases.	

Present	Amendment	Note
(newly added) f_{ull-t} : Transverse acceleration correction factor to account for the ullage space above the liquid in tanks, taken as $f_{ull-l} = 1.0$	$\frac{\left \begin{array}{c} \text{For fatigue assessment:}}{f_{ull-l} = 0.5 + \frac{\left z_o - z\right }{\ell_{fs}} \frac{180}{\phi \pi}}{\frac{100}{\phi \pi}} \text{ for liquefied natural gas fuel tank and} \\ \frac{f_{uel} \text{ oil tank.}}{f_{ull-l} = 1.0} \\ f_{or other cases.} \\ f_{uul-l} \text{ is not to be less than 0.0 nor greater than 1.0} \\ \hline \\ \ell_{fs} \text{ : Fuel tank length at the top of the tank, in m} \\ f_{ull-t} \text{ : Transverse acceleration correction factor to account for the ullage space above the liquid in tanks, taken as} \\ \hline \\ \text{For strength assessment:} \\ f_{uul-l} = 0.67 \text{for liquefied natural gas fuel tank and fuel oil tank.} \\ f_{uul-l} = 1.0 \text{for other cases.} \\ \hline \\ \text{For fatigue assessment:} \\ f_{uul-l} = 0.5 + \frac{\left z_o - z\right }{b_{top}} \frac{180}{\theta \pi} \text{for liquefied natural gas fuel tank and fuel tank and fuel oil tank.} \\ f_{uul-t} = 1.0 \text{for other cases.} \\ \hline \\ f_{uul-t} = 1.0 \text{for other cases.} \\ \hline \\ f_{uul-t} = 1.0 \text{for other cases.} \\ \hline \\ f_{uul-t} = 1.0 \text{for other cases.} \\ \hline \\ \hline \\ f_{uul-t} = 1.0 \text{for other cases.} \\ \hline \\ \hline \\ \hline \\ f_{uul-t} = 1.0 \text{for other cases.} \\ \hline \\ $	- the factors for dynamic liquid pressure for liquefied natural gas fuel tank is newly added
<pre>(newly added)</pre>		
 x₀ : X coordinate, in m, of the reference point. y₀ : Y coordinate, in m, of the reference point. 	x_0 : X coordinate, in m, of the reference point.	
y_0 : Y coordinate, in m, of the reference point. z_0 : Z coordinate, in m, of the reference point. (omitted)	y_0 : Y coordinate, in m, of the reference point. z_0 : Z coordinate, in m, of the reference point. (same as the present)	

Present	Amendment	Note
2. (omitted)	2. (same as the present)	
<newly added=""></newly>	3. Pressure by IGF	- the IGF pressure
	3.1 General	for container ships with
	3.1 Application	liquefied natural
	For the liquefied natural gas fuel tank, the internal pressure acting on a tank	gas fuel tank is
	boundary, which is symbolized as in Ch 6, is given in "Rules/Guidance for the	newly added
	Classification of Ships Using Low-flashpoint Fuels", Ch 6, Sec 4, 409. in ${\rm kN/m^2}_{-}$	
	This pressure is calculated with dimensionless acceleration, which is combined	
	with 3 components(a_x , a_y , a_z) in an arbitrary direction according to an	
	ellipsoid surface. For the corner points of the liquefied natural gas fuel tank,	
	pressure may be calculated with different acceleration direction so as to have	
	a maximum. The pressure between corner points is decided by linear	
	interpolation.	
<u>3.</u> Sloshing pressure in tanks	<u>4.</u> Sloshing pressure in tanks	- renumbering
<u>3.1.1 ~ 3.1.2 (</u> omitted)	$4.1.1 \sim 4.1.2$ (same as the present)	
3.1.3 Sloshing pressure on tank boundaries and internal divisions	4.1.3 Sloshing pressure on tank boundaries and internal divisions	
The sloshing pressure due to liquid motions in a tank $P_{{\scriptscriptstyle slh}}$ acting on any load	The sloshing pressure due to liquid motions in a tank $P_{\it slh}$ acting on any load	
point of a tank boundary or internal divisions, in kN/m^2 , for the sloshing	point of a tank boundary or internal divisions, in kN/m^2 , for the sloshing	
design load scenario, given in Ch 4, Sec 7, is to be taken as follows, without	design load scenario, given in Ch 4, Sec 7, is to be taken as follows, without	
being less than $P_{slh-\min}$, as given in [3.2]:	being less than $P_{slh-min}$, as given in [4.2]:	
a) $P_{slh} = P_{slh-lng}$ for transverse bulkheads, as defined in [3.3.2].	a) $P_{slh} = P_{slh-lng}$ for transverse bulkheads, as defined in [4.3.2].	
	b) $P_{slh} = P_{slh-wf}$ for web frames and transverse stringers, as defined in	- the definition of
	[4.3.3] <u>.</u>	pressure for wel
b) $P_{slh} = P_{slh-t}$ for longitudinal bulkheads, as defined in [3.4.2].	c) $P_{slh} = P_{slh-t}$ for longitudinal bulkheads, as defined in [4.4.2].	frames and
c) $P_{slh} = P_{slh-ard}$ for longitudinal girders and stringers, see [3.4.3].	d) $P_{slh} = P_{slh-grd}$ for longitudinal girders and stringers, see [4.4.3].	transverse
		stringers is new added

Present	Amendment	Note
3.2 (omitted)	4.2 (same as the present)	
3.3 Sloshing pressure due to longitudinal liquid motion	4.3 Sloshing pressure due to longitudinal liquid motion	
<u>3.3.1</u>	<u>4.3.1</u>	
<pre> domitted ></pre>	⟨same as the present⟩	
3.3.2 Sloshing pressure in way of transverse bulkheads	4.3.2 Sloshing pressure in way of transverse bulkheads	
The sloshing pressure in way of transverse bulkheads due to longitudinal	The sloshing pressure in way of transverse bulkheads due to longitudinal	
liquid motion, $P_{slh-lng}$, in kN/m ² , for a particular filling level, is to be taken	liquid motion, $P_{slh-lng}$, in kN/m ² , for a particular filling level, is to be taken	
as:	as:	
$P_{slh-lng} = \rho_{slh}g \ell_{tk-h}f_{slh} \left[0.4 - \left(0.39 - \frac{1.7 \ell_{tk-h}}{L} \right) \frac{L}{350} \right]$	$\label{eq:slh-lng} \left[\begin{array}{c} P_{slh-lng} = \rho_{slh}g \ell_{tk-h} f_{slh} \bigg[0.4 - \bigg(0.39 - \frac{1.7 \ell_{tk-h}}{L} \bigg) \frac{L}{350} \bigg] \end{array} \right]$	
where:	where:	
ℓ_{tk-h} : Length of cargo tank, in m, at considered filling height.	ℓ_{tk-h} : Length of cargo tank, in m, at considered filling height.	- the coefficient,
f_{slh} : Coefficient taken as:	f_{slh} : Coefficient as defined in Table 1 .	f_{slh} is replaced
$f_{slh} = 1 - 2 \left(0.7 - \frac{h_{fill}}{h_{\max}} \right)^2$		with the table 1 instead of
h_{fill} : Filling height, measured from tank bottom, in m.	h_{fill} : Filling height, measured from tank bottom, in m.	formula.
<pre>(newly added)</pre>	Table 1 : Coefficient f_{slh}	
	h_{fill} f_{slh}	
	0.0 <i>h</i> _{Tank} 0.0	
	$0.1 h_{Tank} \qquad \qquad f_{slh} = 1.5 \left[1 - 2 \left(0.3 - \frac{h_{fill}}{h_{Tank}^2} \right)^2 \right]$	
	$0.3h_{Tank} \qquad \qquad f_{slh} = 2.0 \left[1 - 2 \left(0.3 - \frac{h_{fill}}{h_{Tank}^2} \right)^2 \right]$	
	$1.0h_{Tank} \qquad \qquad f_{slh} = 1.5 \left[1 - 2 \left(0.3 - \frac{h_{fill}}{h_{Tank}^2} \right)^2 \right]$	
	For intermediate values of $h_{\it fill},~f_{\it slh}$ are to be obtained by linear interpolation.	

Present	Amendment	Note
3.4 Sloshing pressure due to transverse liquid motion	4.4 Sloshing pressure due to transverse liquid motion	
3.4.1 〈omitted〉	4.4.1 (same as the present)	
3.4.2 Sloshing pressure in way of longitudinal bulkheads	4.4.2 Sloshing pressure in way of longitudinal bulkheads	
The sloshing pressure in way of longitudinal bulkheads including wash	The sloshing pressure in way of longitudinal bulkheads including wash	
bulkheads due to transverse liquid motion, P_{slh-t} , in ${ m kN/m^2}$, for a particular	bulkheads due to transverse liquid motion, $P_{{\it slh}-t}$, in ${\it kN/m^2}$, for a particular	
filling level, is to be taken as:	filling level, is to be taken as:	
$P_{slh-t} = 7 \rho_{slh} g f_{slh} \left(\frac{b_{tk-h}}{B} - 0.3 \right) GM^{0.75}$	$P_{slh-t} = 7 \rho_{slh} g f_{slh} \left(\frac{b_{tk-h}}{B} - 0.3 \right) G M^{0.75}$	
where:	where:	
b_{tk-h} : Breadth of cargo tank, in m, at considered filling height.	b_{tk-h} : Breadth of cargo tank, in m, at considered filling height.	
(newly added)	f_{slh} : Coefficient to be taken as defined in [4.3.2] Table 1.	- reflecting the
GM : Metacentric height, given in Ch 4, Sec 3, [2.1.1].	GM : Metacentric height, given in Ch 4, Sec 3, [2.1.1].	coefficient, $f_{\it slh}$
<pre> </pre>	⟨same as the present⟩	

Pre	sent	Amer	idment	Note
4. Design pressure for tank to	esting	5. Design pressure for tank t	5. Design pressure for tank testing	
4.1 Definition		5.1 Definition		
<u>4.1.1</u>		<u>5.1.1</u>		
In order to assess the structure, stat	tic design pressures are to be applied.	In order to assess the structure, sta	tic design pressures are to be applied.	
The design pressure for tank testing, A	P_{ST} , in ${ m kN/m^2}$, is to be taken as:	The design pressure for tank testing,	P_{ST} , in ${ m kN/m^2}$, is to be taken as:	
$P_{ST} = 10(z_{ST} - z)$		$P_{ST} = 10(z_{ST} - z)$		
where:		where:		
z_{ST} : Design testing load height,	in m , as defined in Table 1.	z_{ST} : Design testing load height,	in m , as defined in Table 1.	
Table 1 : Design te	esting load height z_{ST}	Table 1 : Design testing load height z_{ST}		
Compartment	z_{ST}	Compartment	z_{ST}	
Double bottom tanks	The greater of the following: $ \begin{aligned} &z_{ST} = z_{top} + h_{air} \\ &z_{ST} = z_{bd} \end{aligned} $	Double bottom tanks (1)	The greater of the following: $ \begin{aligned} z_{ST} &= z_{top} + h_{air} \\ z_{ST} &= z_{bd} \end{aligned} $	
۲newly	/ added>	<u>Double side tanks,</u> fore and aft peaks used as tank	$\frac{\begin{array}{c} \text{The greater of the following:} \\ z_{ST} = z_{top} + h_{air} \\ z_{ST} = z_{top} + 2.4 \end{array}}{z_{ST} = z_{top} + 2.4}$	- the design testing load height for
Tank bulkheads, deep tanks, fuel oil bunkers	The greater of the following: $\begin{split} z_{ST} &= z_{top} + h_{air} \\ z_{ST} &= z_{top} + 2.4 \\ z_{ST} &= z_{top} + 0.1 P_{PV} \end{split}$	Tank bulkheads, deep tanks, fuel oil bunkers	The greater of the following: $\begin{split} z_{ST} &= z_{top} + h_{air} \\ z_{ST} &= z_{top} + 2.4 \\ z_{ST} &= z_{top} + 0.1 P_{PV} \end{split}$	double side tanks, fore and aft peaks used as tank is newly
Chain locker (if aft of collision bulkhead)	$z_{ST} = z_c$	Chain locker (if aft of collision bulkhead)	$z_{ST} = z_c$	added
Independent tanks	The greater of the following: $ \begin{split} z_{ST} &= z_{top} + h_{air} \\ z_{ST} &= z_{top} + 0.9 \end{split} $	Independent tanks	The greater of the following: $ \begin{aligned} z_{ST} &= z_{top} + h_{air} \\ z_{ST} &= z_{top} + 0.9 \end{aligned} $	
Ballast ducts	Testing load height corresponding to ballast pump maximum pressure	Ballast ducts	Testing load height corresponding to ballast pump maximum pressure	
z_{bd} : z coordinate, in m , of the bulkhead z_h : z coordinate, in m , of the top of h z_c : z coordinate, in m , of the top of top	atch coaming.	$ \begin{array}{r} z_{bd} & : z \text{ coordinate, in } m, \text{ of the bulkhead deck.} \\ z_c & : z \text{ coordinate, in } m, \text{ of the top of the chain pipe.} \\ \hline \frac{^{(1)} \text{ For double bottom tanks connected with double side tanks, corresponding to}}{\text{"Double side tanks, fore and aft peaks used as tank" is applicable.} \end{array} $		

Present	Amendment	Note
Section 7 Design load scenarios	Section 7 Design load scenarios	
1. 〈omitted〉	1. (same as the present)	
2. Design load scenarios for strength assessment	2. Design load scenarios for strength assessment	
2.1 Principal design load scenarios	2.1 Principal design load scenarios	
2.1.1	2.1.1	
The principal design load scenarios are given in Table 1.	The principal design load scenarios are given in Table 1.	

				Present				Amendment	
		Table 1:Princi	pal design lo	ad scenarios for	strength assessn	nent			
	De	sign load scenario	Harbour and sheltered water	Sociolog	Ballast water exchange	Accidental flooded conditions	Tank testing		
	L	oad components	Static (S)	Static + Dynamic (S+D)	Static + Dynamic (S+D)	Accidental (A)	Test (T)		
		VBM	M _{sw-p}	$M_{sw} + M_{wv-LC}$	$M_{sw} + M_{wv-LC}$	M_{sw-f}	\underline{M}_{sw-t}		
Hull irde		HBM VSF		M_{wh-LC} $Q_{sw} + Q_{wv-LC}$	M_{wh-LC} $Q_{sw} + Q_{wv-LC}$	-	$\overline{\underline{Q}}_{sw-t}$		
		TM		$M_{st} + M_{wt-LC}$	$M_{st} + M_{wt-LC}$	_	<u> </u>		
	P_{ex}	External deck for green sea	-	P _D	-	-	=		
	ex	Hull envelope	P_s	$P_s + P_w$	$P_s + P_w$	_	$\underline{P_s}$		
		Ballast tanks			$P_{\ell s} + P_{\ell d}$	_			
	P_{in}	<pre>(newly added)</pre>	$P_{\ell s}$	$P_{\ell s} + P_{\ell d}$			$\underline{P_{ST}}$		
		Other tanks			-	-			
ocal .oads		Watertight boundaries	-	-	-	P{fs}	=		
.0000	F_{con}	Container	F_{con-s}	$F_{con-s}+F_{con-d}$	-	-	Ξ		
		Internal decks for dry spaces	P_{dl-s}	$P_{dl-s} + P_{dl-d}$	-	-	=		
	P_{dk}	External deck for distributed loads	P_{dl-s}	$P_{dl-s} + P_{dl-d}$	-	-	=		
		External deck for heavy units	F_{U-s}	$F_{U-s} + F_{U-d}$	-	_	_		

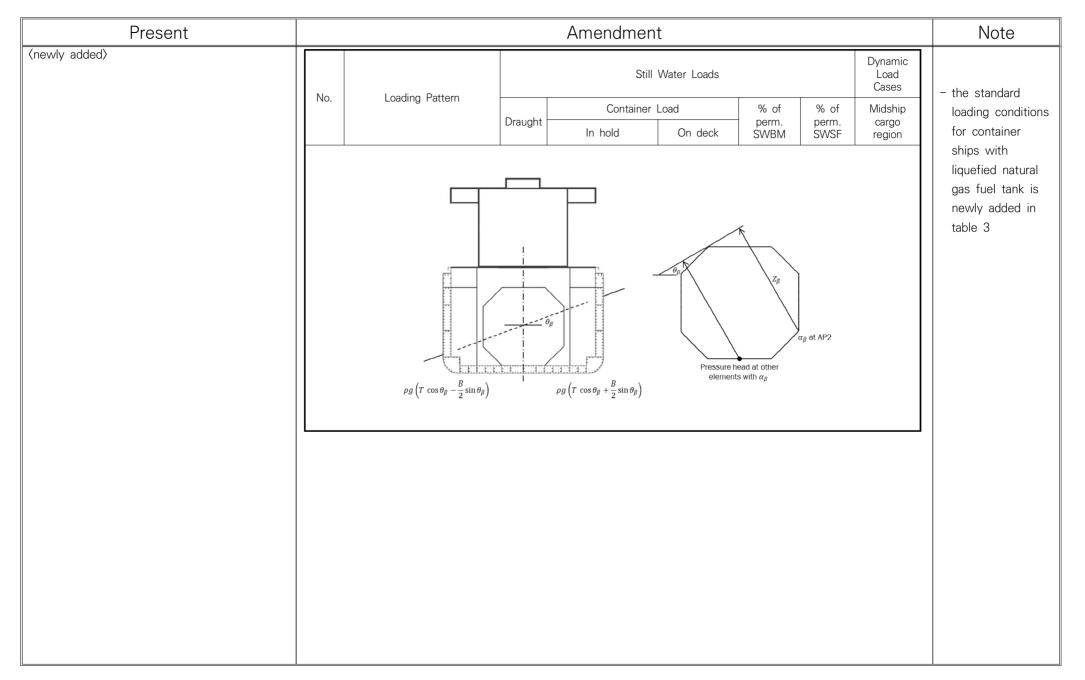
Present				An	nendment				Note	
			Table 1 : Princi	pal design lo	ad scenarios for	strength assessn	nent			
		De	sign load scenario	Harbour and sheltered water	Seagoing conditions with extreme sea loads	Ballast water exchange	Flooded conditions	Collision conditions	 the local loads at design load scenario, collision condition for 	
		L	oad components	Static (S)	Static + Dynamic (S+D)	Static + Dynamic (S+D)	Accidental (A)	Accidental (A)		
			VBM	M_{sw-p}	$M_{\!sw} + M_{\!wv-LC}$	$M_{\!sw} + M_{\!wv-LC}$	M_{sw-f}	$\underline{M}_{\!\!sw}$	container ships	
	Hull		HBM	_	M_{wh-LC}	M_{wh-LC}	-	<u> </u>	with liquefied	
	Girder		VSF	Q_{sw-p}	$Q_{sw} + Q_{wv-LC}$	$Q_{sw} + Q_{wv-LC}$	_	=	with liquefied natural gas fuel tank is newly added	
			ТМ	-	$M_{st} + M_{wt-LC}$	$M_{st} + M_{wt-LC}$	-	=		
		P_{ex}	External deck for green sea	_	P_D	-	-	=	auueu	
			Hull envelope	P_s	$P_s + P_w$	$P_s + P_w$	-	=		
			Ballast tanks			$P_{ls} + P_{ld}$	-	Ξ		
		P_{in}	<u>Liquefied natural gas</u> fuel tanks	P_{ls}	$P_{ls} + P_{ld}$	-	-	0.5g, -0.25g		
	Local		Other tanks			-	-	_		
	Locals		Watertight boundaries	-	-	_	P_{fs}	Ξ		
		F_{con}	Container	F_{con-s}	$F_{con-s}+F_{con-d}$	-	-	=		
			Internal decks for dry spaces	P_{dl-s}	$P_{dl-s} + P_{dl-d}$	-	-	=		
		P_{dk}	External deck for distributed loads	P_{dl-s}	$P_{dl-s} + P_{dl-d}$	-	-	=		
			External deck for heavy units	F_{U-s}	$F_{U^{-s}} + F_{U^{-d}}$	-	-	=		
	⁽¹⁾ Арр	licabl	e to prescriptive assessme	nt only						

			Present				Amendment	Note
		Table 2 : Design load scena	rios for impact	and sloshing c	onditions			
		Design load scenario	Bow impact	Bottom slamming	Stern slamming	Sloshing		
		Load components	Impact (I)	Impact (I)	Impact (I)	Sloshing (SL)		
		VBM	-	-	-	M _{sw}		
Hull		HBM	_	_	_	-		
Girder		VSF	-	-	-	-		
		TM	-	-	-	-		
	P_{ex}	External deck for green sea	-	-	-	-		
	I ex	Hull envelope	P_{FB}	P_{SL}	P_{SS}	-		
		Ballast tanks						
	P_{in}	<newly added=""></newly>	-	-	-	$P_{s\ell h}$		
Local	lin	Other tanks						
Loads		Watertight boundaries		-	_	-		
	F_{con}	Container	-	-	-	-		
		Internal decks for dry spaces	-	-	-	-		
	P_{dk}	External deck for distributed loads	-	-	-	-		
		External deck for heavy units	-	-	-	_		

Present			A	Amendme	nt				Note	
			Table 2 : Design load scenarios	for impact,	sloshing and	d tank test o	onditions			
		Design load scenario Bow impact Bottom slamming Stern slamming Sloshing Tank testing ⁽¹⁾								
		Load components			Impact (I)	Impact (I)	Sloshing (SL)	Test (T)		
			VBM	-		-	$M_{\!sw}$	\underline{M}_{sw-t}		
	Hull		HBM	-		-	-	_		
	Girder		VSF	-	-	-	-	Q_{sw-t}		
			TM	-	_	-	-	_		
		n	External deck for green sea	-	_	-	-	=	- the local loads a	
		P_{ex}	Hull envelope	P_{FB}	P_{SL}	P_{SS}	-	$\underline{P_s}$	design load	
			Ballast tanks					P _{ST} scenario for		
			Liquefied natural gas fuel tanks		_	-	P_{slh}	_	container ships with liquefied	
	Local		r _{in}	Other tanks	_				$\underline{P_{ST}}$	natural gas fuel
	Loads		Watertight boundaries	-	_	-	_	_	tank is newly	
		F_{con}	Container	-	-	-	-			
			Internal decks for dry spaces	-	_	-	_	_	testing condition	
		P_{dk}	External deck for distributed loads	-	-	-	-	_	is moved from	
			External deck for heavy units	-	_	-	-	_	table 1 to table 2.	
	⁽¹⁾ Арр	licable	e to prescriptive assessment only						Ζ.	

		Present	Amendment	Note	
	-	Table 3: Design load scenarios for fatigue	assessment		
		Design load scenario	Fatigue: Static + Dynamic		
		Load components	(F: S + D)		
		VBM	$M_{sw} + M_{wv-LC}$		
		HBM	M_{wh-LC}		
Hull Girder		VSF	$Q_{sw} + Q_{wv-LC}$		
		TM	$M_{st} + M_{wt-LC}$		
	D	External deck for green sea	-		
	P_{ex}	Hull envelope	$P_s + P_w$		
		Ballast tanks			
	P_{in}	<pre>(newly added)</pre>	$P_{ls} + P_{ld}$		
Local Loads	lin	Other tanks			
		Watertight boundaries	-		
	F_{con}	Container	$F_{con-s} + F_{con-d}$		
		Internal decks for dry spaces	-		
	P_{dk}	External deck for distributed loads	-		
		External deck for heavy units	-		

Present		Amendment							
		-	Table 3: Design load scenarios for fatigue	e assessment					
			Design load scenario	Fatigue: Static + Dynamic					
			Load components	(F: S + D)					
			VBM	$M_{sw} + M_{wv-LC}$					
	Hull Girder		HBM	M_{wh-LC}					
			VSF	$Q_{sw} + Q_{wv-LC}$					
			ТМ	$M_{st} + M_{wt-LC}$	newly added f container ships with liquefied				
		D	External deck for green sea	_					
		$\begin{array}{c c} P_{ex} & \hline \\ \hline \\ Hull envelope & P_s + P_w \\ \hline \\ Ballast tanks \end{array}$	$P_s + P_w$						
			-						
		P_{in}	Liquefied natural gas fuel tanks	$P_{ls} + P_{ld}$	assessment is				
	Local Loads	r _{in}	Other tanks						
	LOCAI LOAUS		Watertight boundaries	-					
		F_{con}	Container	$F_{con-s} + F_{con-d}$	with liquefied				
			Internal decks for dry spaces	-	natural gas fuel				
		P_{dk}	External deck for distributed loads	-	tank				
			External deck for heavy units	-					


Present	Amendment	Note
Section 8 Loading Conditions	Section 8 Loading Conditions	
1. 〈omitted〉	1. (same as the present)	
2. Design loading conditions	2. Design loading conditions	
2.1 ~ 2.3 (omitted)	2.1 ~ 2.3 (same as the present)	
2.4 Loading conditions	2.4 Loading conditions	
2.4.1 ~ 2.4.3 (omitted)	2.4.1 ~ 2.4.3 (same as the present)	
2.4.4 (newly added)	2.4.4 Standard loading conditions for liquefied natural gas fuel tank strength check	- the standard loading conditions
	The loading conditions to be considered for liquefied natural gas fuel tank strength check are given in Table 3.	for container ships with
2.4.4 Standard loading conditions for cargo holds fatigue check	2.4.5 Standard loading conditions for cargo holds fatigue check	liquefied natural
The loading conditions to be considered for cargo hold fatigue check are given in Table 3.	The loading conditions to be considered for cargo hold fatigue check are given in Table 4.	gas fuel tank is newly added

Present				Amendmen	t				Note
<newly added=""></newly>	Table	3 : Standard loading co	nditions fo	or liquefied natural <u>(</u> region	gas fuel tanks	strength cl	neck in ca	irgo hold	
			Still Water Loads					Dynamic Load Cases	- the standard loading condition for container
	No.	Loading Pattern	Drevelat	Container	Load	% of	% of	Midship	ships with
			Draught	In hold	On deck	perm. SWBM	perm. SWSF	cargo region	liquefied natural
	Seagoing	conditions							gas fuel tank is
	GF1		T _{sc}	Max. 40 ft stack weight All ballast tanks empty All fuel tanks full	Max. 40 ft stack weight	100% (Sag. or Min. Hog.)	≤100%	HSM-1 HSA-1 FSM-1 BSR-1P BSR-2P BSP-1P BSP-2P	newly added in table 3
	GF2		Tsc	Max. 40 ft stack weight All ballast tanks empty Fuel oil tanks full LNG fuel tank empty	Max. 40 ft stack weight	100% (Sag. or Min. Hog.)	≤100%	HSM-1 HSA-1 FSM-1 BSR-1P BSR-2P BSP-1P BSP-2P	
	GF3		Tsc	Max. 40 ft stack weight All ballast tanks empty Fuel oil tanks empty LNG fuel tank full	Max. 40 ft stack weight	100% (Sag. or Min. Hog.)	≤100%	HSM-1 HSA-1 FSM-1 BSR-1P BSR-2P BSP-1P BSP-2P	

Present				Amendmen	t				Note
(newly added)				Still	Dynamic Load Cases	- the standard			
	No.	Loading Pattern	_	Container	Load	% of	% of	Midship	loading conditions
			Draught	In hold	On deck	perm. SWBM	perm. SWSF	cargo region	for container
	GF3 -IGF		T _{SC}	Max. 40 ft stack weight All ballast tanks empty Fuel oil tanks empty LNG fuel tank full	Max. 40 ft stack weight	≤100%	≤100%	$\begin{array}{c} \text{Static} \\ \text{Pressure} \\ \text{by IGF} \\ \text{with heel} \\ \text{angle,} \\ \theta_{\beta} \leq 30 \ ^{\circ} \end{array}$	ships with liquefied natural gas fuel tank is newly added in table 3
	GF4		T _{SC}	55% of Max. 40 ft stack weight not exceeding 16.5 t/FEU All ballast tanks empty	90% of Max. 40 ft stack weight not exceeding 17 t/FEU	100% (Hog.)	≤100%	HSM-2 HSA-2 FSM-2	
	GF5		0.9 <i>T_{SC}</i>	All fuel tanks empty Max 20 ft stack weight, All ballast tanks empty All fuel tanks empty	Max. 20 ft stack weight, if mixed stowage is applicable, Max. 20 ft + 40 ft stack weight	100% (Sag. or Min.Hog.)	≤100%	HSM-1 HSA-1 FSM-1	

Present				Amendmen	t				Note
newly added>			Still Water Loads Dynamic Cases						- the standard
	No.	Loading Pattern	Draught	Container	1	% of % of perm.		Midship cargo	loading conditions
				In hold	On deck	SWBM	SWSF	region	for container ships with
	Ballast c	conditions							liquefied natural
	GB1		<i>T_{BAL}</i> ¹⁾	All container bays empty All ballast tanks full All fuel tanks full	All container bays are empty	SWBM in ballast condition ²⁾	≤100%	HSM-1 HSA-1 FSM-1	gas fuel tank is newly added in table 3
	GB2		$T_{BAL}^{1)}$	All container bays empty All ballast tanks full Fuel oil tanks full LNG fuel tank empty	All container bays are empty	SWBM in ballast condition ²⁾	≤100%	HSM-1 HSA-1 FSM-1	
	GB3		<i>T_{BAL}</i> ¹⁾	All container bays empty All ballast tanks full Fuel oil tanks empty LNG fuel tank full	All container bays are empty	SWBM in ballast condition ²⁾	≤100%	HSM-1 HSA-1 FSM-1	

Present				Amendmen	t				Note
newly added>			Dynamic Still Water Loads Load Cases						- the standard
	No.	Loading Pattern		Container	Load	% of	% of	Midship	loading condition
			Draught	In hold	On deck	perm. SWBM	perm. SWSF	cargo region	for container
	Accident	al condition							ships with
	A1		Tsc	Max. 40 ft stack weight All ballast tanks empty Fuel oil tanks empty LNG fuel tank full	Max. 40 ft stack weight	≤100%	≤100%	Static Forward a _x =0.5g Aftward a _x =0.25g	liquefied natura gas fuel tank is newly added in table 3
	Testing	condition		1		1	1		
	GT1		T _{BAL} 1)	All container bays empty All ballast tanks empty Fuel oil tanks full LNG fuel tank empty	All container bays are empty	SWBM in ballast condition ²⁾	≤100%	Static	
	¹⁾ Minim ²⁾ Still w	heavy cargo lig um ballast draught correspond vater bending moment corresp	ht cargo ling to th	e ballast departure loa the ballast departure		talik		NG fuel tank	

Present	Amendment	Note
Chapter 5 Hull Girder Strength	Chapter 5 Hull Girder Strength	
Section 1 Hull Girder Yield Strength	Section 1 Hull Girder Yield Strength	
1. ~ 2. (omitted)	1. ~ 2. (same as the present)	
3. Hull girder strength assessment	3. Hull girder strength assessment	
3.1 ~ 3.3 (omitted)	3.1 ~ 3.3 (same as the present)	
3.4 Hull girder bending strength assessment	3.4 Hull girder bending strength assessment	
3.4.1 General acceptance criteria	3.4.1 General acceptance criteria	
The normal stress, $\underline{\sigma_{hg}}$ is to be assessed for all conditions, along the full length of the hull girder, from AE to FE. The normal stress at any point of the hull transverse section is to comply with the following formula: $\sigma_L \leq \sigma_{perm}$ $\underline{\sigma_L} = \sigma_{sw} + C_{wv}\sigma_{wv} + C_{wh}\sigma_{wh} + C_{st}\sigma_{sw} + C_{tor}\sigma_{wt}$ (omitted)	The normal stress, $\underline{\sigma_L}$ is to be assessed for all conditions, along the full length of the hull girder, from AE to FE. The normal stress at any point of the hull transverse section is to comply with the following formula: $\sigma_L \leq \sigma_{perm}$ $\underline{\sigma_L = \sigma_{sw} + C_{WV}\sigma_{wv} + C_{WH}\sigma_{wh} + C_{st}\sigma_{st} + C_{tor}\sigma_{wt}$ (same as the present)	- typo $\sigma_{hg} \rightarrow \sigma_L$ $C_{wv} \rightarrow C_{WV}$ $C_{wh} \rightarrow C_{WH}$ $C_{st}\sigma_{sw} \rightarrow C_{st}\sigma_{st}$
4. ⟨newly added⟩	 4. Stress control of inner hull forming liquefied natural gas fuel tank 4.1 General 4.1.1 Liquefied natural gas fuel tanks with a membrane containment system may have some limitation such as elongation or stress level of adjacent installed hull structure. Any required criteria for inner hull is to be confirmed by the designer of the fuel containment system. 	 the limitation for liquefied natural gas fuel tank with membrane containment system is newly added

Present	Amendment	Note
Chapter 6 Hull Local Scantling	Chapter 6 Hull Local Scantling	
Section 1 〈omitted〉 Section 2 Load Application	Section 1 〈same as the present〉 Section 2 Load Application	
1. Load combination	1. Load combination	
1.1 Hull girder bending	1.1 Hull girder bending	
1.1.1 Normal stresses	1.1.1 Normal stresses	
The normal stress σ_{hg} , in N/mm ² , induced by acting vertical and horizontal bending moments at the position being considered is given as follow. This stress is to be calculated for each design load set, as defined in [2] covering all dynamic load cases defined in Ch 4 in combination with M_{sw} both in hogging and in sagging. (omitted) C_{tor} : Warping stress coefficient, as defined in Ch 5, Sec 1, [3.4.1]. σ_{WT} : Warping stress, in N/mm ² , as defined in Ch 5, Sec 1, [2.1.5] to [2.1.7].	The normal stress σ_{hg} , in N/mm ² , induced by acting vertical and horizontal bending moments at the position being considered is given as follow. This stress is to be calculated for each design load set, as defined in [2] covering all dynamic load cases defined in Ch 4 in combination with M_{sw} both in hogging and in sagging. (same as the present) C_{tor} : Warping stress coefficient, as defined in Ch 5, Sec 1, [3.4.1]. σ_{WT} : Warping stress, in N/mm ² , as defined in Ch 5, Sec 1, [2.1.4] to [2.1.6].	– typo
1.2 Lateral pressures	1.2 Lateral pressures	
1.2.1 (omitted)	1.2.1 (same as the present)	
<u>1.2.2 (newly added)</u>	1.2.2 Pressure in collision condition The internal liquefied natural gas fuel pressure due to collision is to be considered with colliding acceleration a_x , whose direction is decided depending on the position of transverse bulkhead of the liquefied natural gas fuel tank considered, combined with static liquefied natural gas fuel pressure.	 defined the pressure in collision condition
1.2.2 Lateral pressure in flooded conditions	<u>1.2.3</u> Lateral pressure in flooded conditions	- renumbering
<pre>(omitted)</pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	renumbering

Present				Amendment						Note		
2. Design load sets					2. Design loa							
2.1 Application of load components					2.1 Application							
2.1.1 (omitted)				2.1.1 (same as								
2.1.2 Load com	ponents					2.1.2 Load com	ponents					
(omitted)						same as the pre	esent>					
	Та	able 1 : Desi	ign load s	ets			Т	able 1 : Desi	gn load s	əts		
Structural member	Design Ioad set	Load component	Draught	Design Ioad	Loading condition	Structural member	Design Ioad set	Load component	Draught	Design Ioad	Loading condition	
External shell and Exposed deck	<pre></pre>				External shell and Exposed deck		<sa< td=""><td>me as the</td><td>present></td><td></td><td></td></sa<>	me as the	present>			
Water ballast tank	<pre>(omitted)</pre>				Water ballast tank	(same as the present)						
Tanks other than water ballast tank	<pre>(omitted)</pre>				Tanks other than water ballast tank	(same as the present)						
	(newly added)				Liquefied natural $\underline{FTK-1}$ $\underline{P_{in}}$ $\underline{T_{SC}}$ $\underline{S+D}$ Full load of				Full load condition	- FTK-1 and CO are newly adde		
<newly added=""></newly>			<newly ad<="" td=""><td>ded></td><td></td><td>gas fuel tank</td><td>COL⁽²⁾</td><td>$\underline{P_{in}}$</td><td>=</td><td>A</td><td>Collision condition</td><td>for liquefied natural gas fue</td></newly>	ded>		gas fuel tank	COL ⁽²⁾	$\underline{P_{in}}$	=	A	Collision condition	for liquefied natural gas fue
Watertight boundaries	FD-1 ⁽²⁾	P_{in}	-	А	Flooded condition	Watertight boundaries	FD-1 ⁽³⁾	P_{in}	-	А	Flooded condition	tank in design
Dry space and hatch coaming	<pre></pre>					Dry space and hatch coaming	〈same as the present〉					load sets
 (1) P_{ex} is to be considered for external shell only. (newly added) (2) FD-1 is not applicable to external shell. (omitted) 				⁽²⁾ COL set means in way of long full condition u of liquefied nat "Rules/Guidanc Sec 4, 409.5.	o be considered for external shell only. means collision conditions that 0.5g and -0.25g of colliding accelerations of longitudinal direction are to be applied for liquefied natural gas fuel tank dition under Accidental design load (A) in order to verify structural integrity ied natural gas fuel tank boundary and support structures, refer to Suidance for the Classification of Ships Using Low-flashpoint Fuels", Ch 6, 109.5. not applicable to external shell.					 the meaning of COL set for liquefied natura gas fuel tank is described 		

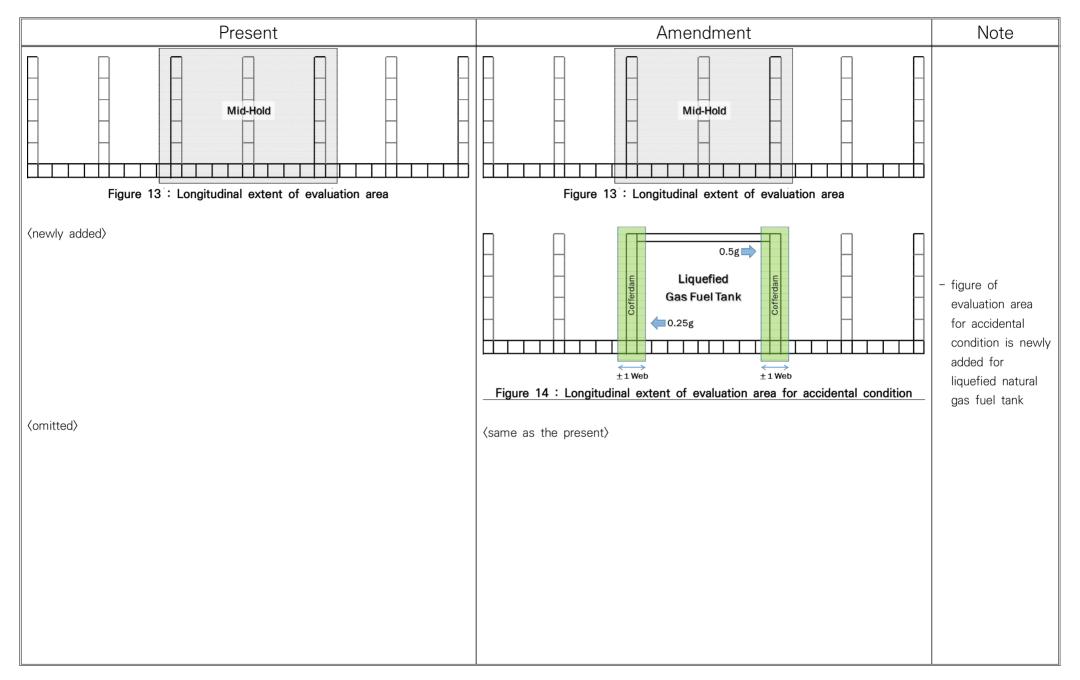
Present	Amendment	Note
Section 3 (omitted)	Section 3 〈same as the present〉	
Section 4 Plating	Section 4 Plating	
1. (omitted)	1. (same as the present)	
2. Special requirements	2. Special requirements	
2.1 Minimum thickness of keel plating	2.1 Minimum thickness of keel plating	
 2.1.1 The net thickness of the keel plating is not to be taken less than the <u>offered</u> net thickness of the adjacent 2.0 m width bottom plating, measured from the edge of the keel strake. The width of the keel is defined in Ch 3, Sec 6, [7.2.1]. 2.2 ~ 2.6 (omitted) 2.7 (newly added) 2.7.1 (newly added) 	2.1.1 The net thickness of the keel plating is not to be taken less than the required net thickness of the adjacent 2.0 m width bottom plating, measured from the edge of the keel strake. The width of the keel is defined in Ch 3, Sec 6, [7.2.1]. 2.2 ~ 2.6 (same as the present) 2.7 Plating in liquefied natural gas fuel tank boundary 2.7.1 By IGF pressure The net thickness of inner hull plating protected by fuel containment system, t in mm, is not to be taken less than: $t = 0.0158 \alpha_p b \sqrt{\frac{ P_{IGF} }{\chi C_{a-IGF}R_{eH}}}$ where: P_{IGF} : Pressure given in "Rules/Guidance for the Classification of Ships Using Low-flashpoint Fuels", Ch 6, Sec 4, 409., in kN/m ² $C_{a-IGF} = \beta_{IGF} - \alpha_{IGF} \frac{ \sigma_{hg-IGF} }{R_{eH}}$, not to be taken greater than $\frac{C_{a-IGF} = \beta_{IGF} - \alpha_{IGF} \frac{ \sigma_{hg-IGF} }{R_{eH}}}{C_{a-IGF} - max}$	 min. thickness of keel plate is based on required net thickness of adjacent bottom plate instead of offered one. the requirement for liquefied natural gas fuel tank boundary based on IGF code is newly added

Present	Amendment Note
	$\sigma_{hy-IGF} = \max\left[\left \left(\frac{M_{sw} + M_{uw-LC}}{L_{u-n^{50}}} (z-z_n) \right) 10^{-3} \right , \left \left\{ \left(\frac{M_{sw} + 0.5M_{uw-LC}}{L_{u-n^{50}}} (z-z_n) \right) + \left(\frac{M_{uh-LC}}{L_{u-n^{50}}} (y-y_n) \right) \right\} 10^{-3} \right \right]$
	$\frac{\beta_{IGF}}{\beta_{IGF}} : \text{Coefficient as defined in Table 2.}$
	α_{IGF} : Coefficient as defined in Table 2.
	$C_{a-IGF-max}$: Maximum permissible bending stress coefficient as defined in
	$\frac{C_{a-ICF-max}}{Table 2}$
	Table 2 : Definition β_{IGF} α_{IGF} and $C_{a-IGF-max}$
	Acceptanc e criteria setStructural member β_{IGF} α_{IGF} C_{a-IGF}
	IGF Longitudinal Longitudinally stiffened 1.05 0.5 0.95
	condition members Transversely stiffened plating 1.05 1.0 0.95
	Other members 1.0 0.0 1.0
.7.2 (newly added)	$\begin{array}{c c} \textbf{2.7.2 By sloshing pressure} \\ \hline \text{The net thickness of plating, t in mm, subjected to sloshing pressures is not} \\ \hline \text{to be less than:} \\ \hline \textbf{t} = 0.0158 \alpha_p b \sqrt{\frac{P_{slh}}{\chi C_{a-slh} R_{eH}}} \\ \hline \textbf{where:} \\ \hline \textbf{where:} \\ \hline \textbf{C}_{a-slh} & \vdots \text{ Pressure given in Ch 4, Sec 6, [3.2.3], in kN/m^2.} \\ \hline \textbf{C}_{a-slh} & \vdots \text{ Permissible bending stress coefficient for plate taken equal to:} \\ \hline \textbf{C}_{a-slh} = \beta - \alpha \frac{ \sigma_{hg-slh} }{R_{eH}} \\ \hline \textbf{\sigma}_{hg-slh} = \left(\frac{M_{sw}}{I_{y-n50}}(z-z_n)\right) 10^{-3} \text{ in N/mm}^2 \\ \hline \textbf{\beta} & \vdots \text{ Coefficient of AC-S as defined in Table 1.} \end{array}$

	Present		Note							
S	ection 5 Stiffener	S			S	ection 5 Stiffener	S			
1. Stiffeners subje	ct to lateral pressure				1. Stiffeners subje	ct to lateral pressure				
1.1 Yielding check					1.1 Yielding check					
I.1.1 〈omitted〉					1.1.1 (same as the pr	esent〉				
1.1.2 Section modulus					1.1.2 Section modulus					
	on modulus, Z in cm^3 , is not lated for all applicable design n by:					on modulus, Z in cm^3 , is no lated for all applicable design n by:				
Table	2 : Definition of β_s , α_s and α_s	$C_{s-\max}$			Table 2 : Definition of β_s , α_s and C_{s-max}					
Acceptance criteria set	Structural member	β_s	α_s	$C_{s-\max}$	Acceptance criteria set	Structural member	β_s	α_s	$C_{s-\max}$	
AC-S	Longitudinal strength member	<u>0.85</u>	1.0	<u>0.75</u>		Longitudinal strength member	<u>0.95</u>	1.0	<u>0.85</u>	- the permissible
AC-S	Transverse or vertical member	<u>0.75</u>	0.0	<u>0.75</u>	AC-S	Transverse or vertical member	<u>0.85</u>	0.0	<u>0.85</u>	bending stress
AC-SD	Longitudinal strength member	<u>1.00</u>	1.0	<u>0.90</u>	AC-SD	Longitudinal strength member	<u>1.10</u>	1.0	<u>0.95</u>	coefficient for AC-S, AC-SD a
AC-3D	Transverse or vertical member	<u>0.90</u>	0.0	<u>0.90</u>	AC-3D	Transverse or vertical member	<u>0.95</u>	0.0	<u>0.95</u>	AC-3, AC-3D a
AC-A	Longitudinal strength member	1.10	1.0	1.00	AC-A	Longitudinal strength member	1.10	1.0	1.00	based on
	Transverse or vertical member	1.00	0.0	1.00		Transverse or vertical member	1.00	0.0	1.00	simulation
AC-T	Longitudinal strength member	<u>1.20</u>	1.0	<u>1.00</u>	AC-T	Longitudinal strength member	<u>1.25</u>	1.0	<u>1.15</u>	
	Transverse or vertical member	<u>1.00</u>	0.0	<u>1.00</u>		Transverse or vertical member	<u>1.15</u>	0.0	<u>1.15</u>	
(omitted)					⟨same as the present⟩					

Present	Amendment	Note
2. Special requirements	2. Special requirements	
2.1 (omitted)	2.1 (same as the present)	
2.2 (newly added)	2.2 Section modulus of stiffener attached on liquefied natural gas fuel tank boundary	
2.2.1 (newly added)	gas fuel tank boundary 2.2.1 By IGF pressure The minimum net section modulus of stiffeners connected to inner hull protected by fuel containment system, Z_{IGF} in cm ³ , is not to be taken less than: $Z_{IGF} = \frac{ P_{IGF} s \ell_{hlg}^2}{\int_{hlg} X C_{s-IGF} R_{eH}}$ with χC_{s-IGF} not to be taken greater than 1.0 where: P_{IGF} : Dynamic pressure defined in Ch 6, Sec 4, [2.7.1] . f_{hlg} : Bending moment factor taken as: a) For continuous stiffeners with fixed ends, f_{hlg} is not to be taken higher than: • $f_{hlg} = 12$ for horizontal stiffeners and upper end of vertical stiffeners. • $f_{hlg} = 10$ for lower end of vertical stiffeners. b) For stiffeners with reduced end fixity, variable load or being part of grillage, the requirement in [1.2] applies. C_{s-IGF} : Permissible bending stress coefficient as defined in Table 3 for the design load set being considered. σ_{hg-IGF} : Coefficient as defined in Table 4 .	- the requirement of stiffeners for liquefied natural gas fuel tank boundary based on IGF code is newly added

Present	Amendment	Note
	$\underline{\alpha_{s-IGF}}$: Coefficient as defined in Table 4 .	
	$C_{s-IGF-\max}$: Coefficient as defined in Table 4 .	
	Table 3 : Definition of C_{s-IGF}	
	$ \begin{array}{ c c c c c } \mbox{Sign of hull girder} & \mbox{Lateral} & & \mbox{pressure} & & \mbox{Coefficient } C_{s-IGF} & & \mbox{acting on} & & \mbox{Coefficient } C_{s-IGF} & & \$	
	$\begin{array}{ c c c c } \mbox{Compression (negative)} \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \$	
	Tension (positive) Plate side $C_{s-IGF} = C_{s-IGF-max}$	
	Table 4 : Definition of β_{s-IGF} , α_{s-IGF} and $C_{s-IGF-max}$	
	Acceptance criteria setStructural member β_{s-IGF} α_{s-IGF} $C_{s-IGF-max}$	
	IGF conditionLongitudinal strength member1.01.00.9Transverse or vertical member0.90.00.9	
2.2.2 (newly added)		4h
		 the requirement for liquefied
	The net section modulus Z in cm ³ , of stiffeners subject to sloshing pressure	natural gas fuel
	is not to be taken less than:	tank boundary
	$\underline{Z = \frac{P_{slh} s \ \ell_{bdg}^2}{f_{bdg} \chi \ C_{s-slh} \ R_{eH}}}$	subjected to
	$\frac{-5 \log \sqrt{-5 s - \sin - 5 e_H}}{\text{where:}}$	sloshing pressu
	P_{slh} : Pressure given in Ch 4, Sec 6, [3.2.3] , in kN/m ² .	is newly added
	f _{bdg} : Bending moment factor taken as:	
	a) For continuous stiffeners generally, $f_{idg} = 12$	
	b) For discontinuous stiffeners, $f_{bdg} = 8$	


Amendment	Note
C_{s-slh} : Permissible bending stress coefficient taken equal to:	
$C_{m,n} = \beta_{m-1} - \alpha_{n} \frac{ \sigma_{hg-slh} }{ \sigma_{hg-slh} }$ not to be taken greater than C	
$\frac{C_{s-slh}}{R_{eH}} = \frac{R_{eH}}{R_{eH}}$	
$\sigma_{hg-slh} = \left(\frac{M_{sw}}{I_{y-n50}}(z-z_n)\right) 10^{-3} \text{ in } \text{N/mm}^2$	
β_s : Coefficient of AC-S as defined in Table 2.	
α_s : Coefficient of AC-S as defined in Table 2.	
$C_{s-\max}$: Maximum permissible bending stress coefficient of AC-S as	
defined in Table 2.	
	$ \begin{array}{c} \hline C_{s-slh} & : \mbox{ Permissible bending stress coefficient taken equal to:} \\ \hline C_{s-slh} = \beta_s - \alpha_s \frac{\left \sigma_{hg-slh}\right }{R_{eH}} \ , \ \mbox{not to be taken greater than } C_{s-max} \\ \hline \frac{\sigma_{hg-slh} = \left(\frac{M_{sw}}{I_{g-n50}}\left(z-z_n\right)\right) 10^{-3} \ \mbox{in N/mm}^2}{: \ \mbox{ Coefficient of AC-S as defined in Table 2.} \\ \hline \alpha_s & : \ \mbox{ Coefficient of AC-S as defined in Table 2.} \\ \hline C_{s-max} & : \ \mbox{ Maximum permissible bending stress coefficient of AC-S as} \end{array} $

	Present			Amendment		Note
Section 6	Primary Support member Pillars	s and	Section 6	Primary Support members Pillars	s and	
1. ~ 2. (omitted)	>		1. ~ 2. (same as	the present>		
3. Primary suppo	orting members outside cargo ho	d region	3. Primary suppo	rting members outside cargo hol	d region	
3.1 (omitted)			3.1 (same as the	present〉		
3.2 Scantling require	ements		3.2 Scantling require	ments		
3.2.1 〈omitted〉			3.2.1 (same as the	present〉		
3.2.2 Net shear are	a		3.2.2 Net shear area			
, , , , , , , , , , , , , , , , , , , ,	ressure is not to be taken less than the gn load sets defined in Ch 6, Sec 2, [2], giv $S \ \ell_{shr}$	•	subjected to lateral prior for all applicable desig $A_{shr-n50} = 10 \; \frac{f_{shr} \; P }{C_t \; \tau_{el}}$			
where:			where:			
	e distribution factor, as given in Table 14.		f_{shr} : Shear force			
0	e shear stress coefficient for the acceptan sidered, as given in Table 13.	ice criteria set	C _t : Permissible being cons	ce criteria set		
Table 13 : Permiss	sible bending and shear stress coefficients supporting members	for primary	Table 13 : Permiss	ible bending and shear stress coefficients supporting members	for primary	
Acceptance criteria set	Structure attached to primary supporting member	$C_{\!s}$ and $C_{\!t}$	Acceptance criteria set	Structure attached to primary supporting member	$C_{\!s}$ and $C_{\!t}$	
AC-S	All boundaries, including decks and flats	0.70	AC-S	All boundaries, including decks and flats	0.70	
	All boundaries, including decks and flats	0.85	AC-SD	All boundaries, including decks and flats	0.85	
AC-SD						- the missing AC-

Present	Amendment	Note
Chapter 7 Direct Strength	Chapter 7 Direct Strength	
Analysis	Analysis	
Section 1 Strength Assessment	Section 1 Strength Assessment	
1. General	1. General	
1.1 Application	1.1 Application	
1.1.1 ~ 1.1.4 〈omitted〉	1.1.1 ~ 1.1.4 (same as the present)	
1.1.5 Class notation	1.1.5 Class notation	
Global Analysis is to be carried out for ships of length 290 m or above in accordance with the requirements in Pt 3, Annex 3-2. Cargo Hold Analysis is to be carried out for ships of length 150 m or above in accordance with the requirements in this chapter. (newly added) A flow diagram showing the minimum requirement of finite element analysis is shown in Figure 1. (omitted)	Global Analysis is to be carried out for ships of length 290 m or above in accordance with the requirements in Pt 3, Annex 3-2. Cargo Hold Analysis is to be carried out for ships of length 150 m or above in accordance with the requirements in this chapter. In case of ships of lengths less than 150 m, where it is deemed to be necessary by the Society, the Cargo Hold Analysis should be performed additionally. A flow diagram showing the minimum requirement of finite element analysis is shown in Figure 1. (same as the present)	 to clarify the application of rule for ships of lengths less than 150 m.

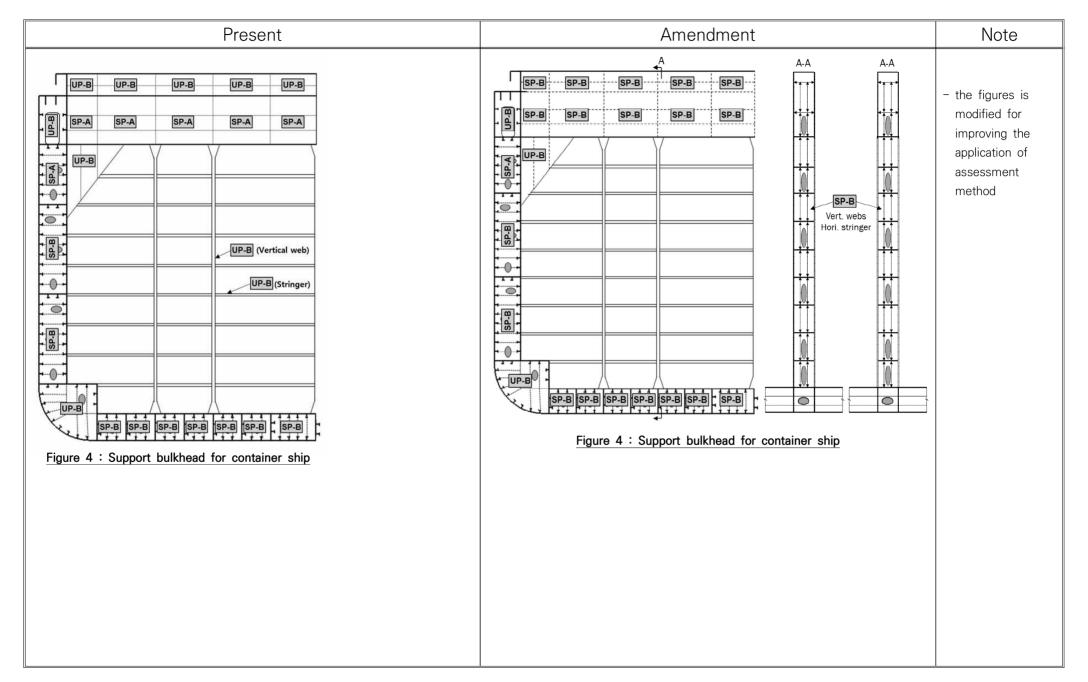
Present	Amendment	Note
Section 2 Cargo Hold Structural Strength	Section 2 Cargo Hold Structural Strength	
Analysis	Analysis	
1. ~ 3. (omitted)	1. ~ 3. (same as the present)	
4. Load application	4. Load application	
4.1 〈omitted〉	4.1 (same as the present)	
4.2 External and internal loads	4.2 External and internal loads	
4.2.1 External loads	4.2.1 External loads	
 External pressure is to be calculated for each load case in accordance with Ch 4, Sec 5. External pressures include static sea pressure, wave pressure and green sea pressure. The effect of the hatch cover self weight is to be ignored in the loads applied to the ship structure. 4.2.2 (omitted) 	External pressure is to be calculated for each load case in accordance with Ch 4, Sec 5. External pressures include static sea pressure, wave pressure and green sea pressure. 4.2.2 (same as the present)	- the unclear statement is removed (typo)
4.2.3 (Newly added)	4.2.3 Liquefied natural gas fuel density	- definition of
	$\begin{array}{l} \underline{\text{Maximum liquefied natural gas fuel density is generally taken as not less than} \\ \underline{0.5 \text{ t/m}^3. \text{ To take into account of the volume difference between 1^{st} barrier} \\ \underline{and inner hull, the liquefied natural gas fuel density may be used as adjusted below.} \\ \underline{\rho_{c_{adjusted}}} = \rho_c \frac{V_C}{V_{Hull}} + \rho_{CCS} \frac{V_{Hull} - V_C}{V_{Hull}} \\ \underline{where:} \\ \underline{V_C} \qquad : \text{ Volume of liquefied natural gas fuel tank enclosed by primary} \\ \underline{barrier of fuel containment system in m^3.} \\ \underline{V_{Hull}} \qquad : \text{ Volume of liquefied natural gas fuel tank enclosed by inner hull} \\ \underline{structure in m^3.} \\ \underline{\rho_{CCS}} \qquad : \text{ Density of fuel containment system in t/m^3, generally 0.12 can be} \\ used. \end{array}$	liquefied natural gas fuel density is newly added for container ship with liquefied natural gas fuel tank

Present	Amendment	Note
<newly added=""></newly>	And, effective liquefied natural gas fuel density may be adjusted to consider	
	the maximum filling height as below.	
	$\rho_{c_{eff}} = \rho_{c_{adjusted}} \frac{M_{Maxfilling\%by\rho_{Max-LM}}}{M_{100\%by\rho_c}}$	
	$\frac{P_{c_{eff}} P_{c_{adjusted}} M_{100\% by \rho_c}}{M_{100\% by \rho_c}}$	
	where:	
	$M_{Maxfilling\%by ho_{Max-LM}}$: Mass of liquefied natural gas fuel when filled to	
	maximum level(%) with design fuel density	
	$M_{100\%by\rho_c}$: Mass of liquefied natural gas fuel when filled to 100% with ρ_c =	
	<u>0.5 t/m³</u>	
	$ ho_{c_{eff}}$: Effective liquefied natural gas fuel density for internal loads in FE	
	analysis (t/m ³)	
4.2. <u>3</u> Pressure application on FE element	4.2.4 Pressure application on FE element	- renumbering
Constant pressure, calculated at the element's centroid, is applied to the shell	Constant pressure, calculated at the element's centroid, is applied to the shell	
element of the loaded surfaces, e.g. outer shell and deck for external	element of the loaded surfaces, e.g. outer shell and deck for external	
pressure and tank/hold boundaries for internal pressure. Alternately, pressure	pressure and tank / hold boundaries for internal pressure. Alternately, pressure	
can be calculated at element nodes applying linear pressure distribution within	can be calculated at element nodes applying linear pressure distribution within	
elements.	elements.	
<pre>(omitted)</pre>	(same as the present)	
5. Analysis criteria	5. Analysis criteria	
5.1 General	5.1 General	
5.1.1 Evaluation areas	5.1.1 Evaluation areas	
Verification of results against the acceptance criteria is to be carried out	Verification of results against the acceptance criteria is to be carried out	
within the longitudinal extent of the mid-hold, as shown in Figure 13.	within the longitudinal extent of the mid-hold, as shown in Figure 13.	- evaluation area
<newly added=""></newly>	For accidental condition, the evaluation is carried out for the members within	for accidental
	one web frame forward and one frame aftward in way of cofferdam structure,	condition is newly
	where the collision load direction is coincided. Refer to Figure 14.	added for
		liquefied natural
		gas fuel tank

Pre	esent	Amen	dment	Note
Chapter 8	B Buckling	Chapter 8	Buckling	
Section	1 General	Section 1	General	
1. ~ 2. (omitted)		1. ~ 2. (same as the present)	>	
3. Definitions		3. Definitions		
3.1 ~ 3.2 〈 omitted〉		3.1 ~ 3.2 (same as the present)		
3.3 Allowable buckling utilisation	n factor	3.3 Allowable buckling utilisation	factor	
3.3.1 General structural elements		3.3.1 General structural elements		
The allowable buckling utilisation factor	r is defined in Table 1.	The allowable buckling utilisation factor	is defined in Table 1.	
Table 1 : Allowable	buckling utilisation factor	Table 1 : Allowable b	uckling utilisation factor	
Structural component	$\eta_{\it all},$ Allowable buckling utilisation factor	Structural component	$\eta_{all},$ Allowable buckling utilisation factor	
Plates and stiffeners Stiffened and unstiffened panels Web plate in ways of openings	1.00 for load combination: S+D 0.80 for load combination: S 1.00 for load combination: A	Plates and stiffeners Stiffened and unstiffened panels Web plate in ways of openings	1.00 for load combination: S+D 0.80 for load combination: S 1.00 for load combination: A, \underline{T}	- the missing AC-T
Pillars	0.75 for load combination: S+D 0.65 for load combination: S 0.75 for load combination: A	Pillars	0.75 for load combination: S+D 0.65 for load combination: S 0.75 for load combination: A, \underline{T}	is reflected
〈omitted〉		<pre></pre>		-

Present	Amendment	Note
Section 2 Slenderness requirements	Section 2 Slenderness requirements	
1. ~ 2. 〈omitted〉	1. ~ 2. (same as the present)	
3. Stiffeners	3. Stiffeners	
3.1 Proportions of stiffeners	3.1 Proportions of stiffeners	
3.1.1 ~ 3.1.2 (omitted)	3.1.1 ~ 3.1.2 (same as the present)	
3.1.3 Bending stiffness of stiffeners	3.1.3 Bending stiffness of stiffeners	
The net moment of inertia, in cm ⁴ , of the stiffener with the effective width of attached plate, about the neutral axis parallel to the attached plating, is not to be less than the minimum value given by: $I_{st} \ge C\ell^2 A_{eff} \frac{R_{eff}}{235}$ where: A_{eff} : Net sectional area of stiffener including effective attached plate, s_{eff} , in cm ² . R_{eff} : Specified minimum yield stress of the material of the attached plate, in N/mm ² . C : Slenderness coefficient taken as: C = 0.93 for longitudinal stiffeners including sniped stiffeners. C = 0.72 for other stiffeners.	The net moment of inertia, in cm ⁴ , of the stiffener with the effective width of attached plate, about the neutral axis parallel to the attached plating, is not to be less than the minimum value given by: $I_{st} \ge C\ell^2 A_{eff} \frac{R_{eff}}{235}$ where: A_{eff} : Net sectional area of stiffener including effective attached plate, s_{eff} , in cm ² . R_{eH} : Specified minimum yield stress of the material of the attached plate, in N/mm ² . C : Slenderness coefficient taken as: C = 0.81 for longitudinal stiffeners including sniped stiffeners. C = 0.72 for other stiffeners.	- the slenderness coefficient is improved from <i>C</i> =0.93 to 0.81

Present	Amendment	Note
4. PRIMARY SUPPORTING MEMBERS	4. PRIMARY SUPPORTING MEMBERS	
4.1 (omitted)	4.1 (same as the present)	
4.2 Web stiffeners of primary supporting members	4.2 Web stiffeners of primary supporting members	
4.2.1 〈omitted〉	4.2.1 (same as the present)	
4.2.2 Bending stiffness of web stiffeners	4.2.2 Bending stiffness of web stiffeners	
The net moment of inertia, in cm^4 , of web stiffener, I_{st} , fitted on primary supporting members, with effective attached plate, s_{eff} , is not to be less than the minimum moment of inertia defined in Table 2 .		


	Pre	esent	Amendment	Not
	Table 2 : Stiffness criteria for web stiffeners			
	Stiffener arrangement	Minimum moment of inertia of web stiffeners, in \mbox{cm}^4		
A	Web stiffeners fitted along the PSM span	$I_{st} \geq C \ell^2 A_{eff} rac{R_{eH}}{235}$		
В	Web stiffeners fitted normal to the PSM span	$I_{st} \ge 1.14 \ell s^2 t_w \left(2.5 \frac{1000 \ell}{s} - 2 \frac{s}{1000 \ell} \right) \frac{R_{eH}}{235} 10^{-5}$		
C ℓ	 C = 0.72 for other stiffeners. Length of web stiffener, in m. For web stiffeners welded to local support the flanges of the local support members. For sniped web stiffeners, the length is to total distance between the flanges of the arrangement B. 	including sniped stiffeners. ing members, the length is to be measured between be measured between the lateral supports, e.g. the primary supporting member as shown for stiffener		
$egin{array}{c} A_{ef} \ t_w \ R_{eE} \end{array}$: Net web thickness of the primary support			

Present	Amendment	Note
	Table 2 : Stiffness criteria for web stiffeners	
	Stiffener arrangement Minimum moment of inertia of web stiffeners, in cm ⁴	
	A Web stiffeners fitted along the PSM span $I_{st} \ge C \ell^2 A_{eff} \frac{R_{eH}}{235}$	
	B Web stiffeners fitted normal to the PSM span $I_{st} \ge 1.14 \ell s^2 t_w \Big(2.5 \frac{1000 \ell}{s} - 2 \frac{s}{1000 \ell} \Big) \frac{R_{eH}}{235} 10^{-5}$	
	 C : Slenderness coefficient to be taken as: C = 0.81 for longitudinal stiffeners including sniped stiffeners. C = 0.72 for other stiffeners. ℓ ℓ ℓ	- the slenderness coefficient is improved from <i>C</i> =0.93 to 0.81
	 A_{eff} : Net section area of web stiffener including effective attached plate, s_{eff}, in cm². t_w : Net web thickness of the primary supporting member, in mm. R_{eH} : Specified minimum yield stress of the material of the web plate of the primary supporting member, in N/mm². 	

Present	Amendment	Note
Section 4 Buckling requirements for DSA	Section 4 Buckling requirements for DSA	
1. 〈omitted〉	1. (same as the present)	
2. Stiffened and unstiffened panels	2. Stiffened and unstiffened panels	
2.1 General	2.1 General	
2.1.1	2.1.1	
The plate panel of hull structure is to be modelled as stiffened or unstiffened panel. Method A and Method B as defined in Ch 8, Sec 1, [3] are to be used according to Figure 1 to Figure 4. (newly added)	 The plate panel of hull structure is to be modelled as stiffened or unstiffened panel. Method A and Method B as defined in Ch 8, Sec 1, [3] are to be used according to Table 1. For PSM web panels with one of the long edges along the face plate or along the attached plating without "in-line support", i.e. the edge is free to pull in, Method B (SP-B or UP-B) shall be applied. In other cases Method A (SP-A or UP-A) is applicable. Typically the short plate edge is attached to the plate flanges and Method A (SP-A or UP-A) is applicable. However, in case of one of the long edges is without "in-line support" and is free to pull in, Method B (SP-B or UP-B) shall be applied. 	 the description for method A and method B is newly added

S d Normal panel definition d Normal panel definition Length: between web frames Width: between PSM Length: between web frames Width: full web depth Length: between web frames Width: between PSM Length: between PSM Length: between PSM 2 Length: full web depth Width: between PSM Plate between local stiffeners/face plate/PSM	- the table for application of assessment method is new added
Length: between web frames Width: between PSM Length: between web frames Width: full web depth Length: between PSM Length: between PSM Length: between web frames Width: full web depth Length: between web frames Width: between PSM Length: between web frames Width: full web depth Length: between PSM Z Length: full web depth Width: between PSM	application of assessment method is new
Length: between web frames Width: between PSM Length: between web frames Width: full web depth Length: between PSM Length: between PSM Length: between web frames Width: full web depth Length: between web frames Width: between PSM Length: between web frames Width: full web depth Length: between PSM Z Length: full web depth Width: between PSM	assessment method is new
Width: between PSM Length: between web frames Width: full web depth Length: between web frames Width: between PSM Length: between web frames Width: full web depth Length: between web frames Width: between web frames Width: between web frames Width: between PSM Length: between PSM Length: between PSM Z Length: full web depth Width: between PSM	method is new
Width: full web depth Length: between web frames Width: between PSM Length: between web frames Width: full web depth Length: between web frames Width: between PSM 2 Length: full web depth Width: full web depth Width: between PSM	
Width: between PSM Length: between web frames Width: full web depth Length: between web frames Width: between PSM 2 Length: full web depth Width: between PSM	
Width: full web depth Length: between web frames Width: between PSM 2 Length: full web depth Width: between PSM	
Width: between PSM 2 Length: full web depth Width: between PSM	
Length: full web depth Width: between PSM	
Width: between PSM	
Plate between local stiffeners/face plate/PSM	
Length: full web depth Width: between PSM	
Plate between local stiffeners/face plate/PSM	
3	
Length: between PSM Width: between PSM	
Plate between local stiffeners/face plate/PSM	
Length: between PSM Width: between PSM	
Plate between local stiffeners/face plate/PSM Length: between PSM	
Width: between PSM Plate between local stiffeners/face plate/PSM	
Length: full web depth Width: between PSM	
Length: between PSM Width: between PSM	
Length: between PSM Width: full web depth	
Plate between local stiffeners/face plate/PSM	
-	Width: between PSM Length: between PSM Width: between PSM Length: between PSM Width: full web depth

Present	Amendment	Note
Image: space of the space	Image: state s	- the figures is modified for improving the application of assessment method

Present	Amendment	Note
Chapter 9 Fatigue	Chapter 9 Fatigue	
Section 1 General Considerations	Section 1 General Considerations	
1. Rule Application for Fatigue Requirements	1. Rule Application for Fatigue Requirements	
1.1 Scope	1.1 Scope	
1.1.1 ~ 1.1.7 (omitted)	1.1.1 ~ 1.1.7 〈same as the present〉	
1.1.8 Class notation	1.1.8 Class notation	
For ships which were checked based on this chapter, following class notation are assigned. a) The method of simplified fatigue analysis : SeaTrust(FSA1) b) The method of fatigue analysis by hold analysis : SeaTrust(FSA2) c) The method of fatigue analysis by global analysis : SeaTrust(FSA3) However, in case that SeaTrust(FSA2) or SeaTrust(FSA3) is assigned to ships, SeaTrust(FSA1) is to be performed. The container ships fully complying with Pt 3, Annex 3–3 is assigned the notation SeaTrust(FSA3).	For ships which were checked based on this chapter, following class notation are assigned. a) The method of simplified fatigue analysis : SeaTrust(FSA1) b) The method of fatigue analysis by hold analysis : SeaTrust(FSA2) c) The method of fatigue analysis by global analysis : SeaTrust(FSA3) However, in case that SeaTrust(FSA2) or SeaTrust(FSA3) requested by the applicant(i.e., the owner or the builder) is assigned to ships, SeaTrust(FSA1) is to be performed. The container ships fully complying with Pt 3, Annex 3–3 is assigned the notation SeaTrust(FSA3).	- to clarify the application of rule for FSA2 and FSA3

Present	Amendment	Note
1. ~ 2. (omitted)	1. ~ 2. (same as the present)	
3. Assumptions	3. Assumptions	
3.1 General	3.1 General	
3.1.1	3.1.1	
The following assumptions are made in the fatigue assessment:	The following assumptions are made in the fatigue assessment:	
 a) A linear cumulative damage model, i.e. Palmgren-Miner's Rule, given in Ch 9, Sec 3, [5], has been used in connection with the design S-N curves, given in Ch 9, Sec 3, [4]. b) Design fatigue life, T_{DF}, is taken not less than 25 years. c) Rule quasi-static wave induced loads are based on North Atlantic wave environment. They are determined at 10⁻² probability level of exceedance by the Equivalent Design Wave (EDW) concept. d) Net thickness t_{n50} approach is used, according to [5]. 	 a) A linear cumulative damage model, i.e. Palmgren-Miner's Rule, given in Ch 9, Sec 3, [5], has been used in connection with the design S-N curves, given in Ch 9, Sec 3, [4]. b) Design fatigue life, T_{DF}, is taken not less than 25 years. c) Rule quasi-static wave induced loads are based on North Atlantic wave environment. They are determined at 10⁻² probability level of exceedance by the Equivalent Design Wave (EDW) concept. d) Net thickness, t_{n50}, is used for simplified stress analysis and gross thickness, t_{qr}, is used for finite element stress analysis respectively. 	- the FEM for
 e) Type of stress used for crack initiating at the weld toe is the hot spot stress. Type of stress used for crack initiating at free edge of non-welded details is local stress at free edge. f) Fatigue stress range Δσ_{FS} may be calculated by simplified stress analysis or by finite element stress analysis for details with more complex geometry. ⟨omitted⟩ 	 e) Type of stress used for crack initiating at the weld toe is the hot spot stress. Type of stress used for crack initiating at free edge of non-welded details is local stress at free edge. f) Fatigue stress range Δσ_{FS} may be calculated by simplified stress analysis or by finite element stress analysis for details with more complex geometry. (same as the present) 	fatigue assessment is to be made using gross thick instead of net thickness in accordance with Ch 3, Sec 2, Table 1.

Present	Amendment	Note
4. (omitted)	4. (same as the present)	
 4. (omitted) 5. Corrosion Model 5.1 <u>Net thickness</u> 5.1.1 General The fatigue assessment should be performed based on net thicknesses according to Ch 3, Sec 2. 5.1.2 Stress correction The hull girder stresses for simplified stress analysis and stresses calculated by FE analysis are to be corrected by multiplying the calculated stress by <i>f_c</i>. correction factor taken as: <i>f_c</i> = 0.95 (omitted) 6. Loading Conditions 6.1 (same as the present) 6.2 Loading conditions 6.2.1 The loading conditions to be considered and corresponding fraction of time for each loading condition, <i>α_(j)</i>, are defined in Table 1. The standard loading conditions for fatigue assessment are provided in Ch 4, Sec 8, [3].	 4. (same as the present) 5. Corrosion Model 5.1 <u>Net or Gross thickness</u> 5.1.1 General The fatigue assessment by simplified method should be performed based on net thicknesses according to Ch 3. Sec 2. When accessing the fatigue strength by finite element stress analysis, it shall be performed based on gross thicknesses. 5.1.2 Stress correction The hull girder stresses for simplified stress analysis is to be corrected by multiplying the calculated stress by f_c, correction factor taken as: f_c = 0.95 (same as the present) 6. Loading Conditions 6.1 (same as the present) 6.2 Loading conditions 6.2.1 The loading conditions to be considered and corresponding fraction of time for each loading condition, α_(j), are defined in Table 1. The standard loading conditions for fatigue assessment are provided in Ch 4, Sec 8, [3].	 the FEM for fatigue assessment is to be made using gross thick instead of net thickness in accordance with Ch 3, Sec 2, Table 1. stress correction factor is applied only for simplified stress analysis due to application of gross thickness for FSA

	Present			Amendment		Note
Table	1 : Fraction of time in each loading	g condition	Table	1 : Fraction of time in each loadi	ng condition	
	Loading conditions	$lpha_{(j)}$		_oading conditions	$lpha_{(j)}$	 the fraction of time is revised
Full Load	Ballast Tank – Full	0.7 1)	Full Load	Ballast Tank – Full	0.7 1)	for the reasonable
	Ballast Tank – Empty	0.3 1)	Full Loau	Ballast Tank – Empty	0.3 1)	concept to
shall be che loading condi For each loac (to the tank	conditions, a minimum and maximu acked separately. The lowest fatigu- itions is representative of the calcu- ding condition, the ballast tank shall top) 70% and empty 30% of the be calculated as the sum of these	e life from the two lated fatigue life, T_{F} . be considered as full time, and the fatigue	shall be check considered as	conditions, a minimum and maximu (ed. For each loading condition, the full (to the tank top) 70% and em e damage shall be calculated as t sent)	e ballast tank shall be ppty 30% of the time,	improve the fatigue strength assessment
Section 2	2 Structural Details to	o be Assessed	Section 2	Structural Details t	o be Assessed	
1. 〈 omitted〉			1. (same as	the present>		
2. Finite Elen	nent Analysis		2. Finite Elem	ient Analysis		
2.1 General			2.1 General			
2.1.1 General			2.1.1 General			
according to Ch S	details to be checked for fatigue 9, Sec 5 are given in [2.1.2].		according to Ch may be required	details to be checked for fatigue 9, Sec 5 are given in [2.1.2]. <u>Ada</u> for other locations where deemed	ditional fatigue assessment necessary by Society.	 if necessary, additional fatigue assessment is
Table 2 give the (omitted)	list of hot spots for structural detai	ls.	Table 2 give the l (same as the pre	st of hot spots for structural detaisent	ils.	required by Society

Present	Amendment	Note
Section 3 Fatigue Evaluation	Section 3 Fatigue Evaluation	
1. ~ 2. (omitted)	1. ~ 2. (same as the present)	
3. Reference Stresses for Fatigue Assessment	3. Reference Stresses for Fatigue Assessment	
3.1 ~ 3.2 (omitted)	3.1 ~ 3.2 (same as the present)	
3.3 Thickness effect	3.3 Thickness effect	
3.3.1	3.3.1	
Plate thickness primarily influences the fatigue strength of welded joints through the effect of geometry, and through-thickness stress distribution. The correction factor, f_{thick} , for plate thickness effect is taken as: • $f_{thick} = 1.0$ for $t_{n50} \le 22.0 \text{ mm}$ • $f_{thick} = (t_{n50}/22.0)^n$ for $t_{n50} > 22.0 \text{ mm}$ where: t_{n50} : Net thickness of the considered member in way of the hot spot for welded joints or base material free edge, in mm. • <u>For simplified stress analysis</u> , the net thickness to be considered for stiffeners is as follows: • Flat bar and Bulb profile: no correction, • Angle bar and T-bar: flange net thickness.	Plate thickness primarily influences the fatigue strength of welded joints through the effect of geometry, and through-thickness stress distribution. The correction factor, f_{thick} , for plate thickness effect is taken as: • For simplified stress analysis $f_{thick} = 1.0$ for $t_{n50} \le 22.0$ mm $f_{thick} = (t_{n50}/22.0)^n$ for $t_{n50} > 22.0$ mm • For finite element stress analysis $f_{thick} = 1.0$ for $t_{gr} \le 22.0$ mm $f_{thick} = (t_{gr}/22.0)^n$ for $t_{gr} > 22.0$ mm where: t_{n50} : Net thickness of the considered member in way of the hot spot for welded joints or base material free edge, in mm, for simplified stress analysis. • The net thickness to be considered for stiffeners is as follows: • Flat bar and Bulb profile: no correction, • Angle bar and T-bar: flange net thickness.	- the FEM for fatigue assessment is to be made using gross thick instead of net thickness in accordance with Ch 3, Sec 2, Table 1.

Present	Amendment	Note
• For FE analysis, the net thickness to be considered is the net thickness of the member where the crack is likely to initiate and propagate. For 90° attachments, i.e. cruciform welded joints, transverse T-joints and plates with transverse attachment, the net thickness to be considered is to be taken as: $t_{n:50} = \min\left(\frac{d}{2}, t_{1n:50}\right)$ n : Thickness exponent provided in Table 1 and Table 4 respectively for welded and non-welded joints. n is to be selected according to the considered stress direction. For this selection, $\Delta \sigma_{HS1}$ and $\Delta \sigma_{HS2}$ are considered perpendicular and parallel to the weld respectively. d : Toe distance, in mm, as shown in Figure 2, taken as: $\frac{d = t_{2n:50} + 2t_{keg}}{2}$ $t_{1n:50}$: Net thickness, in mm, of the transverse attach plate where the hot spot is assessed, as shown in Figure 2. t_{keg} : Fillet weld leg length, in mm. When post-weld treatment methods are applied to improve the fatigue life of considered welded joint, the thickness exponent is provided in [6]. (omitted)	$\begin{array}{rcl} \underline{t_{gr}} & : \mbox{Gross thickness of the considered member in way of the hot spot} \\ \hline for welded joints or base material free edge where the crack is likely to initiate and propagate, in mm, for FE analysis. $	- the FEM for fatigue assessment is to be made using gross thick instead of net thickness in accordance with Ch 3, Sec 2, Table 1.

Present	Amendment	Note
Section 4 (omitted)	Section 4 〈same as the present〉	
Section 5 Finite Element Stress Analysis	Section 5 Finite Element Stress Analysis	
1. 〈omitted〉	1. (same as the present)	
2. FE Modelling	2. FE Modelling	
2.1 General	2.1 General	
2.1.1 〈omitted〉	2.1.1 (same as the present)	
2.1.2 Corrosion model	2.1.2 Corrosion model	- the FEM for
be made using <u>net thickness</u> , t_{n50} , in accordance with Ch 9 , Sec 1, [5.1].	The very fine mesh finite element models used for fatigue assessment are to be made using gross thickness, t_{gr} , in accordance with Ch 9 , Sec 1 , [5.1]. 2.1.3 (same as the present)	fatigue assessment is be made using
	2.1.4	gross thick instead of net
The evaluation of hot spot stress for 'a' type hot spot is to be based on shell element of mesh size $t_{n50} \times t_{n50}$, where t_{n50} is the <u>net</u> thickness of the plate in way of the considered hot spot. The evaluation of hot spot stress for a 'b' type hot spot is to be based on shell element of mesh size 10 × 10 mm. The aforementioned mesh size is to be maintained within the very fine mesh zone, extending over at least 10 elements in all directions from the fatigue hot spot position. The transition of element size between the coarser mesh and the very fine mesh zone is to be done gradually and an acceptable mesh quality is to be maintained. This transition from smaller elements to larger ones. An example of the mesh transition in way of hatch coaming top and deck plating is shown in Figure 3 .	The evaluation of hot spot stress for 'a' type hot spot is to be based on shell element of mesh size $\underline{t_{gr}} \times \underline{t_{gr}}$, where $\underline{t_{gr}}$ is the gross thickness of the plate in way of the considered hot spot. The evaluation of hot spot stress for a 'b' type hot spot is to be based on shell element of mesh size 10 × 10 mm. The aforementioned mesh size is to be maintained within the very fine mesh zone, extending over at least 10 elements in all directions from the fatigue hot spot position. The transition of element size between the coarser mesh and the very fine mesh zone is to be done gradually and an acceptable mesh quality is to be maintained. This transition shows from smaller elements to larger ones. An example of the mesh transition in way of hatch coaming top and deck plating is shown in Figure 3 . (same as the present)	thickness in accordance with Ch 3, Sec 2, Table 1.

Present	Amendment	Note
2.2 Hatch coaming top and deck plating	2.2 Hatch coaming top and deck plating	
2.2.1 ~ 2.2.2 (omitted)	2.2.1 ~ 2.2.2 (same as the present)	
2.2.3	2.2.3	
elements having both membrane and bending properties. Figure 4 shows a typical FE model of hatch coaming and the deck plating with the very fine mesh zone having $t_{n50} \times t_{n50}$ mesh size.	The hatch coaming top and deck plating are to be represented by shell finite elements having both membrane and bending properties. Figure 4 shows a typical FE model of hatch coaming and the deck plating with the very fine mesh zone having $\underline{t_{gr} \times t_{gr}}$ mesh size. (same as the present) 3. Hot Spot Stress for Details Different from Web-Stiffened Cruciform Joints	 the FEM for fatigue assessment is to be made using gross thick
3.1 Welded details	3.1 Welded details	instead of net thickness in
	3.1.1	accordance with
finite element analysis with $\underline{t_{n50} \times t_{n50}}$ mesh density and is obtained by the following formula: $\sigma_{HS} = 1.12 \cdot \sigma$ where: σ : Surface principal stress, in N/mm ² , read out at a distance $\underline{t_{n50} / 2}$ away from the intersection line. $\underline{t_{n50}}$: Plate net thickness, in mm, in way of the weld toe.	For hot spot type 'a', the structural hot spot stress, σ_{HS} , is calculated from a finite element analysis with $\underline{t_{gr} \times t_{gr}}$ mesh density and is obtained by the following formula: $\sigma_{HS} = 1.12 \cdot \sigma$ where: σ : Surface principal stress, in N/mm ² , read out at a distance $\underline{t_{gr}/2}$ away from the intersection line. $\underline{t_{gr}}$: <u>Plate gross thickness</u> , in mm, in way of the weld toe. (same as the present)	Ch 3, Sec 2, Table 1.

Present	Amendment	Note
3.1.2 Stress read out methods	3.1.2 Stress read out methods	
Depending on the element type, one of the following stress read out method	Depending on the element type, one of the following stress read out method	
is to be used:	is to be used:	
• With 4-node shell element:	• With 4-node shell element:	
Element surface stress components at the centre points are linearly	Element surface stress components at the centre points are linearly	
extrapolated to the line A-A as shown in Figure 7 to determine the	extrapolated to the line A-A as shown in Figure 7 to determine the	
stress components for load case $`i1'$ and $`i2'$ at the stress read out	stress components for load case 'i1' and 'i2' at the stress read out	
point located at a distance $\underline{t_{n50}}$ / 2 from the intersection line for type	point located at a distance \underline{t}_{qr} / 2 from the intersection line for type	- the FEM for
'a' hot spot. Two principal hot spot stress ranges are determined at	'a' hot spot. Two principal hot spot stress ranges are determined at	fatigue
the stress read out point from the stress components tensor	the stress read out point from the stress components tensor	assessment is
differences (between load case ' $i1$ ' and ' $i2$ ') calculated from each	differences (between load case ' $i1$ ' and ' $i2$ ') calculated from each	be made using
side (side L, side R) of line A-A. The angle $ heta$ between the direction	side (side L, side R) of line A-A. The angle $ heta$ between the direction	gross thick
x of the element co-ordinate system and the principal direction pX	x of the element co-ordinate system and the principal direction pX	instead of net
of the principal hot spot stress range co-ordinate system has to be	of the principal hot spot stress range co-ordinate system has to be	thickness in
determined.	determined.	accordance wit
With 8-node shell element:	With 8-node shell element:	Ch 3, Sec 2,
With a $\underline{t_{n50}} imes t_{n50}$ element mesh using 8-node element type, the	With a $\underline{t_{gr} imes t_{gr}}$ element mesh using 8-node element type, the	Table 1.
element mid-side node is located on the line A-A at a distance $\underline{t_{n50}}$ /	element mid-side node is located on the line A-A at a distance t_{qr} /	
$\underline{2}$ for type 'a' hot spots. This node coincides with the stress read out	$\underline{2}$ for type 'a' hot spots. This node coincides with the stress read out	
point. The element surface stress components for load case ' $i1$ ' and	point. The element surface stress components for load case ' $i1$ ' and	
'i2' can be used directly without extrapolation within each adjacent	`i2` can be used directly without extrapolation within each adjacent	
element located on each side (side L, side R) of the line A-A as	element located on each side (side L, side R) of the line A-A as	
illustrated in Figure 8. Two principal hot spot stress ranges are	illustrated in Figure 8. Two principal hot spot stress ranges are	
determined at the stress read out point from the stress components	determined at the stress read out point from the stress components	
tensor difference (between load case ' $i1$ ' and ' $i2$ ') calculated from	tensor difference (between load case ' $i1$ ' and ' $i2$ ') calculated from	
each side of line A-A. The angle θ between the direction x of the	each side of line A-A. The angle θ between the direction x of the	
element coordinate system and the principal direction pX of the	element coordinate system and the principal direction pX of the	
principal hot spot stress range coordinate system has to be	principal hot spot stress range coordinate system has to be	
determined.	determined.	
(omitted)	〈same as the present〉	

Present	Amendment	Note
4.2 Calculation of hot spot stress at the flange	4.2 Calculation of hot spot stress at the flange	
4.2.1	4.2.1	
<pre>(omitted)</pre>	same as the present	
The hot spot stress, in N/mm ² , is to be obtained as:	The hot spot stress, in N/mm ² , is to be obtained as:	
$\sigma_{H\!S} = 1.12 \; \sigma_{shift}$	$\sigma_{\rm HS} = 1.12 \; \sigma_{\rm shift}$	
where:	where:	
σ_{shift} : Surface principal stress, in N/mm ² , at shifted stress read out	σ_{shift} : Surface principal stress, in N/mm ² , at shifted stress read out	- the FEM for
position.	position.	fatigue
The stress read out point shifted away from the intersection line is obtained	The stress read out point shifted away from the intersection line is obtained	assessment is to
as:	as:	be made using
$x_{shift} = \frac{t_{1-n50}}{2} + x_{wt}$	$x_{shift} = \frac{t_{1-gr}}{2} + x_{wt}$	gross thick
		instead of net
where:	where:	thickness in
$\underline{t_{1-n50}}$: <u>Net plate thickness</u> of the plate number 1, in mm, as shown in	t_{1-gr} : Gross plate thickness of the plate number 1, in mm, as shown in	accordance with
Figure 10.	Figure 10.	Ch 3, Sec 2,
x_{wt} : Extended fillet weld leg length, in mm, as defined in Figure 10, not		Table 1.
taken larger than t_{1-n50} .	taken larger than t_{1-gr} .	

Present	Amendment	Note
$\label{eq:shift} \hline \begin{array}{ c c } \hline Present \\ \hline \textbf{4.2.2} \\ \hline The stress at the shifted position is derived according to the following formula and illustrated in Figure 11: $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	4.2.2 The stress at the shifted position is derived according to the following formula and illustrated in Figure 11: $\sigma_{shift} = [\sigma_{membrane} (x_{shift}) + 0.60 \cdot \sigma_{bending} (x_{shift})] \cdot \beta$ where: $\sigma_{bending} (x_{shift})$: Bending stress, in N/mm ² , at the shifted position taken as: $\sigma_{bending} (x_{shift}) = \sigma_{surface} (x_{shift}) - \sigma_{membrane} (x_{shift})$	 Note the FEM for fatigue assessment is to be made using gross thick instead of net thickness in accordance with Ch 3, Sec 2, Table 1.
• For $\alpha = 90^{\circ}$: $\frac{\beta = 0.96 + 0.031 \frac{x_{wt}}{t_{1-n50}} + 0.24 (\frac{x_{wt}}{t_{1-n50}})^2}{\text{: Angle, in deg, between the plates forming a web-stiffened cruciform joint as shown in Figure 11.}$ (omitted)	• For $\alpha = 90^{\circ}$: $\frac{\beta = 0.96 + 0.031 \frac{x_{wt}}{t_{1-gr}} + 0.24 (\frac{x_{wt}}{t_{1-gr}})^2}{\text{: Angle, in deg, between the plates forming a web-stiffened cruciform joint as shown in Figure 11.}$ (same as the present)	

Present	Amendment	Note
4.3 Calculation of hot spot stress in the web	4.3 Calculation of hot spot stress in the web	
4.3.1	4.3.1	
Hot spots located in way of the web as indicated in Figure 13 are to be checked with the hot spot stress defined from the maximum principal surface stress at the intersection offset by the distance x_{shift} from the vertical and horizontal element intersection lines as illustrated in Figure 13. The intersection line is taken at the mid thickness of the cruciform joint assuming a median alignment. The hot spot stress, in N/mm ² , is to be obtained as: $\sigma_{HS} = \sigma_{shift}$ where: σ_{shift} : Maximum principal surface stress, in N/mm ² , at the intersection offset by the distance x_{shift} . The stress read out point at the intersection offset is obtained as: $\frac{x_{shift}}{2} = \frac{t_{3-n50}}{2} + x_{wt}}{where:}$ $\frac{t_{3-n50}}{2}$: Net plate thickness of the web, in mm, as shown in Figure 13.	Hot spots located in way of the web as indicated in Figure 13 are to be checked with the hot spot stress defined from the maximum principal surface stress at the intersection offset by the distance x_{shift} from the vertical and horizontal element intersection lines as illustrated in Figure 13. The intersection line is taken at the mid thickness of the cruciform joint assuming a median alignment. The hot spot stress, in N/mm ² , is to be obtained as: $\sigma_{HS} = \sigma_{shift}$ where: σ_{shift} : Maximum principal surface stress, in N/mm ² , at the intersection offset by the distance x_{shift} . The stress read out point at the intersection offset is obtained as: $\frac{x_{shift}}{2} = \frac{t_3 - gr}{2} + x_{wt}}$ where: $\frac{t_3 - gr}{2}$: Gross plate thickness of the web, in mm, as shown in Figure 13. $x_{wt} = \min(\ell_{lwg1}, \ell_{lwg2})$ ℓ_{lwg1}, ℓ_{lwg2} : Leg length, in mm, of the vertical and horizontal weld lines as shown in Figure 13. (same as the present)	- the FEM for fatigue assessment is to be made using gross thick instead of net thickness in accordance with Ch 3, Sec 2, Table 1.

Present	Amendment	Note
Section 6 Detail Design Standard	Section 6 Detail Design Standard	
1. 〈omitted〉	1. (same as the present)	
2. Stiffener-Frame Connections	2. Stiffener-Frame Connections	
2.1 〈omitted〉	2.1 (same as the present)	
2.2 Equivalent design of stiffener-frame connections	2.2 Equivalent design of stiffener-frame connections	
2.2.1 ~ 2.2.2 〈omitted〉	2.2.1 ~ 2.2.2 (same as the present)	
2.2.3	2.2.3	- the FEM for
The very fine mesh finite element models are made to analyse the behaviour in way of double side or double bottom. The models should have an extent of 3 stiffeners in cross section, i.e. 4 stiffener <u>spacings</u> , and the longitudinal extent is to be one half frame spacing in both forward and aft direction. A typical model is shown in Figure 1 . No cut-outs for access openings are to be included in the models. Connection between the lug or the web-frame to the longitudinal stiffener web, connections of the lug to the web-frame and free edges on lugs and cut-outs in web-frame are to be modelled with elements of <u>net plate thickness</u> size ($t_{n50} \times t_{n50}$). The mesh with <u>net plate</u> thickness size should extend at least five elements in all directions. Outside this area, the mesh size may gradually be increased in accordance with the requirements in Ch 9 , Sec 5 , [2]. The eccentricity of the lapped lug plates is to be included in the model. Transverse web and lug plates are to be connected by eccentricity elements (transverse plate elements). The height of eccentricity element is to be the distance between mid-layers of transverse web and lug plates having a thickness equal to 2 times the <u>net thickness</u> of web-frame plate $t_{w=n50}$. Eccentricity elements representing fillet welds are shown in Figure 2 . (omitted)	The very fine mesh finite element models are made to analyse the behaviour in way of double side or double bottom. The models should have an extent of 3 stiffeners in cross section, i.e. 4 stiffener <u>spacing</u> , and the longitudinal extent is to be one half frame spacing in both forward and aft direction. A typical model is shown in Figure 1 . No cut-outs for access openings are to be included in the models. Connection between the lug or the web-frame to the longitudinal stiffener web, connections of the lug to the web-frame and free edges on lugs and cut-outs in web-frame are to be modelled with elements of gross plate thickness size ($t_{ar} \times t_{gr}$). The mesh with gross plate thickness size should extend at least five elements in all directions. Outside this area, the mesh size may gradually be increased in accordance with the requirements in Ch 9 , Sec 5 , [2]. The eccentricity of the lapped lug plates is to be included in the model. Transverse web and lug plates are to be connected by eccentricity elements (transverse plate elements). The height of eccentricity element is to be the distance between mid-layers of transverse web and lug plates having a thickness equal to 2 times the gross thickness of web-frame plate t_{w-gr} . Eccentricity elements representing fillet welds are shown in Figure 2 . (same as the present)	fatigue assessment is be made using gross thick instead of net thickness in accordance wit Ch 3, Sec 2, Table 1.

Present	Amendment	Note
Chapter 11 Superstructure,	Chapter 11 Superstructure,	
Deckhouses and Hull Outfitting	Deckhouses and Hull Outfitting	
Section 1 ~ 2 〈omitted〉 Section 3 Equipment	Section 1 ~ 2 〈same as the present〉 Section 3 Equipment	
Symbols	〈deleted〉	- to avoid any
For symbols not defined in this section, refer to Ch 1, Sec 4.		possible discrepancy between this rule
1. General	1. General	and UR A1, A2 and Rec.10.
1.1 Application	1.1 Application	
1.1.1	1.1.1	
The anchoring equipment specified in this section is intended for temporary mooring of a ship within a harbour or sheltered area when the ship is awaiting berth, tide, etc.	The anchoring equipment are to be in accordance with relevant chapters of Pt <u>4 of the Rules and Guidance for the Classification of Steel Rules.</u>	
1.1.2	1.1.2 〈deleted〉	
<pre>(omitted)</pre>	<pre> {deleted></pre>	
1.1.3	1.1.3 (deleted)	
<pre>(omitted)</pre>	<pre> {deleted></pre>	
2. Equipment number calculation	2. 〈deleted〉	
<pre>{omitted></pre>	<pre> {deleted></pre>	
3. Anchoring equipment	3. ⟨deleted⟩	
〈omitted〉	<pre> {deleted}</pre>	

Present	Amendment	Note
Section 4 Supporting Structure for Deck	Section 4 Supporting Structure for Deck	
Equipment and Fittings	Equipment and Fittings	
Symbols For symbols not defined in this section, refer to Ch 1, Sec 4. SWL : Safe working load as defined in [4.1.4]. Normal stress : The sum of bending stress and axial stress with the corresponding shearing stress acting perpendicular to the normal stress.	〈deleted〉	 to avoid any possible discrepancy between this rule and UR A1, A2 and Rec.10.
1. General	1. General	
1.1 Application	1.1 Application	
1.1.1	1.1.1	
Information pertaining to the supporting structure for deck equipment and	The supporting structure and foundations for deck equipment and fittings are	
fittings, as listed in this section, is to be submitted for approval.	to be in accordance with relevant chapters of Pt 4 of the Rules and Guidance for the Classification of Steel Rules.	
This section includes scantling requirements to the supporting structure and foundations of the following pieces of equipment and fittings: -a) Anchor windlasses. -b) Anchoring chain stoppers. -c) Mooring winches. -d) Deck cranes, derricks and lifting masts: -e) Bollards and bitts, fairleads, stand rollers, chocks and capstans. <omitted></omitted>	<pre>(same as the present)</pre>	

Present	Amendment	Note
2. (omitted)	2. (same as the present)	
 3. Mooring winches ⟨omitted⟩ 4. ⟨omitted⟩ 	 3. ⟨deleted⟩ ⟨deleted⟩ 4. ⟨same as the present⟩ 	 to avoid any possible discrepancy between this rule and UR A1, A2 and Rec.10.
5. Bollards and bitts, fairleads, stand rollers, chocks and capstans	5. ⟨deleted⟩	
	<pre></pre>	
<pre> domitted></pre>		
6. 〈omitted〉	6. (same as the present)	

Present	Amendment	Note
Chapter 12 Construction	Chapter 12 Construction	
Section 1 ~ 3 (omitted)	Section 1 ~ 3 〈same as the present〉	
Section 4 Use of Extremely Thick Steel	Section 4 Use of Extremely Thick Steel	
1. ~ 5. (omitted)	1. ~ 5. (same as the present)	
6. Application of YP47 Steel Plates	6. Application of YP47 Steel Plates	
These requirements apply to YP47 steel plates specified in Pt 2, Ch 1,Sec 3, 311.	These requirements apply to YP47 steel plates specified in Pt 2, Ch 1,Sec 3, 311.	
6.1 Hull structure(design)	6.1 Hull structure(design)	
6.1.1 ~ 6.1.2 〈omitted〉	6.1.1 ~ 6.1.2 (same as the present)	
6.1.3	6.1.3	
The free edge including hatch corner of the hatch side coaming should not	The free edge including hatch corner of the hatch side coaming should not	
have any defects such as notch that could be harmful against fatigue	have any defects such as notch that could be harmful against fatigue	
strength. Appropriate edge treatment including treatment of corner edge (as an example, see Figure 7) is to be performed so that the edges should have	strength. Appropriate edge treatment including treatment of corner edge (as an example, see Figure 7) is to be performed so that the edges should have	
adequate fatigue strength.	adequate fatigue strength.	
Figure 7 : An example of appropriate edge treatment including corner edge	Figure 7 : An example of appropriate edge treatment including corner edge	 the Figure 7 is modified to clarify the application of treatment method for fatigue strength
Figure / . An example of appropriate edge treatment including corner edge	Figure / : An example of appropriate edge treatment including corner edge	