Amendments of the Rules (External Development Review-External Opinion Inquiry) Part 4 Hull Equipment

2023.09. Hull Rule Development Team

Main Amendments

(1) Background of Amendment

- 1) reflected IACS UR S10 Rev. 7
 - Improved side plate welding method (changed to continuous welding on the bevel edge)
 - clarify the bending forces and moments for spade rudder with trunk extending inside the rudder
 - clarify and improve the push-up pressure and push-up length requirements for pintle cone couplings
 - Clarify the requirements of fittings of liners for rudder stocks having diameter less than 200 mm
 - editorial changes and renumbering of figures
- (2) Effective date : ships contracted for construction on or after 1 July 2024

Present	Amendment	Note
CHAPTER 1 RUDDERS	CHAPTER 1 RUDDERS	
Section 1 General	Section 1 General	
101. ~ 105. 〈omitted〉 106. Welding <i>(2021)</i>	101. ~ 105. (omitted) 106. Welding	
1. ~ 4. (omitted)	1. ~ 4. (same as present)	
5. Welds between plates and heavy pieces (solid parts in forged or cast steel or very thick plating) are to be made as full penetration welds. In way of highly stressed areas e.g. cut-out of semi-spade rudder and upper part of spade rudder, cast or welding on ribs is to be arranged. Two sided full penetration welding is normally to be arranged. Where back welding is impossible welding is to be per- formed against ceramic backing bars or equivalent. Steel backing bars may be used and are to be continuously welded on one side to the heavy piece.	5. Welds in the rudder side plating subjected to significant stresses from rudder bending and welds between plates and heavy pieces (solid parts in forged or cast steel or very thick plating) are to be made as full penetration welds. In way of highly stressed areas e.g. cut-out of semi-spade rudder and upper part of spade rudder, cast or welding on ribs is to be arranged. Two sided full penetration welding is normally to be arranged. Where back welding is impossible welding is to be performed against ceramic backing bars or equivalent. Steel backing bars may be used and are to be fitted with continuous weld on one side to the bevelled edge, see Fig 4.1.2. The bevel angle is to be at least 15° for one sided welding. Eig 4.1.2 Use of steel backing bar in way of	IACS UR S10 Rev. 7 1.4.3 -expansion of full pe netration welding are a -improvement of wel ding method by cont inuous weld at the b evelled edge instead of a separate fillet w eld at the edge of th e steel backing bars
	Fig 4.1.2 Use of steel backing bar in way of full penetration welding of rudder side plating	

Present	Amendment	Note
107. Equivalence (omitted)	107. Equivalence (same as present)	
Section 2 Rudder Force	Section 2 Rudder Force	
201. Rudder force The rudder force F_R upon which the rudder scantlings are to be based is to be obtained from the following formula, for each of go- ing ahead or astern. However, when the rudder is arranged behind the propeller that produces an especially great thrust, the rudder force is to be appropriately increased. $F_R = 132K_1K_2K_3AV^2$ (N)	201. Rudder force The rudder force F_R upon which the rudder scantlings are to be based is to be obtained from the following formula, for each of go- ing ahead or astern. However, when the rudder is arranged behind the propeller that produces an especially great thrust, the rudder force is to be appropriately increased. $F_R = 132K_1K_2K_3AV^2$ (N)	
where : $A = \text{area of rudder plate (m^2)}.$ V = speed of ship(Kt) as defined in Pt 3, Ch 1 of the Rules. When the speed is less than 10 <i>knots</i> , V is to be re- placed by V_{\min} obtained from the following formula ; $V_{\min} = \frac{V+20}{3}$ (kt)	where : A = area of rudder plate (m ²). V = speed of ship(Kt) as defined in Pt 3, Ch 1 of the Rules. When the speed is less than 10 <i>knots</i> , V is to be re- placed by V_{min} obtained from the following formula ; $V_{min} = \frac{V+20}{3}$ (kt)	
For the astern condition, the astern speed V_a is to be obtained from the following formula. However, when the maximum as- tern speed is designed to exceed V_a the design maximum as- tern speed is to be used.	For the astern condition the maximum astern speed V_a as defined in SOLAS Regulation II-1/3.15 is to be used, however, in no case taken less than:	IACS UR S10 Rev. 7 2.1.1 -Clarify and align def inition of astern spee d
<pre><omitted> h : mean height of rudder (m), which is determined according to the coordinate system in Fig 4.1.2.</omitted></pre>	<pre> ⟨same as present⟩ h : mean height of rudder (m), which is determined according to the coordinate system in Fig 4.1.3.</pre>	renumbering figure
<pre>(omitted)</pre>	⟨same as present⟩	

Present	Amendment	Note
Section 3 Rudder Torque	Section 3 Rudder Torque	
301. Rudder torque of Type <i>B</i> and Type <i>C</i> rudders (Rudder with- out cut-outs) ⟨omitted⟩	301. Rudder torque of Type B and Type C rudders (Rudder with- out cut-outs) ⟨same as present⟩	
<pre>b = mean breadth(m) of rudder determined by the coor- dinate system in Fig 4.1.2. <omitted></omitted></pre>	<pre>b = mean breadth(m) of rudder determined by the coor- dinate system in Fig 4.1.3. (same as present)</pre>	renumbering figure
302. Rudder torque of Type <i>A</i> , <i>D</i> and <i>E</i> rudders (Rudder with stepped contours)	302. Rudder torque of Type <i>A</i> , <i>D</i> and <i>E</i> rudders (Rudder with stepped contours)	
1. The rudder torque T_R of Type A , D and E rudders is to be obtained for the ahead and astern conditions, respectively, according to the following formula : (omitted) A_1 and A_2 = areas of respective rectangulars (m ²) determined by dividing the rudder area into two parts so that	1. The rudder torque T_R of Type A , D and E rudders is to be obtained for the ahead and astern conditions, respectively, according to the following formula : (same as present) A_1 and A_2 = areas of respective rectangulars (m ²) determined by dividing the rudder area into two parts so that	
$A = A_1 + A_2 \ (A_1 \text{ and } A_2 \text{ include } A_{1f} \text{ and } A_{2f}$ respectively), as specified in Fig 4.1.3. (omitted)	$A = A_1 + A_2 \ (A_1 \text{ and } A_2 \text{ include } A_{1f} \text{ and } A_{2f}$ respectively), as specified in Fig 4.1.4. (same as present)	renumbering figure
b_1 and b_2 = mean breadth (m) of portions A_1 and A_2 , de-	b_1 and b_2 = mean breadth (m) of portions A_1 and A_2 , de-	
termined by applying Fig 4.1.2 correspondingly.	termined by applying Fig 4.1.<u>3</u> correspondingly.	renumbering figure

Present	Amendment	Note
Section 6 Rudder Plates, Rudder Frames and Rudder Main Pieces	Section 6 Rudder Plates, Rudder Frames and Rudder Main Pieces	
601. Rudder plate The rudder plate thickness <i>t</i> is not to be less than that obtained from the following formula : $t = 5.5S \beta \sqrt{\left(d + \frac{F_R \times 10^{-4}}{A}\right)} K_{pl} + 2.5 (mm)$ where : <i>A</i> and <i>F_R</i> = as specified in 201 .	601. Rudder plate The rudder plate thickness <i>t</i> is not to be less than that obtained from the following formula : $\underline{t = 5.5S\beta \sqrt{\left(d_s + \frac{F_R \times 10^{-4}}{A}\right)K_{pl}} + 2.5 (mm)}$ where : <i>A</i> and <i>F_R</i> = as specified in 201 .	IACS UR S10 Rev. 7 5.2 -clarify the definition of the waterline as sc antling draft
K_{pl} = material factor for the rudder plate as given in 103 . d = as specified in Pt 3 , Ch 1 , 111 . of the Rule. (omitted)	K_{pl} = material factor for the rudder plate as given in 103 . d = as specified in Pt 3 , Ch 1 , <u>126</u> . of the Rule. (same as present)	
602. ~ 604. 〈omitted〉	602. ∼ 604. ⟨same as present⟩	
605. Connections [See Guidance]	605. Connections [See Guidance]	
1. ~ 2. (omitted)	1. ~ 2. 〈same as present〉	
 3. connection with the rudder stock housing (1) ⟨omitted⟩ (2) The breadth of the rudder plating, in m, to be considered for the calculation of section modulus is to be not greater than: b = S + ^{2h}_X/₃ (m) 	 3. connection with the rudder stock housing (1) (same as present) (2) The breadth of the rudder plating, in m, to be considered for the calculation of section modulus is to be not greater than: b = S + ^{2h}_X/₃ (m) 	
S = spacing between the two vertical webs (m) h_{X} = according to (1)	S = spacing between the two vertical webs (m) (See Fig 4.1.5) h_X = according to (1)	renumbering figure

Present	Amendment	Note	
d_0 = actual diameter (mm) of rudder stock (See Fig 4.1.6)	d_0 = actual diameter (mm) of rudder stock (See Fig 4.1.7)	renumbering figure	
d_u = according to Fig 4.1.6	d_u = according to Fig 4.1.7 (mm)	add unit	
l_c = length of cone (mm)	l_c = length of cone (mm) (See Fig 4.1.7b)		
 (2) ~ (3) 〈omitted〉 (4) The dimensions of the slugging nut as specified in the preceding (1) are to be as follows (<i>See</i> Fig 4.1.6) : (5) ~ (8) 〈omitted〉 	 (2) ~ (3) (same as present) (4) The dimensions of the slugging nut as specified in the preceding (1) are to be as follows (<i>See</i> Fig 4.1.7): (5) ~ (8) (same as present) 	renumbering figure	
2. (1) ~ (5) (omitted)	2. (1) ~ (5) 〈same as present〉		
(6) The push-up pressure is not to be less than the greater of the two following values: <i>(2019)</i>	(6) The push-up pressure is not to be less than the greater of the two following values:		
$P = rac{2M_F}{d_m^2 \ell \pi \mu_0} 10^3 ~(N/mm^2) ~ { m or} ~ P = rac{6M_b}{\ell^2 d_m} 10^3 ~(N/mm^2)$	$P = rac{2M_F}{d_m^2 \ell \pi \mu_0} 10^3 ~(N/mm^2) ~ { m or} ~ P = rac{6M_c}{\ell^2 d_m} 10^3 ~(N/mm^2)$	IACS UR S10 Rev. 7 6.4.2 - change symbol	
M_F = design torsional moment (Nm) of rudder stock, as	M_F = design torsional moment (Nm) of rudder stock, as		
defined in Par 1 (3)	defined in Par 1 (3)	renumbering figure	
d_m = mean cone diameter (mm) (See Fig 4.1.6)	d_m = mean cone diameter (mm) (See Fig 4.1.7)	Tenumbering figure	
ℓ = coupling length (mm)	ℓ = coupling length (mm)		
μ_0 = frictional coefficient, equal to 0.15	μ_0 = frictional coefficient, equal to 0.15		
M_b = bending moment in the cone coupling (e.g. in case of	M_c = bending moment in rudder stock at the top of the	IACS UR S10 Rev. 7	
Type C , D and E rudders) (mm)	cone coupling (e.g. in case of spade rudders), in Nm.	6.4.2	
	For spade rudder with trunk extending inside the rudder, the coupling shall be checked against the two cases defined in Guidance 401.4.	IACS UR S10 Rev. 7 6.4.2 -clarify the bending orces and moments	
It has to be proved by the designer that the push-up pressure does not exceed the permissible surface pressure in the cone. The permissible surface pressure P_{perm} (N/mm ²), is to be determined by the following formula:	It has to be proved by the designer that the push-up pressure does not exceed the permissible surface pressure in the cone. The permissible surface pressure P_{perm} (N/mm ²), is to be determined by the following formula:	or spade rudder wi trunk extending ins e the rudder	

Present	Amendment	Note
$\begin{split} P_{perm} &= \frac{0.95 R_{eH} (1-a^2)}{\sqrt{3+a^4}} - P_b ~(N/mm^2) \\ P_b &= \frac{3.5 M_b}{d_m l^2} ~10^3 \end{split}$	$P_{perm} = rac{0.95 R_{eH} (1 - a^2)}{\sqrt{3 + a^4}} - P_b ~(N/mm^2)$ $P_b = rac{3.5 M_c}{d_m l^2} ~10^3$	IACS UR S10 Rev. 7 6.4.2 - change symbol
R_{eH} = specified minimum yield stress of the material of the gudgeon (N/mm ²) $\alpha = d_m/d_a$ d_a = outer diameter of the gudgeon (See Fig 4.1.6)	R_{eH} = specified minimum yield stress of the material of the gudgeon (N/mm ²) $\alpha = d_m/d_a$ d_a = outer diameter of the gudgeon (See Fig 4.1.7 and Fig 4.1.7a)	renumbering figure
 The outer diameter of the gudgeon in mm shall not be less than 1.25 d₀, with d₀ defined in Fig 4.1.6. (7) The push-up length l is to be accordance with as following. (2019) 	 The outer diameter of the gudgeon in mm shall not be less than 1.25 d₀, with d₀ defined in Fig 4.1.7. (7) The push-up length l is to be accordance with as following. 	renumbering figure
(omitted) d_m = mean cone diameter (mm) (See Fig 4.1.6) (omitted) insulation	(same as present) d_m = mean cone diameter (mm) (See Fig 4.1.7) (same as present) (same as present) $\int d_0$ insulation $\int d_0$ insulation	renumbering figure
Fig 4.1.6 Cone coupling with key (2021)	- 11 - Fig 4.1.7 Cone coupling with key (2021)	renumbering figure

Present	Amendment	Note
Section 8 Pintles	Section 8 Pintles	
801. Diameters of pintles (omitted)	801. Diameters of pintles (same as present)	
802. Construction of pintles [See Guidance]	802. Construction of pintles [See Guidance]	
 1. ~ 4. (omitted) 5. The required push-up pressure for pintle (N/mm²), is to be determined by the following formula. The push up length is to be calculated similarly as in 703. 2 (7), using required push-up pressure and properties for the pintle. (2019) P = 0.4 \frac{Bd_p}{d_m^2 \ell} (N/mm^2) B = Supporting force in the pintle (N) d_m, \epsilon = according to 703. 2 (6) 	 1. ~ 4. (same as present) 5. The required push-up pressure for pintle in case of dry fitting (N/mm²), is to be determined by P_{rop1} as following formula. The required push-up pressure for pintle in case of oil injection fitting (N/mm²), is to be determined by the maximum pressure of P_{rop1} and P_{rop2} as following formula. The push up length is to be calculated similarly as in 703. 2 (7), using required push-up pressure and properties for the pintle. P_{rop1} = 0.4 ^{Bd}/_{dm} (N/mm²), P_{rop2} = ^{6M}/_{bp} 10³ (N/mm²) B = Supporting force in the pintle(N) e.g. B₁ as defined in Fig 4.1.5 for semi-spade rudder. d₀ = Pintle diameter, in mm (See Fig 4.1.9) M_{bp} = Bt_a (Nm) ℓ_a = length between middle of pintle-bearing and top of contact surface between cone coupling and pintle in m, (See Fig 4.1.9) d_m, ℓ = according to 703. 2 (6) 	IACS UR S10 Rev. 7 7.2.2 -Addition of push-u pressure formula co sidering bending m ment(clarify the requ rements of the push up pressure for pin es and to align wit rudder stock requir ments)

Present	Amendment	Note
Section 9 Bearings of Rudder Stocks and Pintles	Fig 4.1.9 Pintle cone coupling indicating laSection 9 Bearings of Rudder Stocks and Pintles	add figure
901. ~ 903. (omitted)		
904. Thickness of bush and sleeve	901. ~ 903. (same as present) 904. Thickness of bush and sleeve	
The thickness of any bush or sleeve t is not to be less than that obtained from the following formula.	<u>1.</u> The thickness of any bush or sleeve t is not to be less than that obtained from the following formula.	
$t = 0.01\sqrt{B}$ (mm)	$t = 0.01\sqrt{B}$ (mm)	
where : B = as specified in 801 . However, t is not to be less than t_{\min} as follows ; t_{\min} = 8 mm for metallic materials and synthetic materials t_{\min} = 22 mm for lignum vitae	where : B = as specified in 801 . However, t is not to be less than t_{min} as follows ; t_{min} = 8 mm for metallic materials and synthetic materials t_{min} = 22 mm for lignum vitae 2. For rudder stocks and pintles having diameter less than 200 mm, liners in way of bushes may be provided optionally.	IACS UR S10 Rev. 7 8.1.1 -reflects industry opi nion that repairs are easier without a liner

Main Amendments

(1) Background of Amendment

- Reflected IACS UR S21 Rev.6
 - 1) Application of buckling requirements based on CSR (Unification of CSR buckling regulations among UR-S)
 - 2) Harmonize and combine UR S21 and S21A(As the buckling requirements were revised, Hull Panel decided to unify S21 and S21A into a single regulation. Accordingly, it was merged into S21, and S21A was deleted.)
- Reflected IACS UR S26 Rev.5
 - 1) Clarify except for the application of small hatches on container ship giving access to a cargo hold(non-weathertight hatch covers complying with IACS UI LL64 are excluded from the application of the rule)
- (2) Effective date : ships contracted for construction on or after 1 July 2024

Present	Amendment	Note
CHAPTER 2 HATCHWAYS AND OTHER DECK OPENINGS	CHAPTER 2 HATCHWAYS AND OTHER DECK OPENINGS	
Section 1 General	Section 1 General	
 Application <u>The requirements apply to all ships except bulk carriers, SUBC(Self-Unloading Bulk Carrier), ore carriers and combination carriers and are for hatch covers and coaming in position 1 and 2 on weather decks.</u> The requirements in Ch 9. apply to steel hatch covers of small hatches fitted on the exposed fore deck. The construction and means for securing the weathertightness of cargo and other hatchways in position 1 and 2 as defined 102. shall be equivalent to the requirements of hatchways closed by weathertight covers of steel or other equivalent materials, unless approved by the Administration. [See Guidance] 	 Application The requirements apply to all ships except bulk carriers to which Part 13 is applied, are for hatch covers and coaming in position 1 and 2 on weather decks. The requirements in Ch 9. apply to steel hatch covers of small hatches fitted on the exposed fore deck. The construction and means for securing the weathertightness of cargo and other hatchways in position 1 and 2 as defined 102. shall be equivalent to the requirements of hatchways closed by weather- tight covers of steel or other equivalent materials, unless approved by the Administration. [See Guidance] As specified in this chapter, parts of the requirements are for some specific ship types as categorized below: Type-1 ships : including all ships except bulk carriers, self-unloading bulk carriers, ore carriers and combination carriers 	Reflected UR S21 Re v.6 -S21 1.1 -CSR bulk carriers ex cluded Reflected UR S21 Re v.6 -S21.1.1 -combine Part 4 Ch.2
 102. Position of exposed deck openings [See Guidance] (omitted) 103. Height of hatchway coamings (omitted) 104. Hatch covers [See Guidance] (omitted) 105. Material (omitted) 106. Net scantlings 1. Unless otherwise quoted, the scantling of this Chapter are net scantlings. 2. The net thicknesses are the member thicknesses necessary to obtain the minimum net scantlings required by Sec 3 and Sec 4. 	 Type-2 ships : including all bulk carriers, self-unloading bulk carriers, ore carriers and combination carriers 102. Position of exposed deck openings [See Guidance] (omitted) 103. Height of hatchway coamings (omitted) 104. Hatch covers [See Guidance] (omitted) 105. Material (omitted) 106. Net scantlings 1. Unless otherwise quoted, the scantling of this Chapter are net scantlings. 2. The net thicknesses are the member thicknesses necessary to obtain the minimum net scantlings required by Sec 3 and Sec 4. 	and Part 7 Ch.9 Se c.18

Present	Amendment	Note	
3. The required gross thicknesses are obtained by adding corrosion additions given in Table 4.2.1 .	3. The required gross thicknesses are obtained by adding corrosion additions given in Table 4.2.1 .	Reflected UR S21 Re v.6	
4. Strength calculations using <u>grillage analysis or FEM</u> are to be per- formed with net scantlings.	4. Strength calculations using <u>FEM</u> are to be performed with net scantlings.	-S21.1.5 -FEM was determined to be the single pres	
107. Corrosion additions	107. Corrosion additions	criptive method for h	
1. The corrosion addition for steel hatch covers, hatch coamings is equal to the value specified in Table 4.2.1.	 The corrosion addition for steel hatch covers, hatch coamings is equal to the value specified in Table 4.2.1. 	atch cover direct stre ngth analysis.	
For structural members made of stainless steel and aluminium alloys, the corrosion addition t_c is to be taken equal to 0 mm.	For structural members made of stainless steel and aluminium alloys, the corrosion addition t_c is to be taken equal to 0 mm.		
2. Renewal thickness Structural drawings for hatch covers and hatch coamings complying with this Chapter are to indicate the renewal thickness $(t_{renewal})$ for each structural elements, given by the following formula in addition to the as built thickness $(t_{as-buill})$. If the thickness for voluntary addition is included in the as built thickness, the value may be at the discretion of the Society.	2. Renewal thickness Structural drawings for hatch covers and hatch coamings complying with this Chapter are to indicate the renewal thickness $(t_{renewal})$ for each structural elements, given by the following formula in addition to the as built thickness $(t_{as-built})$. If the thickness for voluntary addition is included in the as built thickness, the value may be at the discretion of the Society.		
$t_{renewal} = t_{as-built} - t_c + 0.5 \text{(mm)}$	$t_{renewal} = t_{as-built} - t_c + 0.5$ (mm)		
where, t_c : Corrosion addition according to Table 4.2.1 In case that corrosion addition t_c is 1.0 mm, renewal thickness may be given by the following formula. $t_{renewal} = t_{as-built} - t_c$ (mm)	where, t_c : Corrosion addition according to Table 4.2.1 In case that corrosion addition t_c is 1.0 mm, renewal thickness may be given by the following formula. $t_{renewal} = t_{as-built} - t_c$ (mm)		

Present				Amendment		Note
ble 4.2.1 Corrosion	additions t_c for hatch covers and hat	itch coamings	Table 4.2.1 Corrosion			
Application	Structure	t_c (mm)	Application	Structure	t_c (mm)	Reflected UR S21 v.6
Container ships, car carriers, paper carriers, passenger vessels	Hatch covers	1.0	Container ships, car carriers,	Hatch covers	1.0	-S21 7.1 Tab.8 -combine Part 4 Ch
	Hatch coamings	1.5	paper carriers	Hatch coamings	1.5	and Part 7 Ch.3 6.
All other ship types		2.0		Single skin hatch covers	<u>2.0</u>	0.
	Single skin hatch covers	2.0		Top plating and bottom plating of double skin hatch covers	<u>2.0</u>	
	Top plating and bottom plating of double skin hatch covers	1.5	<u>Type-2 ships</u>	Internal structure of double skin hatch covers	<u>1.5</u>	
	Internal structure of double skin hatch covers and closed box girders	1.0		Hatch coamings and coaming stays	<u>1.5</u>	
	Hatch coaming parts including	1.5		Single skin hatch covers	2.0	
	stays and stiffeners			Top plating and bottom plating of double skin hatch covers	1.5	
			All other ship types	Internal structure of double skin hatch covers and closed box girders	1.0	
				Hatch coaming parts including stays and stiffeners	1.5	

	Present				Amendment		Note
 3. Steel renewal The treatment in relation to gauged thickness are to be obtained from Table 4.2.2. Where applied protection coating, coating applied in accordance with the coating manufacturer's requirements. Coating is to be maintained in GOOD condition, as defined in Pt 1, Ch 2, 101. <u>16</u> of the Rules. For the internal structure of double skin hatch covers, thickness gauging is required when hatch cover top or bottom plating renewal is to be carried out or when this is deemed necessary, at the discretion of the Society's surveyor, on the basis of the plating corrosion or deformation condition. In these cases, steel renewal for the internal structures is required where the gauged thickness is less than t_{net}. [See Guidance] 			(1) (2)	tained from Where app with the commintained 20 of the F For the inte gauging is newal is to the discreti plating corr renewal for	nent in relation to gauged Table 4.2.2. lied protection coating, coating pating manufacturer's requiring in GOOD condition, as defined Rules. ernal structure of double sking required when hatch cover be carried out or when this ion of the Society's survey osion or deformation conditing the internal structures is re- tion of t_{net} . [See Guida	ting applied in accordance ements. Coating is to be fined in Pt 1, Ch 2, 101. in hatch covers, thickness top or bottom plating re- s is deemed necessary, at yor, on the basis of the ion. In these cases, steel equired where the gauged	Amendment of refere nces
Table 4.2.2. Trea Treatment Steel renewal	Where $t_c \ge 1.5 mm$ $t_g < t_{n ct} + 0.5 mm$	thickness Where $t_c = 1.0 mm$ $t_g \leq t_{n ct}$	Tr	e 4.2.2. Treat reatment el renewal			
Apply protection coating or annual gauging	$t_{net} + 0.5 < t_g < t_{net} + 1.0$ m	$t_{net} < t_g < t_{net} + 0.5 \ mn$	pr co	Apply cotection pating or annual gauging	$t_{net} + 0.5 < t_g < t_{net} + 1.0$ r	$t_{net} < t_g < t_{net} + 0.5 \ mn$	
	Section 2 Design L	oad			Section 2 Design L	oad	
202. Vertical weat	 01. Hatch cover and coaming design load (omitted) 02. Vertical weather design load 1. The vertical weather load on the hatch cover panels is given by Table 4.2.3. 			ertical weath	and coaming design load oner design load eather load $\frac{P_v}{2}$ on the hatch		Add symbol
	2. ~ 3. (omitted) Table 4.2.3 Vertical weather load P_v of weather deck hatches (omitted)			uid cargo, th accordance	the present> ers of cargo holds designed be internal lateral pressures with Pt 3, Ch 15 of the Ru weather load P_v of weath	are also to be considered les.	Reflected UR S21 Re v.6 -S21 2.1 -add internal pressur es due to liquid

Present	Amendment	Note
203. Horizontal weather design load	203. Horizontal weather design load	
The horizontal weather load is obtained from the following formulae and not to be less than the values given by Table 4.2.4 . The horizontal weather design load need not be included in the direct strength calcu- lation of the hatch cover, unless it is utilized for the design of sub- structures of horizontal support according to 505 . $\underline{P_H} = ac(bc_L f - z)$	1. Horizontal weather design load The horizontal weather load P_H is obtained from the following formulae and not to be less than the values given by Table 4.2.4 . $\underline{P_H} = f_n f_c (f_b c_L C_w - z) \qquad (kN/m^2)$	Reflected UR S21 Re v.6 -S21 2.2.1 -unification of symbo ls
$f = \frac{L}{25} + 4.1$ for $L < 90$ m $= 10.75 - \left(\frac{300 - L}{100}\right)^{1.5}$ for $90 \text{ m} \le L < 300 \text{ m}$ $= 10.75 - \left(\frac{L - 350}{150}\right)^{1.5}$ for $300 \text{ m} \le L < 350 \text{ m}$ $= 10.75 - \left(\frac{L - 350}{150}\right)^{1.5}$ for $350 \text{ m} \le L \le 500 \text{ m}$ $c_L = \sqrt{\frac{L}{90}}$ for $L < 90 \text{ m}$ $= 1$ for $L \ge 90 \text{ m}$ $\frac{a}{20} = 20 + \frac{L_1}{12}$ for unprotected front coamings and hatch cover skirt plates $\frac{a}{20} = 10 + \frac{L_1}{12}$ for unprotected front coamings and hatch- cover skirt plates, where the distance from the actual freeboard deck to the summer load line exceeds the minimum non-corrected tabular freeboard according to ICLL by at least one standard super- structure height h_N	$ \underbrace{C_w}_{l} = \frac{L}{25} + 4.1 \text{for } L \langle 90 \text{ m} \\ = 10.75 - \left(\frac{300 - L}{100}\right)^{1.5} \text{for } 90 \text{ m} \leq L \langle 300 \text{ m} \\ = 10.75 \text{for } 300 \text{ m} \leq L \langle 350 \text{ m} \\ = 10.75 - \left(\frac{L - 350}{150}\right)^{1.5} \text{for } 350 \text{ m} \leq L \leq 500 \text{ m} \\ c_L = \sqrt{\frac{L}{90}} \text{for } L \langle 90 \text{ m} \\ = 1 \text{for } L \geq 90 \text{ m} \\ \underbrace{f_n}_{l} = 20 + \frac{L_1}{12} \text{for unprotected front coamings and hatch cover skirt plates} \\ \underbrace{f_n}_{l} = 10 + \frac{L_1}{12} for unprotected front coamings and hatch cover skirt plates, where the distance from the actual freeboard deck to the summer load line exceeds the minimum non-corrected tabular freeboard according to ICLL by at least one standard super-structure height h_N $	

Present	Amendment	Note
$\begin{array}{l} \underline{a} = 5 + \frac{L_1}{15} & \text{for side and protected front coamings and} \\ \underline{a} = 5 + \frac{L_1}{15} & \text{for side and protected front coamings and} \\ \underline{a} = 7 + \frac{L_1}{100} - 8 \frac{x'}{L} & \text{for aft ends of coamings and aft hatch} \\ \underline{cover skirt plates abaft amidships} \\ \underline{a} = 5 + \frac{L_1}{100} - 4 \frac{x'}{L} & \text{for aft ends of coamings and aft hatch} \\ \underline{cover skirt plates forward of amidships} \\ L_1 = \text{length of ship, need not be taken greater than 300 m} \end{array}$	$\frac{f_n}{L_1} = 5 + \frac{L_1}{15}$ for side and protected front coamings and hatch cover skirt plates $\frac{f_n}{L_1} = 7 + \frac{L_1}{100} - 8\frac{x'}{L}$ for aft ends of coamings and aft hatch cover skirt plates abaft amidships $\frac{f_n}{L_1} = 5 + \frac{L_1}{100} - 4\frac{x'}{L}$ for aft ends of coamings and aft hatch cover skirt plates forward of amidships $L_1 = \text{length of ship, need not be taken greater than 300 m}$	Reflected UR S21 Re v.6 -S21 2.2.1 -unification of symbo ls
$ \underbrace{b}_{-} = 1.0 + \left(\frac{x'/L - 0.45}{C_{b1} + 0.2}\right)^2 \text{for } \frac{x'}{L} < 0.45 \\ = 1.0 + 1.5 \left(\frac{x'/L - 0.45}{C_{b1} + 0.2}\right)^2 \text{for } \frac{x'}{L} \ge 0.45 $	$ \underline{f_b} = 1.0 + \left(\frac{x'/L - 0.45}{C_{b1} + 0.2}\right)^2 \text{for } \frac{x'}{L} < 0.45 $ $ = 1.0 + 1.5 \left(\frac{x'/L - 0.45}{C_{b1} + 0.2}\right)^2 \text{for } \frac{x'}{L} \ge 0.45 $	
$0.6 \leq C_{b1} \leq 0.8$, when determining scantlings of aft ends of coamings and aft hatch cover skirt plates for- ward of amidships, C_{b1} need not be taken less than 0.8. x' = distance in m between the transverse coaming or hatch cover skirt plate considered and aft end of the length L . When determining side coamings or side hatch cover skirt plates, the side is to be subdivided into parts of approx- imately equal length, not exceeding 0.15 L each, and x' is	$0.6 \leq C_B \leq 0.8$, when determining scantlings of aft ends of coamings and aft hatch cover skirt plates for- ward of amidships, C_B need not be taken less than 0.8. x' = distance in m between the transverse coaming or hatch cover skirt plate considered and aft end of the length L . When determining side coamings or side hatch cover skirt plates, the side is to be subdivided into parts of approx- imately equal length, not exceeding 0.15 L each, and x' is	
to be taken as the distance between aft end of the length L and the centre of each part considered. z = vertical distance in m from the summer load line to the	to be taken as the distance between aft end of the length L and the centre of each part considered. z = vertical distance in m from the summer load line to the	

 z = vertical distance in m from the summer load line to the midpoint of stiffener span, or to the middle of the plate field

midpoint of stiffener span, or to the middle of the plate

field

	Present				Amendment			Note
B'= actual weath	0.7b'/B' h of coaming in m at the position of maximum breadth of ship in m her deck at the position considered. It to be taken less than 0.25.		ł	B'= actual weath	$\frac{0.7b'/B'}{B'}$ h of coaming in m at the position of maximum breadth of ship in m her deck at the position considered. In the taken less than 0.25.		sed	Reflected UR S21 Re v.6 -S21 2.2.1 -unification of symbo ls
Table 4.2.4 Minir	num horizontal weather design load	P _{Hmin}		Table 4.2.4 Mini	num horizontal weather design load	$P_{H-\min}$		
-	$\underline{P}_{H\min}$ (kN/m ²)				$\underline{P_{H-\min}}$ (kN/m ²)			
L	unprotected fronts hatch coaming and hatch cover skirt plates	elsewhere		L	unprotected fronts hatch coaming and hatch cover skirt plates	elsewhere		
≤ 50	30	15		≤ 50	30	15		
50 < L < 250	$25 + \frac{L}{10}$	$12.5 + \frac{L}{20}$		50 < L < 250	$25 + \frac{L}{10}$	$12.5 + \frac{L}{20}$		
≥ 250	50	25		≥ 250	50	25		
			2	<u>ships</u> (1) The pressu <u>hatch coam</u> <u>P_{coam} = 220</u> <u>Par</u> = 290	her design load applicable to coamin re P_{coam} , in kN/m ² , on the No. 1 f ing is given by:), where there is a forecastle to whi t 7 , Chapter 3 , Section 3 is applied 1 in the other cases re P_{coam} , in kN/m2, on the other of	orward transve	rse to	Reflected UR S21 Re v.6 -S21 2.2.2 -reflection of Part 7 Ch.9 904.
			TI <u>th</u>	ne direct strengt	other design loads (P_H, P_{coam}) need representation of the hatch cover, us substructures of horizontal support a	nless it is utiliz	zed	edit within 203.

Present	Amendment	Note
204. Cargo loads	204. Cargo loads	
The load due to cargo load on hatch covers is to be accordance with Par 1, 2 and partial cargo load to be considered with together.	The load due to cargo load on hatch covers is to be accordance with Par 1, 2 and partial cargo load to be considered with together.	
1. Distributed loads	1. Distributed loads	
The load on hatch covers due to distributed cargo loads P_L resulting from heave and pitch is to be determined according to the following formula:	The load on hatch covers due to distributed cargo loads P_L resulting from heave and pitch is to be determined according to the following formula:	
$\frac{P_L = P_C(1 + a_V)}{P_C} \qquad (kN/m^2)$ $\frac{P_C}{P_C} = \text{uniform static cargo load}(kN/m^2)$ $a_V = \text{acceleration addition as follows:}$	$\frac{P_L = P_{Cargo}(1 + a_V)}{P_{Cargo}} = \text{uniform static cargo load } (kN/m^2)$ $a_V = \text{acceleration addition as follows:}$	Reflected UR S21 Re v.6 -S21 2.3.1 -unification of symbo ls
$\underline{a_V = 0.11 \frac{m V_1}{\sqrt{L}}}$	$\frac{a_V = F \cdot m}{F = 0.11 \frac{v_0}{\sqrt{L}}}$	10
$m = m_0 - 5(m_0 - 1)\frac{x}{L} \text{for } 0 \le \frac{x}{L} \le 0.2$ = 1.0	$m = m_0 - 5(m_0 - 1)\frac{x}{L} \qquad \text{for } 0 \le \frac{x}{L} \le 0.2$ $= 1.0 \qquad \qquad \text{for } 0.2 < \frac{x}{L} \le 0.7$ $= 1 + \frac{m_0 + 1}{0.3} \left[\frac{x}{L} - 0.7\right] \qquad \text{for } 0.7 < \frac{x}{L} \le 1.0$	
$m_0 = \frac{1.5 + 0.11 V_1 / \sqrt{L}}{V_1}$ $\frac{V_1}{V_1} = \text{max. speed of ship,}$ $\frac{V_1}{V_1} \text{ is not to be taken less than } \sqrt{L} \text{ (kN)}$	$m_0 = \underline{1.5 + F}$ $\underline{v_0} =$ maximum speed at summer load line draught, $\underline{v_0}$ is not to be taken less than \sqrt{L} in knots	
2. Point loads (omitted)	2. Point loads (same as the present)	
205. Container loads	205. Container loads	
The loads defined in the followings are to be applied where containers are stowed on the hatch cover.	The loads defined in the followings are to be applied where containers are stowed on the hatch cover.	

Present	Amendment	Note
1. ~ 2. (omitted)	1. ~ 2. (same as the present)	
3. When strength of the hatch cover structure is assessed by grillage analysis according to 306. , h_m and z_i need to be taken above the hatch cover supports. Forces B_y does not need to be considered in this case.	3. When strength of the hatch cover structure is assessed by grillage analysis according to 306 ., h_m and z_i need to be taken above the hatch cover supports. Forces B_y does not need to be considered in this case. (deleted)	Reflected UR S21 Re v.6 -S21 2.4.3 -grillage anlysis delet
4. Values of A_z and B_z applied for the assessment of hatch cover strength are to be shown in the drawings of the hatch covers.	3. Values of A_z and B_z applied for the assessment of hatch cover strength are to be shown in the drawings of the hatch covers.	ed(leave only FEM)
5. It is recommended that container loads A_z , B_z and B_y as calculated above are considered as limit for foot point loads of container stacks in the calculations of cargo securing (container lashing).	<u>4.</u> It is recommended that container loads A_z , B_z and B_y as calculated above are considered as limit for foot point loads of container stacks in the calculations of cargo securing (container lashing).	Renumbering
<u>6.</u> Partial loading	<u>5.</u> Partial loading	
<pre>{omitted></pre>	⟨same as the present⟩	
7. Mixed stowage of 20' and 40' containers on hatch cover	6. Mixed stowage of 20' and 40' containers on hatch cover	
<pre>(omitted)</pre>	〈same as the present〉	
206. Loads due to elastic deformations of the ship's hull (omitted)	206. Loads due to elastic deformations of the ship's hull (same as the present)	

Present	Amendment	Note
Section 3 Hatch cover strength criteria	Section 3 Hatch cover strength criteria	
301. General	301. General	
1. The ordinary stiffeners and primary supporting members of the hatch covers are to be continuous over the breadth and length of the hatch covers, as far as practical. When this is impractical, snip-ed end connections are not to be used and appropriate arrangements are to be adopted to ensure sufficient load carrying capacity.	1. The ordinary stiffeners and primary supporting members of the hatch covers are to be continuous over the breadth and length of the hatch covers, as far as practical. When this is impractical, snip-ed end connections are not to be used and appropriate arrangements are to be adopted to ensure sufficient load carrying capacity.	
2. The spacing of primary supporting members parallel to the direction of ordinary stiffeners is to be not greater than 1/3 of the span of primary supporting members. When strength calculation is carried out by FE analysis using plane strain or shell elements, this requirement can be waived.	2. <u>Generally</u> , the spacing of primary supporting members parallel to the direction of stiffeners is not to exceed 1/3 of the span of primary supporting members. <u>If sufficient strength based on FE analysis can be verified</u> , this requirement <u>may</u> be waived.	Reflected UR S21 Re v.6 -S21 1.4
 3. The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3 m. Tripping brackets attached to the flange may be considered as a lateral support for primary supporting members. The flange outstand is not to exceed 15 times the gross flange thickness. 	3. The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3 m. Tripping brackets attached to the flange may be considered as a lateral support for primary supporting members. The flange outstand is not to exceed 15 times the gross flange thickness.	deleted as duplicate with 307.2
302. Permissible stresses and deflections	302. Permissible stresses and deflections	
	1. Permissible Stresses	
1. Permissible Stresses	(1) All hatch cover structural members are to comply with the fol-	
The equivalent stress σ_E in steel hatch cover shall be accordance with the following requirements.	lowing formulae.	Reflected UR S21 Re
(1) For grillage analysis	$\sigma_{vm} \leq \sigma_a$ for shell elements in general.	v.6
	$\sigma_{axial} \leq \sigma_a$ for rod or beam elements in general.	-\$21 3.1
$\sigma_E = \sqrt{\sigma^2 + 3 au^2} \le 0.8 \sigma_Y \qquad ({ m N/mm^2})$	σ_a : Allowable stress as defined in Table 4.2.6	
	R_{eH} : Specified minimum yield stress, in N/mm ² , of the mate-	
σ = normal stress (N/mm ²)	<u>rial</u>	
τ = shear stress (N/mm ²)	σ_{vm} : Von Mises stress, in N/mm ² , to be taken as follows:	
σ_Y = minimum yield stress of the material (N/mm ²)	$\sigma_{vm}=\sqrt{\sigma_x^2-\sigma_x\sigma_y+\sigma_y^2+3 au_{xy}^2}$	
	σ_x : Normal stress, in N/mm ² , in x-direction.	
	σ_y : Normal stress, in N/mm ² , in y-direction.	

Present	Amendment	Note
(2 <u>) For FEM calculations</u> (A) For vertical weather load according to 202.	$ au_{xy}$: Shear stress, in N/mm ² , in the $x-y$ plane. σ_{axial} : Axial stress in rod or beam elements, in N/mm ² .	Reflected UR S21 Re v.6 -S21 3.1
$\frac{\sigma_E = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau^2} \le 0.8\sigma_Y \qquad (\text{N/mm}^2)}{(\text{B) For other than 202.}}$	Indices x and y are coordinates of a two-dimensional Cartes system in the plane of the considered structural element.	-
 σ_E = √σ_x² - σ_xσ_y + σ_y² + 3τ² ≤ 0.9σ_Y (N/mm²) σ_x, σ_y = normal stress on each in x-direction, y-direction x, y = coordinates of a two-dimensional Cartesian system in the plane of the considered structural element. (3) In case of FEM calculations using shell or plane strain elements, the stresses are to be read from the centre of the individual element. Where shell elements are used, the stresses are to be evaluated at the mid plane of the element. (4) It is to be observed that, in particular, at flanges of unsym- metrical girders, the evaluation of stress from element centre may lead to non-conservative results. Thus, a sufficiently fine mesh is to be applied in these cases or, the stress at the ele- 	 (2) In case of FEM calculations using shell (or plate) elements, the stresses are to be read from the centre of the individual element. It is to be observed that, in particular, at flanges unsymmetrical girders, the evaluation of stress from element centre may lead to non-conservative results. Thus, a sufficient fine mesh is to be applied in these cases or, the stress at the element edges shall not exceed the allowable stress. When shell elements are used, the stresses are to be evaluated at the mid plane of the element. (3) Stress concentrations are to be assessed to the satisfaction the Society. 	ial of int tly ne re ne
<u>ment edges shall not exceed the allowable stress.</u> (5) Stress concentrations are to be assessed to the satisfaction of the Society.	Members of Subject to σ_a (N/mm ²) External pressure, as 0.00 P	
	Hatch cover $\underline{Other loads, as}$ defined in 203. to 206. $\underline{O.80R_{eH}}$ $\underline{Other loads, as}$ $\underline{Other loads, as}$ 	
2. Deflection (omitted)	2. Deflection (same as the present)	

Present	Amendment	Note
303. Net plate thickness of hatch cover	303. Net plate thickness of hatch cover	
1. The local net plate thickness $t(mm)$ of the hatch cover top plating is not to be less than:	1. The local net plate thickness $t(mm)$ of the hatch cover top plating is not to be less than:	
$t = 15.8F_p S \sqrt{\frac{P}{0.95\sigma_Y}} (mm)$	$t = 0.0158 F_p S \sqrt{\frac{P}{0.95 R_{eH}}}$ (mm)	
and to be not less than 1 $\%$ of the spacing of the stiffener or 6 $\rm mm$ if that be greater.	and to be not less than 1 $\%$ of the spacing of the stiffener or 6 $\rm mm$ if that be greater.	Reflected UR S21 R v.6
F_p = factor for combined membrane and bending response	F_p = factor for combined membrane and bending response = 1.5 in general	-S21 3.2 -unification of symb
= 1.5 in general = $1.9\sigma/(0.8\sigma_y)$, for $\frac{\sigma}{\sigma_a} \ge 0.8$ for the attached plate flange	= 1.9 σ/σ_a , for $\frac{\sigma}{\sigma_a} \ge 0.8$ for the attached plate flange of	ls
of primary supporting members	primary supporting members	
\underline{S} = stiffener spacing (\underline{m})	$S = \text{stiffener spacing } (\underline{\text{mm}})$	
<u><i>p</i></u> = pressure P_V and P_L (kN/m ²) as defined in 202. and 204. 1 .	\underline{P} = pressure P_V and P_L (kN/m ²) as defined in 202. and 204. 1.	
$\sigma~$ = normal stress(N/mm^2) of hatch cover top plating as determined by Fig 4.2.4	$\sigma = \frac{\text{Maximum}}{\text{maximum}} \text{ normal stress}(\text{N/mm}^2) \text{ of hatch cover top plat-ing as determined by Fig 4.2.4}$ $\sigma_a = \text{allowable stress as defined in Table. 4.2.6}$	
	$\frac{\sigma_a}{\sigma_a}$ = allowable stress as defined in Table. 4.2.0	
Fig 4.2.4 Determination of normal stress of the hatch cover plating 〈omitted〉	Fig 4.2.4 Determination of normal stress of the hatch cover plating 〈same as present〉	

Present	Amendment	Note
2. For plates under compression buckling strength according to 307. is to be demonstrated.	2. For plates under compression buckling strength according to 307. is to be demonstrated.	
3. Lower plating of double skin hatch covers and box girders	3. Lower plating of double skin hatch covers and box girders	
 The thickness to fulfill the strength requirements is to be obtained from the calculation according to 302. 1 under consideration of permissible stresses according to 306. The net thickness must not be less than 5 mm when the lower plating is taken into account as a strength member of the hatch cover. When project cargo is intended to be carried on a hatch cover, the net thickness must not be less than the following formulae. Project cargo means especially large or bulky cargo lashed to the hatch cover. Examples are parts of cranes or wind power stations, turbines, etc. Cargoes that can be considered as uniformly distributed over the hatch cover, e.g., timber, pipes or steel coils need not to be considered as project cargo. 	 The thickness to fulfill the strength requirements is to be obtained from the calculation according to 302. 1 under consideration of permissible stresses according to 306. The net thickness must not be less than 5 mm when the lower plating is taken into account as a strength member of the hatch cover. When project cargo is intended to be carried on a hatch cover, the net thickness must not be less than the following formulae. Project cargo means especially large or bulky cargo lashed to the hatch cover. Examples are parts of cranes or wind power stations, turbines, etc. Cargoes that can be considered as uniformly distributed over the hatch cover, e.g., timber, pipes or steel coils need not to be considered as project cargo. 	
		Reflected UR S21 Re
$\underline{t} = 6.5S \text{ (mm)}$	$t = 6.5s \times 10^{-3}$ (mm)	v.6
\underline{S} = stiffener spacing (<u>m</u>)	<u>s</u> = stiffener spacing (mm)	-S21 3.2.2
(4) When the lower plating is not considered as a strength mem- ber of the hatch cover, the thickness of the lower plating should be determined according to the Society. [See Guidance]	(4) When the lower plating is not considered as a strength mem- ber of the hatch cover, the thickness of the lower plating should be determined according to the Society. [See Guidance]	-unification of symbo ls
 Local net plate thickness of hatch covers for wheel loading [See Guidance] 	4. Local net plate thickness of hatch covers for wheel loading [See Guidance]	
The local net plate thickness of hatch covers for wheel loading have to be derived from the Society.	The local net plate thickness of hatch covers for wheel loading have to be derived from the Society.	

stiffeners must not be less than. The net section modulus of the stiffeners must not be less than. The net section modulus of the	Present	Amendment	Note
sintends is to be determined based on an attached plate with assumed equal to the stiffener spacing. (1) For vertical weather load according to 202 . $\frac{Z = \frac{104}{\sigma_x} PS^2 \text{ (cm}^3)}{\frac{A}{\sigma_y} (cm^2)}$ (2) For cargo load according to 204 . 1 $\frac{Z = \frac{93}{\sigma_y} PSI^2 \text{ (cm}^3)}{\frac{A}{\sigma_y} (cm^2)}$ (2) For cargo load according to 204 . 1 $\frac{Z = \frac{93}{\sigma_y} PSI^2 \text{ (cm}^3)}{\frac{A}{\sigma_y} (cm^2)}$ (2) For cargo load according to 204 . 1 $\frac{Z = \frac{93}{\sigma_y} PSI^2 \text{ (cm}^3)}{\frac{A}{\sigma_y} (cm^2)}$ (3) For easy load according to 204 . 1 $\frac{Z = \frac{93}{\sigma_y} PSI^2 \text{ (cm}^3)}{\frac{A}{\sigma_y} (cm^2)}$ (4) = stiffener span (m) to be taken as the spacing of pri- mary supporting members S = stiffener spacing (m) P = pressure P_V and P_L (kN/m ²) as defined in 202 . 204 . 1. $\frac{FE}{\sigma_y} = 8$, in the case of stiffener, taken equal to: $f_K = 8$, in the case of stiffener, taken equal to: $f_K = 8$, in the case of stiffener spacing was proported at one end and clamped at the other end at the other end	1. The net section modulus Z and net shear area A of hatch cover stiffeners must not be less than. The net section modulus of the stiffeners is to be determined based on an attached plate width assumed equal to the stiffener spacing. (1) For vertical weather load according to 202 . $\frac{Z = \frac{104}{\sigma_y} PSl^2 \text{ (cm}^3)}{\sigma_y}$ $\frac{A = \frac{10.8 PSl}{\sigma_y} \text{ (cm}^2)}{\sigma_y} \text{ (cm}^2)$ (2) For cargo load according to 204 . 1 $\frac{Z = \frac{93}{\sigma_y} PSl^2 \text{(cm}^3)}{\sigma_y}$ $\frac{A = \frac{9.6 PSl}{\sigma_y} \text{(cm}^2)}{\sigma_y}$ $l = \text{stiffener span (m) to be taken as the spacing of pri-mary supporting members}$ $S = \text{stiffener spacing (m)}$ $P = \text{pressure } P_V \text{ and } P_L \text{ (kN/m}^2) \text{ as defined in 202.,}$	1. The net section modulus Z and net shear area A_{shr} of hatch cover stiffeners must not be less than. The net section modulus of the stiffeners is to be determined based on an attached plate width assumed equal to the stiffener spacing. $\frac{Z = \frac{Psl^2}{f_{bc}\sigma_a} (cm^3)}{\frac{A_{shr} = \frac{8.7Psl}{\sigma_a} 10^{-3}}{(cm^2)}} (cm^2)$ $\frac{l}{l} = \text{stiffener span, in m, to be taken as the spacing, inm, of primary supporting members or the distancebetween a primary supporting member and the edgesupport, as applicable. When brackets are fitted atboth ends of all stiffener spans, the secondary stiff-ener span may be reduced by an amount equal to2/3 of the minimum brackets arm length, but notgreater than 10% of the unsupported span, for eachbrackets = \text{stiffener spacing (mm)}P = \text{pressure } P_V and P_L (kN/m2) as defined in 202.,204. 1.f_{bc} = 8, in the case of stiffener simply supported atboth ends or simply supported at one end and clampedat the other endf_{bc} = 12, in the case of stiffener clamped at both ends.$	-unification of symbo ls Reflected UR S21 Re v.6 -S21 3.3 -unification of symbo

Present	Amendment	Note
 For stiffeners of lower plating of double skin hatch covers, requirements mentioned above are not applied due to the absence of lateral loads. The requirements of Par 5, 6 are not applied to stiffeners of lower plating of double skin hatch covers if the lower plating is not considered as strength member. The net thickness of the stiffener (except u-beams/trapeze stiffeners) web is to be taken not less than 4 mm. The flat bar stiffeners and buckling stiffeners shall be accordance with following formulae. 	 For stiffeners of lower plating of double skin hatch covers, requirements mentioned above are not applied due to the absence of lateral loads. The requirements of Par 5, 6 are not applied to stiffeners of lower plating of double skin hatch covers if the lower plating is not considered as strength member. For double skin hatch covers of holds designed for ballast or liquid cargo, the stiffeners on lower plating are to be considered in accordance with Pt 3, Ch 15 of the Rules. The net thickness of the stiffener (except u-beams/trapeze stiffeners) web is to be taken not less than 4 mm. 	Reflected UR S21 Re v.6 -S21 3.3
$h/t_w < 15\sqrt{(235/\sigma_y)}$ h = height of the stiffener (mm)	4. The flat bar stiffeners and buckling stiffeners shall be accordance with following formulae. $h/t_w \le 15\sqrt{(235/\sigma_y)}$	Reflected UR S21 Re v.6 -relocate to 307. 2
t_w = net thickness of the stiffener (mm)	h = height of the stiffener (mm)	
 Stiffeners parallel to primary supporting members and arranged within the effective breadth according to 305. 1 must be continuous at crossing primary supporting member and may be regarded for calculating the cross sectional properties of primary supporting members. Where apply to Par 5, It is to be verified that the combined stress of those stiffeners induced by the bending of primary supporting members and lateral pressures does not exceed the permissible stresses according to 302. 1. For hatch cover stiffeners under compression sufficient safety against lateral and torsional buckling according 307. 5 (3), (4) is to be verified. For hatch covers subject to wheel loading or point loading stiffener scantlings are to be determined by direct calculations under consideration of the permissible stresses according to 302. 1 or are to be determined according to the Society. 	 t_w = net thickness of the stiffener (mm)(deleted) 4. The net section modulus of the stiffeners is to be determined based on an attached plate width assumed equal to the stiffener spacing. 5. Stiffeners parallel to primary supporting members and arranged within the effective breadth according to 305. 1 must be continuous at crossing primary supporting member and may be regarded for calculating the cross sectional properties of primary supporting members. 6. Where apply to Par 5, It is to be verified that the combined stress of those stiffeners induced by the bending of primary supporting members and lateral pressures does not exceed the permissible stresses according to 302. 1. 7. For hatch cover stiffeners under compression sufficient safety against lateral and torsional buckling according to <u>307.</u> is to be verified. 8. For hatch covers subject to wheel loading or point loading stiffener scantlings are to be determined by direct calculations under consideration of the permissible stresses according to 302. 1 or are to be determined according to the Society. 	Reflected UR S21 Re v.6 -S21 3.3 Amendment of refere nces

Present	Amendment	Note
305. Net scantling of primary supporting members	305. Net scantling of primary supporting members	
 Primary supporting members Scantlings of primary supporting members are obtained from calculations according to 306. under consideration of permissible stresses according to 302. 1. For all components of primary supporting members sufficient safety against buckling must be verified according to 307. For bioinformer stresses according to the plates this is to be writing within the 	 Primary supporting members Scantlings of primary supporting members are obtained from calculations according to 306. under consideration of permissible stresses according to 302. 1. For all components of primary supporting members sufficient safety against buckling must be verified according to 307. For bioinformer stresses according to attach alters this is to be verified within the safety against buckling must be verified according to 307. 	
 biaxial compressed attach plates this is to be verified within the effective widths according to 307. 5. (2). (3) The net thickness (mm) of webs of primary supporting members shall not be less than: t = 6.5 × s (mm) 	biaxial compressed attach plates this is to be verified within the effective widths according to 307. 5. (2). (3) The net thickness (mm) of webs of primary supporting mem- bers shall not be less than: $t = 6.5s \times 10^{-3} \text{ (mm)}$	Reflected UR S21 Re
$t_{\min} = 5 \text{ mm}$ s = stiffener spacing (<u>m</u>)	$t = \frac{0.53 \times 10^{-1}}{t_{min}}$ (mm) $t_{min} = 5 \text{ mm}$ s = stiffener spacing (mm)	v.6 -S21 3.4.1 -unification of symbo ls
 2. Skirt plates fo hatch cover (1) Scantlings of edge girders are obtained from the calculations according to 306. under consideration of permissible stresses according to 302. 1. (2) The net thickness, in mm, of the outer edge girders exposed to wash of sea shall not be less than the largest of the follow-ing values: 	 2. Skirt plates fo hatch cover (1) Scantlings of edge girders are obtained from the calculations according to 306. under consideration of permissible stresses according to 302. 1. (2) The net thickness, in mm, of the outer edge girders exposed to wash of sea shall not be less than the largest of the follow-ing values: 	
$\frac{t = 15.8S \sqrt{\frac{P_H}{0.95\sigma_Y}} (mm)}{\frac{t}{1} = 8.5S \text{ (mm)}}$ $\frac{t}{t_{\min}} = 5 \text{ mm}$ $P_H = \text{horizontal weather load as defined in 203.}$ $\frac{S}{1} = \text{stiffener spacing (m)}$	$t = 0.0158s \sqrt{\frac{P_H}{0.95R_{eH}}} (mm)$ $\frac{t = 8.5s \times 10^{-3} (mm)}{t_{\min}}$ $t_{\min} = 5 \text{ mm}$ $P_H = \text{horizontal weather load as defined in 203.}$ $\underline{s} = \text{stiffener spacing (mm)}$	Reflected UR S21 Re v.6 -S21 3.4.2 -unification of symbo ls

Present	Amendment	Note
(3) The stiffness of edge girders is to be sufficient to maintain ad- equate sealing pressure between clamping devices. The moment of inertia of skirt plates is not to be less than:	<u>〈deleted〉</u>	Reflected UR S21 Re v.6 -305.2.(3)→504.4.(2)
$I = 6 q S_{SD}^4 \qquad (\mathrm{cm}^4)$		
q = line pressure on gasket (N/mm), minimum 5 N/mm S_{SD} = spacing(m) of clamping devices, but S_{SD} is not to be less than 2.5 a_c (See Fig 4.2.5)		
$s_{i=S_{1,1}+S_{1,2}}$		
3. Primary supporting members and skirt plates of variable cross-section. The net section modulus of primary supporting members with a variable cross-section is to be not less than the greater of the value obtained from the following formulae and the use of these formulae is limited to the determination of the strength of primary supporting members in which abrupt changes in the cross-section. (1) Net section modules $Z = Z_{CS} (cm^3)$	3. Primary supporting members and skirt plates of variable cross-sec- The net section modulus of primary supporting members with a variable cross-section is to be not less than the greater of the value obtained from the following formulae and the use of these formulae is limited to the determination of the strength of primary supporting members in which abrupt changes in the cross-section. (1) Net section modules $Z = Z_{CS} (cm^3)$	
	- 20 -	

Present	Amendment	Note
$Z = (1 + \frac{3.2a - \psi - 0.8}{7\psi + 0.4})Z_{CS} (cm^3)$ (2) Net moment of inertia	$Z = \left(1 + \frac{3.2\alpha - \psi - 0.8}{7\psi + 0.4}\right) Z_{CS} (cm^3)$ (2) Net moment of inertia	Modify the figure nu
$I = I_{CS} (cm^4)$ $I = (1 + 8 a^3(\frac{1 - \phi}{0.2 + 3\sqrt{\phi}}))I_{CS} (cm^4)$ $Z_{CS} : \text{Net section modules(cm^3) of primary surporting stiff- ener complying with the checking criteria in Par 1. (1) or Par 2. (1) a = \frac{I_1}{I_0} \psi = \frac{Z_1}{Z_0} I_1 : \text{Length of the variable section part(m) (see Fig. 4.2.6) I_0 : \text{Span measured(m) between end supports (see Fig. 4.2.6) Z_1 : \text{Net section modulus at end(cm^3) (see Fig. 4.2.6)} Z_0 : \text{Net section modulus calculated with considering the net thickness at mid-span(cm^3) (see Fig. 4.2.6) I_{CS} : \text{Net moment of inertia of primary surporting stiffener complying with the checking criteria in Par 1. (1) or Par 2. (1) \phi = \frac{I_1}{I_0} I_1 : \text{Net moment of inertia at end (cm^4) (see Fig. 4.2.6)} I_1 : \text{Net moment of inertia at mid-span between supports} (cm^4) (see Fig. 4.2.6)$	$I = I_{CS} (cm^4)$ $I = (1 + 8 \alpha^3 (\frac{1 - \phi}{0.2 + 3\sqrt{\phi}})) I_{CS} (cm^4)$ $Z_{CS} : \text{Net section modules}(cm^3) \text{ of primary surporting stiff-ener complying with the checking criteria in Par 1. (1) or Par 2. (1) \alpha = \frac{I_1}{I_0} \psi = \frac{Z_1}{Z_0} I_1 : \text{Length of the variable section part(m) (see Fig 4.2.5)} I_0 : \text{Span measured(m) between end supports (see Fig 4.2.5)} Z_1 : \text{Net section modulus calculated with considering the net thickness at mid-span(cm^3) (see Fig 4.2.5) I_{CS} : \text{Net moment of inertia of primary surporting stiffener complying with the checking criteria in Par 1. (1) or Par 2. (1) \phi = \frac{I_1}{I_0} I_1 : \text{Net moment of inertia at end (cm^4) (see Fig 4.2.5)} I_0 : \text{Net moment of inertia at mid-span between supports (cm^4) (see Fig 4.2.5)}$	mber

			Pres	sent					Amendment	Note
 (2) Element size must be appropriate to account for effective breadth. In no case element width shall be larger than stiffener spacing. The ratio of element length to width shall not exceed 4. (3) In way of force transfer points and cutouts the mesh has to be refined where applicable. (4) The element height of webs of primary supporting member must not exceed one-third of the web height. (5) Stiffener energies in the element is a support of the second to be the element in the element height of the web height. 						<u>e larger</u> vidth sh s the m y suppo ight.	<u>than s</u> all not nesh ha prting r	stiffener exceed s to be member	t_p t_q t_r t_r t_r t_r t_r	
 (5) Stiffeners, supporting plates against pressure loads, have to be modelled. Stiffeners may be modelled by using shell elements, plane stress elements or beam elements. (6) Buckling stiffeners may be disregarded for the stress calculation. Table 4.2.6 Effective breadth e _m of plating of primary supporting members					lled by nents. ded for	using s	<u>shell el</u> ess calc	ements, culation.	(9) Wherever applicable the following boundary conditions are to be applied to the FE model : (A) Boundary nodes in way of a bearing pad on the hatch	
l/e	0 1	2	3	4	5	6	7	≥ 8	<u>coamings are to be fixed against displacement in the direc-</u> <u>tion perpendicular to the pad.</u> (B) Lifting stoppers are to be fixed against displacements in the	
e_{m1}/e	0 0.30	0.64	0.82	0.91	0.96	0.98	1.00	1.00	<u>direction determined by the stoppers.</u> (C) For a folding type hatch cover, the FE nodes connected	
e_{m1} is to by u	uniformly	ied wher distribut	ed load	0.65 ary supp s or els	0.75 porting se by no	0.84 membe ot less	0.89 ers are than 6	0.90 loaded equal-	through a hinge are to have the same translational displace- ment in the direction perpendicular to the hatch cover top plating.	
 e_{m1} is to be applied where primary supporting members are loaded by uniformly distributed loads or else by not less than 6 equally spaced single loads e_{m2} is to be applied where primary supporting members are loaded by 3 or less single loads Intermediate values may be obtained by direct interpolation. <i>l</i> effective span of primary supporting member <i>l</i> = <i>l</i>₀ for simply supported primary supporting members <i>l</i> = 0.6 • <i>l</i>₀ for primary supporting members with both ends constraint, where <i>l</i>₀ is the distance between supporting points of the primary supporting member <i>e</i> width of plating supported, measured from centre to centre of the adjacent unsupported fields 					ate valu ; memb support ; memb upportir	er ing mer bers wir ng poin	y be ob mbers th both ts of th	n ends ne pri-	 307. Buckling strength of hatch cover 1. General Buckling strength of all hatch cover structures is to be checked. Buckling assessments in accordance with 307. 2. and 3. The net scantlings as defined in 106. are to be used for buckling check. 2. Slenderness requirements (1) Stiffeners are to comply with the applicable slenderness and proportion requirements given in Part 13 Sub 1, Ch 8, Sec 2 [3.1.1], [3.1.2]. (2) For buckling stiffeners on webs of primary supporting members, the ratio h_w/t_w is to comply with the following formula: (3) The slenderness requirements need not be applied to the lower boundary of double skin hatch covers unless the cargo hold is designed for carriage of ballast or liquid cargo. 	Reflected UR S21 Re v.6 -S21 3.6 -introduction of CSR requirements

 307. Buckling strength of hatch cover 1. For hatch cover structures sufficient buckling strength is to be demonstrated. 2. Definitions(refer Fig 4.2.7) <i>a</i> = length of the longer side of a single plate field (mm) (x-direction) <i>b</i> = breadth of the shorter side of a single plate field (mm) (y-direction) <i>a</i> = sepect ratio of single plate field <i>a</i> /b <i>a</i> = number of single plate field becadths within the partial or total plate field services and streage spession. (i) The buckling assessment is to be performed for the following and field the stresses are to be taken positive, tonsion stresses, an ordy, in the x-y plane. Compressive and stress thresses or <i>x</i>, in ordy, in the x-y plane. Compressive stresses, in ordered stress yoles in the x- and y evidencian alread yours in the stresses or <i>x</i>, in ordy, in the x-y plane. Compressive stresses, in order to apply the stresses or <i>x</i>, in ordy, in the x-y plane. Compressive stresses, in order to apply the stresses ord, the open open ing. (2) Preal types and dassessment methods (3) For a web ponel with open ong (SP) or unstiffened panel (SP) or unstiffened panel (SP). Or unstiffened panel (SP) or unstiffened panel (SP). (2) Assessment for a panel with open ong (SP) or unstiffened panel (SP). (3) For a web ponel with open ong (SP) or unstiffened panel (SP) or unstiffened panel (SP). (4) For a hather cover fitted with U-type stiffeners in Part 13. Sub 2, Ch 1, See 5, [56.4] are also to be followed. (5) For a bather operiment Signed for opening with the part of a stresse stresse or the open of a stresse stresse or the open open opening. (5) For a bather operiment Signed for opening with the part of a stresse stresse opening and the stresses opening. (6) For a web ponel with opening in the X-dire	Present	Amendment	Note
	 For hatch cover structures sufficient buckling strength is to be demonstrated. Definitions(refer Fig 4.2.7) a = length of the longer side of a single plate field (mm) (x-direction) b = breadth of the shorter side of a single plate field (mm) (y-direction) a = aspect ratio of single plate field a/b n = number of single plate field breadths within the partial or total plate field t = net plate thickness in mm σ_x, σ_y, τ = membrane stress(N/mm²) in x-direction, y-direction and shear stresss are to be taken positive, tension stresses are to be taken negative. If stresses in the x- and y-direction already contain the Poisson-effect (calculated using FEM), the following modified stress values may be used. Both stresses σ_x* and σ_y* are to be compressive stresses, in order to apply the stress reduction according to the following formulae: σ_x = (σ[*]_y - 0.3 • σ[*]_x)/0.91 σ_y = (σ[*]_y - 0.3 • σ[*]_x)/0.91 σ_x*, σ_y* = stresses containing the Poisson-effect Where σ_y* (0.3 σ_x*, then σ_y = 0 and σ_x = σ_x* 	 (1) Application (A) These requirements apply to the buckling assessment of hatch cover structures subjected to compressive and shear stresses and lateral pressures. (B) The buckling assessment is to be performed for the following structural elements: (i) Stiffened and unstiffened panels, including curved panels and panels stiffened with U-type stiffeners. (ii) Web panels of primary supporting members in way of openings. (C) The procedure and detailed requirements for buckling assessment are given in Part 13 Sub 1, Ch 8, including idealization of irregular plate panels, definition of reference stresses and buckling criteria. (2) Panel types and assessment methods (A) The plate panel of a hatch cover structure is to be modelled as stiffened panel (SP) or unstiffened panel (UP). (2) Assessment Method A (-A) and Method B (-B) as defined in Part 13, Sub 1, Ch 8, Sec 1, [3] are to be used in accordance with Table 4.2.7, Figure 4.2.7 and Figure 4.2.8. (3) For a web panel with opening, the procedure for opening should be used for its buckling assessment. (4) For a hatch cover fitted with U-type stiffeners, the additional buckling assessment requirements specific for panels with U-type stiffeners in Part 13, Sub 2, Ch 1, Sec 5, [5.6.4] are 	v.6 -S21 3.6 -introduction of CSR

Present		Amen	dment	Note
$E = \text{modulus of elasticity}(\text{N/mm}^2)$ of the material	Table 4.2.7 Structural r	nembers and a	assessment methods	Reflected UR S21 Rev.6
= $2.06 \cdot 10^5 \text{ N/mm}^2$ for steel σ_Y = minimum yield stress(N/mm ²) of the material	Structural elements	Assessment method ⁽¹⁾⁽²⁾	Normal panel definition	-S21 3.6 -introduction of CSF
F_1 = correction factor for boundary condition at the longitudinal	Hatch cover t	op/bottom plat	ting structures, see Fig. 4.2.7	requirements
stiffeners according to Table. 4.2.7 . Compressive and shear stresses are to be taken positive, tension	Hatch cover top/bottom plating	SP-A	Length: between transverse girders Width: between longitudinal girders	
stresses are to be taken negative. σ_e = reference stress(N/mm ²) taken equal to	Irregularly stiffened panels	UP-B	Plate between local stiffeners/PSM	
$= 0.9 \cdot E\left(\frac{t}{h}\right)^2$		els of primary	supporting members, see Fig. 4.2.8	
Ψ = each edge stress ratio taken equal to = σ_2/σ_1	Web of transverse/longitudin al girder (single skin type)	UP-B	Plate between local stiffeners/face plate/PSM	
where σ_1 = maximum compressive stress σ_2 = minimum compressive stress or tension stress S = safety factor (based on net scantling approach), taken equal to	Web of transverse/longitudin al girder (double skin type)	SP-B ⁽³⁾	Length: between PSM Width: full web depth	
= 1.25 for hatch covers when subjected to the vertical weather design load according to 202 .	Web panel with opening	Procedure for opening	Plate between local stiffeners/face plate/PSM	
= 1.10 for hatch covers when subjected to loads according to 204 . to 206 .	Irregularly stiffened panels	UP-B	Plate between local stiffeners/face plate/PSM	
λ = reference degree of slenderness, taken equal to: = $\sqrt{\frac{\sigma_F}{K \cdot \sigma_c}}$	respectively.		r stiffened and unstiffened panel A and Method B respectively.	
$\gamma K \bullet \sigma_e$ K = buckling factor according to Table 4.2.9 .	Note 3: In case that	t the buckling	carlings/brackets are irregularly ar- ngitudinal girder, UP-B method may	

Present			Amendm	ient	Note
3. Proof of top and lower hatch cover plating Proof is to be provided that the following of for the single plate field : $\left(\frac{ \sigma_x S}{k_x\sigma_Y}\right)^{e_1} + \left(\frac{ \sigma_y S}{k_y\sigma_Y}\right)^{e_2} - B\left(\frac{\sigma_x\sigma_yS^2}{\sigma_Y^2}\right) + C\left(\frac{ \sigma_y S}{\sigma_Y^2}\right) + C\left(\sigma_y$		 (3) Applied lateral pressure and stresses The buckling assessment of hatch covers is based on the lateral pressure as defined in 202, and 203, and stresses obtained from FE analysis, refer to 306. (4) Safety factors For all hatch cover structural members, safety factor S=1.0 is to be applied to both of the plating and stiffener buckling capacity 			Reflected UR S21 Re v.6 -S21 3.6 -introduction of CSF requirements
$\left(rac{\left\ \sigma_{x} \left\ S ight\ S}{k_{x}\sigma_{Y}} ight)^{e_{1}} \leq 1.0$		 formulas as defined in Part 13, Sub 1, Ch 8, Sec 5, [2.2] and Part 13, Sub 1, Ch 8, Sec 5, [2.3], respectively. (5) Buckling acceptance criteria <u>A</u> structural member is considered to have an acceptable buckling strength if it satisfies the following criterion : 			
$\left(rac{\left\ \sigma_{y} ight\ S}{k_{y}\sigma_{Y}} ight)^{e_{2}}\leq1.0$			$r_{ct} \leq \eta_{all}$	actor based on the applied stress,	
$\left(rac{\left au ight S \sqrt{3}}{oldsymbol{x}_{ au} \sigma_Y} ight)^{e_3} \leq 1.0$		as defined in Part 13, Sub 1, Ch 8, Sec 5 and Part 13, Sub 2, Ch 1, Sec 5 [5.6.4]. η_{all} : Allowable buckling utilisation factor, taken as givenin			
x_x , x_y and x_τ = reduction factors are g	-		<u>Table 4.2.8</u>		
Where $\sigma_x \leq$ 0 (tension stress), x_x = 1		Table 4.2.9 Alley	wable buckling utilisation fa	etero	
Where $\sigma_y \leq 0$ (tension stress), $x_y = 1$ e1, e2, e3 and B = according to Table		Structural component	Subject to	Allowable buckling utilisation factor, η_{all}	
able 4.2.8 Coefficients e_1 , e_2 , e_3 and factor B		Plates and	External pressure, as defined in Sec 2, 202.	0.80	
Exponents e_1 - e_3 and factor B	Plate panel	stiffeners Web of PSM	Other loads, as defined in Sec 2, 203 to 206.	0.90 for load combination: S+D 0.72 for load combination: S	
e_1	$1 + \varkappa_x^4$				
e2	$1 + \varkappa_y^4$				
e_3	$1 + \mathbf{x}_x \cdot \mathbf{x}_y \cdot \mathbf{x}_{\tau}^2$				
B σ_x and σ_y positive (compression stress)	$(\mathbf{x}_x \cdot \mathbf{x}_y)^5$				

1

 σ_x and σ_y positive (compression stress)

В

 σ_{x} or σ_{y} negative (tension stress)

and reduction				Amendment	Note
, und reductio	on factors f	or plane elementary plate pa	anels	<u>{deleted}</u>	
Edge stress ratio V	Asp. ratio $\alpha = a/b$	Buckling factor K	Reduction factor <i>x</i>		
$1 \ge \Psi \ge 0$		$K = \frac{8.4}{\varPsi + 1.1}$	$\begin{aligned} \kappa_x &= 1 & \text{for } \lambda \le \lambda_c \\ \kappa_x &= c \left(\frac{1}{2} - \frac{0.22}{2} \right) \end{aligned}$		
$0 \rangle \Psi \rangle -1$	$\alpha \ge 1$	$K = 7.63 - \Psi(6.26 - 10\Psi)$	$\int dr \lambda \Rightarrow \dot{A}_c \lambda^2 $		
$\Psi \leq -1$		$K = (1 - \boldsymbol{\varPsi})^2 \cdot 5.975$	$c = (1.25 - 0.12\Psi) \le 1.25$ $\lambda_c = \frac{c}{2} \left(1 + \sqrt{1 - \frac{0.88}{c}} \right)$		
$1 \ge \Psi \ge 0$					
	$1 \le \alpha \le 1.$	$K = F_1 \left[\left(1 + \frac{1}{\alpha^2} \right)^2 \cdot \frac{2 \cdot 1(1 + 1)}{1 \cdot 1} - \frac{\Psi}{\alpha^2} (13.9 - 10\Psi) \right]$	$c = (1.25 - 0.12 \varPsi) \le 1.25$ $R = \lambda \left(1 - \frac{\lambda}{c} ight)$ for $\lambda < \lambda_c$ $R = 0.22$ for $\lambda \ge \lambda_c$		
$0 ightarrow \Psi ightarrow -1$	α < 1.5	$-rac{arphi}{lpha^2}(5.87\pm1.87lpha^2$	$F = \left(1 - \frac{\frac{K}{0.91} - 1}{\lambda^2}\right) \cdot c_1 \ge 0$		
	$1 \le \alpha \le$	$+\frac{0.0}{\alpha^2}-10\Psi$	$\lambda_p^2 = \lambda^2 - 0.5 \qquad \text{for} \\ 1 \le \lambda_p^2 \le 3 \\ (E_{\lambda_p})$		
	$\frac{3(1-\varPsi)}{4}$	$K = F_1 \left(\frac{1-\Psi}{\alpha}\right)^2 \cdot 5.975$	$c_1 = \left(1 - \frac{r_1}{\alpha}\right) \ge 0$		
$\Psi \leq -1$	$\frac{\begin{array}{c} \alpha \\ 3(1-\varPsi) \\ 4 \end{array}}{4}$	$K = F_1 \left[\left(\frac{1 - \Psi}{\alpha} \right)^2 \cdot 3.9675 + 0.5375 \left(\frac{1 - \Psi}{\alpha} \right)^4 + 1.87 \right]$	$H = \lambda - \frac{2\pi}{c(T + \sqrt{T^2 - 4})} \ge R$ $T = \lambda + \frac{14}{15\lambda} + \frac{1}{3}$		
	stress ratio Ψ $1 \ge \Psi \ge 0$ $0 > \Psi > -1$ $\Psi \le -1$ $1 \ge \Psi \ge 0$ $0 > \Psi > -1$	stress ratioratio $\alpha = a/b$ $1 \ge \Psi \ge 0$ $\alpha \ge 1$ $0 \lor \Psi > -1$ $\alpha \ge 1$ $\Psi \le -1$ $\alpha \ge 1$ $1 \ge \Psi \ge 0$ $\alpha \ge 1$ $1 \ge \Psi \ge 0$ $\alpha \ge 1$ $0 \lor \Psi > -1$ $1 \le \alpha \le 1$. $0 \lor \Psi > -1$ $\alpha < 1.5$ $1 \le \alpha \le \frac{3(1 - \Psi)}{4}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

			Present		Amendment	Note
Table 4.2.9 Buckling	and reduction	on factors f	or plane elementary plate pa	<u>(deleted)</u>		
Buckling-Load Case	Edge stress ratio V	Asp. ratio $\alpha = a/b$	Buckling factor K	Reduction factor \varkappa		
3	$1 \ge \Psi \ge 0$		$K = \frac{4\left(0.425 + \frac{1}{\alpha^2}\right)}{3\Psi + 1}$			
$\psi \cdot \sigma_x \leftarrow \alpha \cdot b \qquad \psi \cdot \sigma_x$	$0 \rangle \Psi \ge -1$	$\alpha > 0$	$K = 4 \left(0.425 + \frac{1}{\alpha^2} \right) (1 + \Psi)$ $- 5 \Psi (1 - 3.42 \Psi)$	$\begin{array}{c} x_x = 1 & \text{for } \lambda \leq 0.7 \\ x_x = \frac{1}{\lambda^2} \frac{1}{\sqrt{2^2 + 0.51}} & \text{f o r} \end{array}$		
4 $\psi \cdot \sigma_{x} \qquad \psi \cdot \sigma_{x}$ $\int_{\sigma_{x}} t \qquad \sigma_{x}$	$1 \ge \Psi \ge -1$	<i>α</i> > 0	$K = \left(0.425 + \frac{1}{\alpha^2}\right) \frac{3 - \Psi}{2}$	$\lambda > 0.72 + 0.51$		
$ \begin{array}{c} 5 \\ \tau \uparrow \overbrace{t} \\ \hline t \\ \hline \tau \land \cdot \bullet \\ \hline \tau \land \cdot \bullet \\ \hline \tau \land \cdot \bullet \\ \hline \end{array} \right) $	===	$\alpha \ge 1$ $0 < \alpha < 1$	$K = K_{\tau} \cdot \sqrt{3}$ $K_{\tau} = \left[5.34 + \frac{4}{\alpha^2}\right]$ $K_{\tau} = \left[4 + \frac{5.34}{\alpha^2}\right]$	$x_{\tau} = 1 \qquad \text{for } \lambda \le 0.84$ $x_{\tau} = \frac{0.84}{\lambda} \qquad \text{for } \lambda > 0.84$		
Explanations for be supported	oundary cond	itions:	plate edge free	plate edge simply		
				- 29 -		

Present	Amendment	Note
4. Webs and face plate of primary supporting members	<u>⟨deleted⟩</u>	
For non-stiffened webs and face plate of primary supporting mem- bers sufficient buckling strength as for the hatch cover top and lower plating is to be demonstrated according to Par 3 .		
5. Proof of partial and total fields of hatch covers		
 Transverse stiffeners of partial and total plate fields comply with the conditions set out in (3) through (4). For u-type stiffeners, the proof of torsional buckling strength according to (4) can be omitted. Single-side welding is not permitted to use for secondary stiffeners except for u-stiffeners. Effective width of top and lower hatch cover plating (A) For demonstration of buckling strength according to (3) through (4) the effective width of plating may be determined by the following formulae. (a) The effective width of plating <i>a_m</i> or <i>b_m</i> may be determined by following formulae(see also Fig 4.2.7). But it is not to be taken greater than the value obtained from 306. 		
$b_m = x_x \cdot b$ for longitudinal stiffeners		
$a_m = x_y \bullet a$ for transverse stiffeners		
x_x, x_y = reduction factor given in Table 4.2.9		
a, b = according to Par 2 .		
(b) The effective width e'_m of stiffened plates of primary supporting members may be determined as follows. The a_m and b_m are to be determined for $\Psi = 1$. (i) For stiffening parallel to web of primary supporting member(refer Fig 4.2.8). But <i>b</i> equal to <i>a</i> in case of $b \ge e_m$		
$b < e_m$		
$e'_{m} = nb_{m}$		
n = integer number of stiffener spacings b inside		
the effective breadth em according to 306.		
$=$ int $\left(\frac{e_m}{b}\right)$		
\ 0 /	- 30 -	

Present	Amendment	Note
(ii) For stiffening perpendicular to web of primary supporting member(refer Fig 4.2.9). But a equal to b in case of $a < e_m$	<u>〈deleted〉</u>	
$a \ge e_m$ $e'_m = na_m < e_m$		
$n = 2.7 \frac{e_m}{a} \le 1$		
e = width of plating supported according to Table4.2.6		
e e e e e e e e		
Fig 4.2.8 Stiffening parallel to Fig 4.2.9 Stiffening perpendicular to web of primary supporting member Fig 4.2.9 Stiffening perpendicular to web of primary supporting mem		

Present	Amendment	Note
 (B) Scantling of top plates and stiffeners are to be determined as follows. (a) Scantling are in general to be determined according to the maximum stresses σ_x(y) at webs of primary supporting member and stiffeners, respectively. (b) For stiffeners with spacing b under compression arranged parallel to primary supporting members no value less than 0.25σ_Y shall be inserted for σ_x(y = b). (c) The stress distribution between two primary supporting members can be obtained by the following formula: σ_x(y) = σ_{x1} • {1 - ^y/_e [3 + c₁ - 4 • c₂ - 2^y/_e(1 + c₁ - 2c₂) 	<u>⟨deleted⟩</u>	
$c_{1} = \frac{\sigma_{x2}}{\sigma_{x1}} \qquad 0 \le c_{1} \le 1$ $c_{2} = \frac{1.5}{e} \cdot (e''_{m1} + e''_{m2}) - 0.5$		
e''_{m1} = proportionate effective breadth e_{m1} or propor-		
tionate effective width e'_{m1} of primary supporting member 1 within the distance e , as considered condition		
e''_{m2} = proportionate effective breadth e_{m2} or propor-		
tionate effective width e'_{m2} of primary supporting member 2 within the distance e , as considered condition		
$\sigma_{x1},\sigma_{x2}\text{=}$ normal stresses in plates of adjacent primary		
supporting member 1 and 2 with spacing <i>e</i> , based on cross-sectional properties consider- ing the effective breadth		
y = distance of considered location from primary supporting member 1		
(d) Shear stress distribution in the plates may be assumed linearly.	- 32 -	

Present	Amendment	Note
 (3) Lateral bucking of stiffeners (A) The stiffeners under lateral buckling shall be accordance with following requirements. 		
$rac{\sigma_a+\sigma_b}{\sigma_F}S\leq 1$		
σ_a = uniformly distributed compressive stress(N/mm ²) in the direction of the stiffener axis. $\sigma_a = \sigma_x$ for longitudinal stiffeners		
$\sigma_a = \sigma_y$ for transverse stiffeners		
σ_b = bending stress(N/mm ²) in the stiffener with		
$\sigma_x = \sigma_n, \ \tau = \tau_{SF}$		
$\sigma_{b} = rac{M_{0} + M_{1}}{Z_{st} 10^{3}}$		
$M_{ m 0}$ = bending moment(Nmm) due to the deformation w of		
stiffener, taken equal to:		
$M_0 = F_{Ki} \frac{p_z \cdot w}{c_f - p_z} \qquad \text{with } (c_f - p_z) > 0$		
$M_{ m l}$ = bending moment(Nmm) due to the lateral load p		
equal to follows. n is to be taken equal to 1 for		
transverse stiffeners.		
$M_1 = rac{P b a^2}{24 imes 10^3}$ for longitudinal stiffeners		
$M_1 = rac{P a (n b)^2}{8 c_s imes 10^3}$ for transverse stiffeners		
P = lateral load(kN/m ²)		
F_{Ki} = ideal buckling force(N) of the stiffener		

Present	Amendment	Note
$F_{Kix} = rac{\pi^2}{a^2} EI_x 10^4$ (N) for longitudinal stiffeners	<u>⟨deleted⟩</u>	
$F_{Kiy}=rac{\pi^2}{(nb)^2}EI_y10^4$ (N) for transverse stiffeners		
I_x, I_y = net moments of inertia(cm ⁴) of the longi- tudinal or transverse stiffener including ef-		
fective width of attached plating according to 307. 5. (2). I_x and I_y are to comply with the following criteria:		
$I_x \ge \frac{b t^3}{12 \times 10^4}$		
$I_y \geq rac{a \ t^3}{12 imes 10^4}$		
P_z = nominal lateral load(N/mm ²) of the stiffener due to σ_x , σ_y and τ		
$p_{zx} = \frac{t}{b} \left(\sigma_{xl} \left(\frac{\pi b}{a} \right)^2 + 2c_y \sigma_y + \sqrt{2} \tau_1 \right) \qquad \text{for lon-}$		
gitudinal stiffeners $p_{zy} = \frac{t}{a} \left(2c_x \sigma_{xl} + \sigma_y \left(\frac{\pi a}{nb}\right)^2 \left(1 + \frac{A_y}{at}\right) + \sqrt{2}\tau_1 \right) \text{for}$		
transverse stiffeners		
$\sigma_{xl} = \sigma_x \left(1 + \frac{A_x}{b t} \right)$		
c_x, c_y = factor taking into account the stresses perpendicular to the stiffener's axis and distributed variable along the stiffener's		
length = $0.5(1+\varPsi)$ for $0 \le \varPsi \le 1$		
$= \frac{0.5}{1-\varPsi} \qquad \qquad \text{for } \varPsi < 0$		

Present	Amendment	Note
A_x, A_y = net sectional area(mm ²) of the longi- tudinal or transverse stiffener, respectively, without attached plating		
$\tau_1 = \left[\tau - t \sqrt{\sigma_F} \bullet E \left(\frac{m_1}{a^2} + \frac{m_2}{b^2} \right) \right] \ge 0 \text{for} \text{longi-}$		
tudinal stiffeners: $\frac{a}{b} \ge 2.0$: $m_1 = 1.47$		
$m_2 = 0.49$		
$rac{a}{b} < 2.0$: $m_1 = 1.96$		
$m_2 = 0.37$ for transverse stiffeners: $\frac{a}{n \cdot b} \ge 0.5$: $m_1 = 0.37$		
$m \cdot b = 0.5 \cdot m_1 \cdot 0.57$ $m_2 = \frac{1.96}{n^2}$		
$\frac{a}{n \cdot b} < 0.5 \qquad : m_1 = 0.49$		
$m_2=rac{1\cdot47}{n^2}$		
$w = w_0 + w_1$		
w_0 = assumed imperfection(mm). For stiffeners sniped at both ends w_0 must not be taken less than the		
distance from the midpoint of plating to the neu-		
tral axis of the profile including effective width of plating.		
$w_0 \leq \min\left(rac{a}{250}, rac{b}{250}, 10 ight)$ for longitudinal stiff-		
eners		
$w_0 \le \min\left(\frac{a}{250}, \frac{nb}{250}, 10\right)$ for transverse stiffeners		

Present	Amendment	Note
w_1 = Deformation of stiffener(mm) at midpoint of stiff-	<u>〈deleted〉</u>	
ener span due to lateral load P .		
In case of uniformly distributed load the following val-		
ues for w_1 may be used:		
$w_1 = rac{Pb a^4}{384 imes 10^7 imes EI_x}$ for longitudinal stiffeners		
$w_1 = rac{5 Pa(nb)^4}{384 imes 10^7 imes E I_y c_s^2}$ for transverse stiffeners		
c_f = elastic support provided by the stiffener(N/mm ²)		
- For longitudinal stiffeners:		
$c_{fx} = F_{Kix} \bullet \frac{\pi^2}{a^2} \bullet (1 + c_{px})$		
$c_{px} = \frac{1}{\frac{0.91 \cdot \left(\frac{12 \cdot 10^4 \cdot I_x}{t^3 \cdot b} - 1\right)}{1 + \frac{0.91 \cdot \left(\frac{12 \cdot 10^4 \cdot I_x}{t^3 \cdot b} - 1\right)}{c_{xa}}}$		
$c_{xa} = \left[\frac{a}{2b} + \frac{2b}{a}\right]^2$ for $a \ge 2b$		
$c_{xa} = \left[1 + \left(rac{a}{2b} ight)^2 ight]^2 ext{ for } a < 2b$		
- For transverse. stiffeners:		
$c_{fy} = c_s \cdot F_{Kiy} \cdot \frac{\pi^2}{(n \cdot b)^2} \cdot (1 + c_{py})$		
$c_{py} = \frac{1}{1 + \frac{0.91 \cdot \left(\frac{12 \cdot 10^4 \cdot I_y}{t^3 \cdot a} - 1\right)}{c_{ya}}}$		
$c_{ya} = \left[\frac{n \cdot b}{2a} + \frac{2a}{n \cdot b}\right]^2 \text{for } n \cdot b \ge 2a$		
$c_{ya} = \left[1 + \left(\frac{n \cdot b}{2a}\right)^2\right]^2 \text{ for } n \cdot b < 2a$	- 36 -	

Present	Amendment	Note
c_s = factor accounting for the boundary con- ditions of the transverse stiffener = 1,0 for simply supported stiffeners = 2,0 for partially constraint stiffeners Z_{st} = net section modulus of stiffener (long. or transverse)	<u>〈deleted〉</u>	
(cm^3) including effective width of plating according to (2)		
(B) If no lateral load p is acting the bending stress σ_b is to be calculated at the midpoint of the stiffener span for that fibre which results in the largest stress value. (C) If a lateral load p is acting, the stress calculation is to be carried out for both fibres of the stiffener's cross sec- tional area (if necessary for the biaxial stress field at the plating side). (4) Torsional buckling of stiffeners (A) Longitudinal stiffeners The longitudinal stiffeners are to comply with the following cri- teria: $\frac{\sigma_x \cdot S}{x_T \cdot \sigma_F} \leq 1.0$		
x_T = coefficient taken equal to:		
$lpha_T = 1.0$ for $\lambda_T \le 0.2$		
$\kappa_T = rac{1}{arphi + \sqrt{arphi^2 - \lambda_T^2}} \ ext{for} \ \lambda_T > 0.2$		
$arphi=0.5ig(1+0.21(\lambda_T-0.2)+\lambda_T^2ig)$		
$\lambda_T = \text{reference degree of slenderness taken equal to:}$ $\lambda_T = \sqrt{\frac{\sigma_F}{\sigma_{KiT}}}$ $E \left(\pi^2 \cdot I_w \cdot 10^2 \right)$		
$\sigma_{KiT} = \frac{E}{I_p} \left(\frac{\pi^2 \cdot I_w \cdot 10^2}{a^2} \epsilon + 0.385 \cdot I_T \right) (N/mm^2)$		

Present	Amendment	Note
$Present$ $I_{p} = \text{net polar moment of inertia of the stiffener(cm4) re-lated to the point C of Fig 4.2.10. (see Table 4.2.10)$ $I_{T} = \text{net St. Venant's moment of inertia of the stiffener(cm4) (see Table 4.2.10)$ $I_{w} = \text{net sectorial moment of inertia of the stiffener(cm6)related to the point C of Fig 4.2.10. (see Table 4.2.10)\varepsilon = \text{degree of fixation taken equal to:} \varepsilon = 1 + 10^{-3} \sqrt{\frac{a^{4}}{\frac{3}{4}\pi^{4}} \cdot I_{w}(b/t^{3} + 4h_{w}/3t_{w}^{-3})}} h_{w} = \text{web height} t_{w} = \text{net web thickness(cm4)} b_{f} = \text{flange breadth(cm4)} t_{f} = \text{net flange thickness(cm4)}$	Amendment	Note
$A_w = \text{ net web area equal to: } A_w = h_w \cdot t_w$ $A_f = \text{ net flange area equal to: } A_f = b_f \cdot t_f$ $e_f = h_w + \frac{t_f}{2} \text{ (mm)}$ $f_w = \frac{b_f}{b_f} = \frac{b_f}{b_f} + \frac{b_f}{b_f} = \frac{b_f}{b_f} + \frac{b_f}{b$		

		Present		Amendment	Note
Table 4.2.1	0 Moments of inertia			<u>{deleted}</u>	
Section	I_p	I _T	I_w		
Flat bar	$\frac{h_w^3 \cdot t_w}{3 \cdot 10^4}$	$\frac{h_w \cdot t_w^3}{3 \cdot 10^4} \left(1 - 0.63 \frac{t_w}{h_w} \right)$	$\frac{h_w^3 \cdot t_w^3}{36 \cdot 10^6}$		
Sections with bulb or flange	$\left(\frac{A_w \cdot h_w^2}{3} + A_f \cdot e_f^2\right) 10^{-4}$	$\frac{h_w \cdot t_w^3}{3 \cdot 10^4} \left(1 - 0.63 \frac{t_w}{h_w} \right) \\ + \frac{b_f \cdot t_f^3}{3 \cdot 10^4} \left(1 - 0.63 \frac{t_f}{b_f} \right)$	for bulb and angle sections: $\frac{A_{f} \cdot e_{f}^{2} \cdot b_{f}^{2}}{12 \cdot 10^{6}} \left(\frac{A_{f} + 2.6A_{W}}{A_{f} + A_{W}} \right)$ for tee-sections: $\frac{b_{f}^{3} \cdot t_{f} \cdot e_{f}^{2}}{12 \cdot 10^{6}}$		

Present	Amendment	Note
Present (B) Transverse stiffeners For transverse stiffeners loaded by compressive stresses and which are not supported by longitudinal stiffeners, sufficient torsional buckling strength is to be demonstrated analogously in accordance with (A).	<u>⟨deleted⟩</u>	Note
	- 40 -	

Present	Amendment	Note
Section 4 Hatch Coamings strength criteria	Section 4 Hatch Coamings strength criteria	
 401. General (omitted) 402. Net plate thickness of coamings 1. The net thickness of weather deck hatch coamings shall not be less than the larger of the following values and longitudinal strength aspects are to be observed. 	 401. General (same as the present) 402. Net plate thickness of coamings The net thickness of weather deck hatch coamings shall not be less than the larger of the following values and longitudinal strength aspects are to be observed. 	
$t = 14.2S \sqrt{\frac{P_H}{0.95\sigma_y}} (mm)$ $t = 6 + \frac{L}{100} (mm)$	$\frac{1. \text{ Type-1 ships :}}{t = 0.0142 s \sqrt{\frac{P_H}{0.95 R_{eH}}}} (\text{mm})$ $\frac{t_{\min} = 6 + \frac{L_1}{100}}{\text{(mm)}}$	Reflected UR S21 Re v.6 -S21 5.1 -Units and symbols u nified -reflected Part 7 Ch.9 904.2
S = stiffener spacing (m) L = length of ship (m), need not be taken greater than 300 m P_H = horizontal weather load according to 203 . σ_y = minimum yield stress(N/mm ²) of the material	P_H = horizontal weather load according to 203. 1 $\frac{R_{eH}}{r}$ = minimum yield stress(N/mm ²) of the material s = stiffener spacing (mm) L_1 = length of ship (m), need not be taken greater than 300 m	
2. The gross thickness of the coaming plate at the sniped stiffener end shall not be less than $\underline{t = 19.6 \sqrt{\frac{P_H S (l - 0.5S)}{\sigma_y}} (mm)}$	$\frac{2. \text{ Type-2 ships :}}{t = 0.016s \sqrt{\frac{P_{coam}}{0.95R_{eH}}}} \qquad (mm)$ $\frac{t_{min} = 9.5}{(mm)}$	
l = secondary stiffener span, in m, to be taken as the spacing of coaming stays S, P_H, σ_y = according to Par 1	$\frac{P_{coam}}{s, R_{eH}} = \text{ according to } Par 1$	

Present	Amendment	Note
03. Net scantling of stiffeners of coamings	403. Net scantling of stiffeners of coamings	
1. For stiffeners with both ends constraint the net section modulus Z and net shear area A calculated on the basis of net thickness, must not be less than:	1. For stiffeners with both ends constraint the net section modulus Z and net shear area $\underline{A_{shr}}$ calculated on the basis of net thickness, must not be less than:	
$\underline{Z = \frac{83}{\sigma_y} P_H S l^2 \qquad (\mathrm{cm}^3)}$	(1) Type-1 ships	
$A = \frac{10P_H S l}{\sigma_y} \qquad (\text{cm}^2)$	$(A) Z = \frac{P_H s l^2}{f_{bc} R_{eH}} (cm^3)$	Reflected UR S21 v.6 -S21 5.1
P_H , l , S , σ_y = according to 402 .	$A_{shr} = \frac{P_H s l}{R_{eH}} 10^{-2} $ (cm ²)	-Units and symbols nified -reflected Part 7 C 904.2
	$f_{bc} = 12$ in general	901.2
	= 8, for the end spans of stiffeners sniped at the	
	coaming corners <i>l</i> = stiffener span, in m, to be taken as the spacing of	
	<u>coaming stays</u>	
	<u>s = stiffener spacing in mm</u>	
2. For sniped stiffeners at coaming corners section modulus and shear area have to be 1.35 times of the value determined by Par 1.	(B) Note that for sniped stiffeners of coaming at hatch corners shear area at the fixed support has to be 1.35 times of the value determined by (A). The gross thickness of the coam- ing plate at the sniped stiffener end shall not be less than:	
	$t_{gr} = 19.6 \sqrt{\frac{P_H s (l - 0.0005 s)}{1000 R_{eH}}}$ (mm)	
	$\frac{l,s}{P_H}$ = according to (A) P_H, R_{eH} = according to 402.1	

Present	Amendment	Note
 Horizontal stiffeners on hatch coamings, which are part of the lon- gitudinal hull structure are to be have net thickness deducted by corrosion additions specified in Table 4.2.1 and to be accordance with buckiling strength specified in Pt 3, Ch 3, 403. 2 of the Rules. 	 (2) Type-2 ships Z=1.21 Pcomm sl²/f_{bc}c_pR_{eH} (cm³) <u>f_{bc} = 16 in general</u> = 12, for the end spans of stiffeners sniped at the coaming corners <i>I</i> = span, in m, of stiffeners <i>s</i> = spacing, in mm, of stiffeners P_H = horizontal weather load according to 203.1 P_{coam} = horizontal weather load according to 203.2 c_p = ratio of the plastic section modulus to the elastic section modulus of the stiffeners with an attached plate breadth, in mm, equal to 40t, where t is the plate net thickness = 1.16 in the absence of more precise evaluation 2. In addition, for both Type-1 and Type-2 ships, horizontal stiffeners on hatch coamings, which are part of the longitudinal hull structure are to be have net thickness deducted by corrosion additions specified in Table 4.2.1 and to be accordance with buckiling strength specified in Pt 3, Ch 3, 403. 2 of the Rules. 	Reflected UR S21 Re v.6 -S21 5.2 -Units and symbols u nified -reflected Part 7 Ch.9 904.3

Present	Amendment	Note
404. Coaming stays	404. Coaming stays	
1. Coaming stay section modulus	1. Coaming stay section modulus and web thickness	
(1) The net section modulus Z of coaming stays at the connection with deck shall not be less than: $\underline{Z = \frac{526}{\sigma_y} e h_s^2 p_A (cm^3)}$	(1) At the connection with deck, the net section modulus Z , in cm ³ , and the net thickness t_w , in mm, of the coaming stays designed as beams with flange ((b) and (c) are shown in Fig. 4.2.9) are to be taken not less than:	
$h_{S.}$, e = height and spacing of coaming stays (m) P_{H} , σ_{y} = according to 202 .	$Z = \frac{Ps_c H_c^2}{1.9 R_{eH}} \qquad (\text{cm}^3)$ $t_w = \frac{2Ps_c H_C}{hR_{eH}} \qquad (\text{mm})$	Reflected UR S21 Re v.6 -S21 5.3.1 -Units and symbols u nified
 (2) For other designs of coaming stays, such as those shown in Fig. 4.2.11 (c), (d), the stresses are to be determined through a grillage analysis or FEM. The calculated stresses are to be less than the permissible stresses according to 302. 1. (3) Coaming stays are to be supported by appropriate substructures. Face plates may only be included in the calculation if an appropriate substructure is provided and welding provides an adequate joint. 	 H_c = stay height, in m s_c = stay spacing, in mm h = stay depth, in mm, at the connection with the deck P = pressure on coaming, in kN/m² P_H = according to 203.1 P_{coam} = according to 203.2 (2) For other designs of coaming stays, such as those shown in Fig. 4.2.9 (c), (d), the stresses are to be determined through FEM. The calculated stresses are to comply with the permissible stresses according to 302.1. (3) Coaming stays are to be supported by appropriate substructures. For calculating the section modulus of coaming stays, their face plate area is to be taken into account only when it is welded with full penetration welds to the deck plating and adequate underdeck structure is fitted to support the stresses transmitted by it. (4) Double continuous fillet welding is to be adopted for the connections of stay webs with deck plating and the weld throat thickness is to be not less than 0.44 t_w. (5) For Type-2 ships, toes of stay webs are to be connected to the deck plating with full or partial penetration double bevel welds extending over a distance not less than 15% of the stay width. 	Reflected UR S21 Re v.6 -S21 5.3.1 -wording correction -leave only FEM -re-locate from 405.2 (5)

Present	Amendment	Note
3. Coaming stays under friction load For coaming stays, which transfer friction forces at hatch cover supports, sufficient fatigue strength is to be considered according to Society, refer to 507. 2.	2. Coaming stays under friction load For coaming stays, which transfer friction forces at hatch cover supports, sufficient fatigue strength is to be considered according to Society, refer to 507. 2.	renumbering
405. Further requirements for hatch coamings	405. Further requirements for hatch coamings	
1. Longitudinal strength 〈omitted〉	1. Longitudinal strength (same as the present)	
2. Local details(1) The design of local details is to comply with the requirements	2. Local details(1) The design of local details is to comply with the requirements	
 (i) The design of local details is to comply with the requirements in this section for the purpose of transferring the pressures on the hatch covers to the hatch coamings and, through them, to the deck structures below. (2) Hatch coamings and supporting structures are to be adequately stiffened to accommodate the loading from hatch covers, in longitudinal, transverse and vertical directions. (3) The normal stress σ and the shear stress τ (N/mm²) induced in the underdeck structures by the loads transmitted by stays are to comply with the following formulae : σ ≤ 0.95σ_y 	(i) this design of field details to comply that the requirements in this section for the purpose of transferring the pressures on the hatch covers to the hatch coamings and, through them, to the deck structures below. (2) Hatch coamings and supporting structures are to be adequately stiffened to accommodate the loading from hatch covers, in lon- gitudinal, transverse and vertical directions. (3) The normal stress σ and the shear stress τ (N/mm ²) induced in the underdeck structures by the loads transmitted by stays are to comply with the following formulae : $\underline{\sigma} \leq 0.95 R_{eH}$	unification of symb
$ au \leq 0.5 \sigma_y$	$ au \leq 0.5R_{eH}$	
 (4) Unless otherwise stated, weld connections and materials are to be dimensioned and selected in accordance with Pt 2 and Pt 3, Ch 1, Sec 4, 5. (5) Double continuous fillet welding is to be adopted for the connections of stay webs with deck plating and the weld throat thickness is to be not less than 0.44 t_W, where t_W is the gross thickness of the stay web. 	 (4) Unless otherwise stated, weld connections and materials are to be dimensioned and selected in accordance with Pt 2 and Pt 3, Ch 1, Sec 4, 5. (5) Double continuous fillet welding is to be adopted for the connections of stay webs with deck plating and the weld throat thickness is to be not less than 0.44 t_W, where t_W is the gross thickness of the stay web. 	relocate to 404.1(4)

Amendment	Note
 3. Stays (same as the present) 4. Extend of coaming plates Coaming plates are to extend to the lower edge of the deck beams or hatch side girders are to be fitted that extend to the lower edge of the deck beams. Extended coaming plates and hatch side girders are to be flanged or fitted with face bars or half-round bars. Fig.4.2.10 gives an example.	renumbering of figur e
 i fig 4.2.10 Example for the extend of coaming plates 5. Coamings of small hatchways (same as the present) 	
	 3. Stays (same as the present) 4. Extend of coaming plates Coaming plates are to extend to the lower edge of the deck beams or hatch side girders are to be fitted that extend to the lower edge of the deck beams. Extended coaming plates and hatch side girders are to be flanged or fitted with face bars or half-round bars. Fig.4.2.10 gives an example. Fig.4.2.10 gives an example. Fig 4.2.10 Example for the extend of coaming plates

Present	Amendment	Note
Section 5 Hatch cover details – Closing Arrangement, Securing Devices and Stoppers	Section 5 Hatch cover details - Closing Arrangement, Securing Devices and Stoppers	
01. Weathertightness 〈omitted〉 02. General 〈omitted〉 03. Gaskets	501. Weathertightness (same as the present)502. General (same as the present)503. Gaskets	
1. ~ 9. (omitted)	 1. ~ 9. (same as the present) 10. The specification or grade of the gaskets is to be indicated on the drawings. 	Reflected UR S21 R v.6 -S21 4.2.1 -Add requirements c
10. Exemption of gaskets In case of container ship accordance with the following requirements, gaskets may be omitted and clamping devices for steel hatchway covers may be suitably dispensed. (1) The hatchway coamings should be not less than 600 mm in height. (2) The exposed deck on which the hatch covers are located is situated above a depth H(x). H(x) is to be shown to comply with the following criteria: $\frac{H(x) \ge T_{fb} + f_b + h'_N}{f_{fb}} \text{(m)}$ $\frac{T_{fb}}{f_b} = \text{draught, in m, corresponding to the assigned summer load line}$ $f_b = \text{minimum required freeboard, in m, determined in accordance with ICLL Reg. 28 as modified by further regulations as applicable \frac{h'_N}{L} = 4.6 \text{ m for } \frac{x}{L_{LL}} \le 0.75 = 6.9 \text{ m for } \frac{x}{L_{LL}} > 0.75$	 11. Exemption of gaskets In case of container ship accordance with the following requirements, gaskets may be omitted and clamping devices for steel hatchway covers may be suitably dispensed. (1) The hatchway coamings should be not less than 600 mm in height. (2) The exposed deck on which the hatch covers are located is situated above a depth H(x). H(x) is to be shown to comply with the following criteria(See Fig 4.2.11): <u>H(x) ≥ T_{tb} + f_b + h</u> (m) T_{fb} = draught, in m, corresponding to the assigned summer located line f_b = minimum required freeboard, in m, determined in accordance with ICLL Reg. 28 as modified by further regulations as applicable <u>h</u> = 4.6 m for x_{LL} ≤ 0,75 = 6.9 m for x_{LL} > 0,75 	drawing indications Reflected UR S21 R v.6 -S21 4.2.2 -unification of symb ls

Present	Amendment	Note
 (3) The non-weathertight gaps between hatch cover panels should be considered as unprotected openings with respect to the requirements of intact and damage stability calculations. They should be as small as possible commensurate with the capacity of the bilge system and expected water ingress, and the capacity and operational effectiveness of the fire-fighting system and, generally, should not exceed 50 mm. (4) Labyrinths, gutter bars, or equivalents should be fitted proximate to the edges panel in way of the gaps to minimize the amount of water that can enter the container hold from the top surface of each panel. In general, the height of such means is not to be less than 65mm from the top of the coaming and gutter bars or from the top of the panel, and the gaps between hatch cover and the top of the coaming are not to exceed 10mm(See Fig 4.2.14) (5) ~ (7) (omitted) 	 (3) The non-weathertight gaps between hatch cover panels should be considered as unprotected openings with respect to the requirements of intact and damage stability calculations. They should be as small as possible commensurate with the capacity of the bilge system and expected water ingress, and the capacity and operational effectiveness of the fire-fighting system and, generally, should not exceed 50 mm. (4) Labyrinths, gutter bars, or equivalents should be fitted proximate to the edges panel in way of the gaps to minimize the amount of water that can enter the container hold from the top surface of each panel. In general, the height of such means is not to be less than 65mm from the top of the coaming and gutter bars or from the top of the panel, and the gaps between hatch cover and the top of the coaming are not to exceed 10mm(See Fig 4.2.12) (5) ~ (7) (same as the present) 	Reflected UR S21 Re v.6 -S21 4.2.2 -unification of symbo ls
<image/> <image/> <image/> <image/> <caption><caption></caption></caption>	$\frac{1}{1+t} \int_{H(x)}^{\frac{1}{1+t}} \int_{H(x)}^{\frac{1}{1+t$	renumbering figure

Present	Amendment	Note
504. Clamping devices	504. Clamping devices	
1. Arrangements (omitted)	1. Arrangements 〈omitted〉	
2. Spacing (omitted)	2. Spacing 〈omitted〉	
3. Construction (omitted)	3. Construction (omitted)	
3. Construction (omitted) 4. Area of securing devices (1) The gross cross-sectional area of the clamping devices is not to be less than. Rods or bolts are to have a gross diameter not less than 19 mm for hatchways exceeding 5 m ² in area. $A = 0.28 q S_{SD} k_l (cm^2)$ $q = packing line pressure (N/mm), minimum 5 N/mm$ $S_{SD} = spacing between securing devices (m), not to be taken less than 2 m \frac{k_l}{k_l} = (235/\sigma_y)^e \sigma_Y = minimum yield strength of the material (N/mm2) but is not to be taken greater than 0.7\sigma_T, where \sigma_T isthe tensile strength of the material (N/mm2).e = 0.75 for \sigma_Y > 235 N/mm2= 1.00 for \sigma_Y \le 235 N/mm2$	 3. Construction (omitted) 4. Area of securing devices (1) The gross cross-sectional area of the clamping devices is not to be less than. Rods or bolts are to have a gross diameter not less than 19 mm for hatchways exceeding 5 m² in area. A = 0.28 q S_{SD}k_l (cm²) q = packing line pressure (N/mm), minimum 5 N/mm S_{SD} = spacing between securing devices (m), not to be taken less than 2 m k_l = (235/R_{eH})^e R_{eH} = minimum yield strength of the material (N/mm²) but is not to be taken greater than 0.7R_m, where <u>R_m</u> is the tensile strength of the material (N/mm²). e = 0.75 for <u>R_{eH}</u> ≥ 235 N/mm² = 1.00 for <u>R_{eH}</u> ≤ 235 N/mm² (2) The stiffness of edge girders is to be sufficient to maintain adequate sealing pressure between clamping devices. The moment of inertia, in cm⁴, of edge girders is not to be less than [See Guidance]: 	Reflected UR S21 F v.6 -S21 6.1.4 -unification of symbols Reflected UR S21 F v.6 -S21 6.1.4 -relocation ($305.2.(3) \rightarrow 504.4.(2)$)

Present	Amendment	Note
(2) Clamping devices of special design in which significant bending or shear stresses occur may be designed as anti-lifting devices according to 506. and the load shall be obtained from the fol- lowing formulae.	(3) Clamping devices of special design in which significant bending or shear stresses occur may be designed as anti-lifting devices according to 506. and the load shall be obtained from the fol- lowing formulae.	renumbering
$P = q \times S_{SD} (kN)$	$P = q \times S_{SD}$ (kN)	
q, S_{SD} = according to (1)	q, S_{SD} = according to (1)	
505. Stoppers	505. Stoppers	
 1. For the design of the stopper against shifting the horizontal mass forces F = ma are to be calculated with the following accelerations. The accelerations in longitudinal direction and in transverse direction do not need to be considered as acting simultaneously. a_x = 0.2g in longitudinal direction a_y = 0.5g in transverse direction m = Sum of mass of cargo lashed on the hatch cover and mass of hatch cover 2. ~ 3. ⟨omitted⟩ 	 For the design of the stopper against shifting the horizontal mass forces F_h = ma are to be calculated with the following accelerations. The accelerations in longitudinal direction and in transverse direction do not need to be considered as acting simultaneously. a_x = 0.2g in longitudinal direction a_y = 0.5g in transverse direction m = Sum of mass of cargo lashed on the hatch cover and mass of hatch cover a same as the present> Specifically for Type-2 ships, the following additional requirements are to be complied with: Hatch covers are to be effectively secured, by means of stoppers, against the transverse forces arising from a pressure of 175 kN/m². With the exclusion of No.1 hatch cover, hatch covers are to be effectively secured, by means of stoppers, against the longitudinal forces acting on the forward end arising from a pressure of 175 kN/m². No. 1 hatch cover is to be effectively secured, by means of stoppers, against the longitudinal forces acting on the forward end arising from a pressure of 175 kN/m². No. 1 hatch cover is to be effectively secured, by means of stoppers, against the longitudinal forces acting on the forward end arising from a pressure may be reduced to 175 kN/m² where there is a forecastle to which l_F according to Part 7 Ch. 3 Sec. 13 is applied. 	Reflected UR S21 Re v.6 -S21 6.2.1 -unification of symbo ls Reflected UR S21 Re v.6 -S21 6.2.3 -reflection of Part 7 Ch.3 Sec.9 905.2

Present	Amendment	Note
	(4) The equivalent stresses in stoppers and their supporting struc- tures, and calculated in the throat of the stopper welds are not to exceed the allowable value of $0.8R_{eH}$.	
506. Anti lifting devices	506. Anti lifting devices	
1. When cargo is loaded on hatch covers, the securing devices are to be provided for anti lifting by the lifting forces resulting from loads according to 205., refer Fig 4.2.15.	 When cargo is loaded on hatch covers, the securing devices are to be provided for anti lifting by the lifting forces resulting from loads according to 205., refer Fig 4.2.13. 	Reflected UR S21 Re
2. Under these loadings of Par 1 the equivalent stress in the anti lift- ing devices is not to exceed:	2. Under these loadings of Par 1 the equivalent stress in the anti lift- ing devices is not to exceed:	v.6 -S21 6.1.5 -unification of symbo
$\underline{\sigma_E = 150/k_l} (\text{N/mm}^2)$	$\underline{\sigma_{vm}} = 150/k_{l} (\text{N/mm}^2)$	ls
k_l = according to 504. 4 (1)	$k_l =$ according to 504. 4 (1)	
f(x) = f(x) +	$ f_{AZ} = f_{AZ} f_{AZ} f_{BZ} f_{AZ} f_{AZ} f_{BZ} f_{AZ} f_{AZ} f_{BZ} f_{AZ} f_{AZ} f_{BZ} f_{AZ} f_{AZ} f_{AZ} f_{BZ} f_{AZ} f_{AZ} f_{AZ} f_{BZ} f_{AZ} f_{A$	Modify figure number

Present			1	Note Modify table number		
Table 4.2.11 Permissible nominal surface pressure p_n (2019)		Table 4.2.9 Permissible non				
$p_n(N/mm^2)$ when loaded by		$p_n(N/mm^2)$	$p_n(N/mm^2)$ when loaded by			
Support material	Vertical force	Horizontal force (on stoppers)	Support material	Vertical force	Horizontal force (on stoppers)	
Hull structural steel	25	40	Hull structural steel	25	40	
Hardened steel	35	50	Hardened steel	35	50	
Lower friction materials	50	-	Lower friction materials	50	-	
Soc. Container roundations on natch covers (onitted)			μ = frictional coeffi non-metallic, friction coeffici	ngement of anti lifting nit the following force rting force on related cient, the value equa low-friction support ent may be reduced e satisfaction of the s r 1 ent>	supports I to 0.5 in general, For materials on steel, the but not to be less than Society.	Reflected UR S21 Re v.6 -S21 6.2.2 -unification of symbo ls

	Present				Amendment				Note
See	Section 6 Hatch ways closed by Portable Hatch Cover and weathertighted by Tarpaulins and Battens				Se	ction 6 Hatch w and weathertig			
	••			601. Application 〈omitted〉 602. Hatch Covers					
1.			hatch covers shall be ssary to complete close		 The width of each supporting surface for hatch covers shall be at least 65 mm and shall be inclined as necessary to complete close. 				
2.	2. For steel portable beam of 604. and steel pontoon cover of 605. according to the requirement of this section shall be designed with consider the design loads and allowable stress as following and shall be accordance with (3).			2. For steel portable beam of 604 . and steel pontoon cover of 605 . according to the requirement of this section shall be designed with consider the design loads and allowable stress as following and shall be accordance with (3).					
	(1) The design loads	P are defined in Tabl	<u>e 4.2.12</u>			(1) The design loads	P are defined in Table	<u>e 4.2.10</u>	Modify table number
-	Table 4.2.12 Design lo	bads P				Table 4.2.10 Design lo	bads P		
	L_f	Position 1	Position 2			L_f	Position 1	Position 2	
	$L_f = 24.0 m$	19.6 kN/m2	14.7 kN/m2			$L_f = 24.0 \ m$	19.6 kN/m2	14.7 kN/m2	
	$L_f \ge 100.0 m$	34.3 kN/m2	25.5 kN/m2			$L_f \ge 100.0 \ m$	34.3 kN/m2	25.5 kN/m2	
	In cases, L_f at interest er interpolation.	rmediate lengths shall	be obtained by lin-			In cases, L_f at interest of the er interpolation.	rmediate lengths shall	be obtained by lin-	
	(2) The allowable stress are to be accordance with following formulae. $\underline{\sigma_a=0.68\sigma_y}$ (N/mm2)				(2) The allowable stress are to be accordance with following formulae. $\underline{\sigma_a = 0.68R_{eH}} (N/mm^2)$			unification of symbo s	
	<u> </u>	um yield strength of th	e material (N $/$ mm 2)		$\underline{R_{eH}}$ = minimum yield strength of the material (N/mm ²)				
	(3) The deflection δ of portable beams and pontoon covers shall be less than the value obtained from following formulae.			(3) The deflection δ of portable beams and pontoon covers shall be less than the value obtained from following formulae.					
	$\delta\!=0.0044 l_g$ (m)			$\delta{=}0.0044 l_{g}$ (m)					
	l_g = longest span of spans between supporting point of			l_g = longest span of spans between supporting point of					
	primary stiffener.				primary	y stiffener.			
 	⟨omitted below⟩			⟨s	ame below as the pres	sent>			

Present	Amendment	Note
CHAPTER 9 STRENGTH AND SECURING OF SMALL HATCHES, FITTINGS AND EQUIPMENT ON THE FORE DECK	CHAPTER 9 STRENGTH AND SECURING OF SMALL HATCHES, FITTINGS AND EQUIPMENT ON THE FORE DECK	
Section 1 Application and Implementation	Section 1 Application and Implementation	
101. Application	101. Application	
1. For ships that are contracted for construction on or after 1 January 2004 on the exposed deck over the forward $0.25L$, applicable to:	1. For ships that are contracted for construction on or after 1 January 2004 on the exposed deck over the forward $0.25L$, applicable to:	
All ship types of sea going service of length 80 m or more, where the height of the exposed deck in way of the hatch is less than $0.1L$ or 22 m above the summer load waterline, whichever is the lesser.	All ship types of sea going service of length 80 m or more, where the height of the exposed deck in way of the hatch is less than $0.1L$ or 22 m above the summer load waterline, whichever is the lesser.	
2. For ships that are contracted for construction prior to 1 January 2004 only for hatches on the exposed deck giving access to spaces forward of the collision bulkhead, and to spaces which extend over this line aft-wards, applicable to:	2. For ships that are contracted for construction prior to 1 January 2004 only for hatches on the exposed deck giving access to spaces forward of the collision bulkhead, and to spaces which extend over this line aft-wards, applicable to:	
Bulk carriers, general dry cargo ships (excluding container vessels, vehicle carriers, Ro-Ro ships and woodchip carriers), and combina- tion carriers (e.g. OBO ships, Ore/Oil Carriers, etc.), of length 100 m or more.	Bulk carriers, general dry cargo ships (excluding container vessels, vehicle carriers, Ro-Ro ships and woodchip carriers), and combina- tion carriers (e.g. OBO ships, Ore/Oil Carriers, etc.), of length 100 m or more.	
⟨omitted below⟩	3. This chapter does not apply to small hatches on container ship giv- ing access to a cargo hold which comply with UI LL64 except the requirement of clause 4 & 5. Such hatch covers are considered non-weathertight regardless of whether it is actually weathertight or not. However, for scantlings of small hatches, the strength require- ments in 202. of this chapter UR could be applied instead of clause 6 of UI LL64.	Reflected UR S26 Re v.5 -S26 2.5 -Clarification of appli cation
	⟨same below as the present⟩	

Main Amendments

(1) Background of Amendment

- 1) reflected IACS Rec. 10 Rev. 5 (addition of LDBF definition reflecting MSC.1/Circ.1619)
- 2) reflected MSC.1/Circ. 1362 Rev.2 (add application details for SOLAS II-1 Reg.3-8.7/8)
 - addtion of supplement with towing and mooring arrangements plan

(2) Effective date (circular will be issued)

- 1) for which the building contract is placed on or after 1 January 2024; or
- 2) in the absence of a building contract, the keel of which is laid or which is at a similar stage of construction on or after 1 July 2024; or
- 3) the delivery of which is on or after 1 January 2027.

Present	Amendment	Note
CHAPTER 10 SHIPBOARD EQUIPMENT, FITTINGS AND SUPPORTING HULL STRUCTURES ASSOCIATED WITH TOWING AND MOORING	CHAPTER 10 SHIPBOARD EQUIPMENT, FITTINGS AND SUPPORTING HULL STRUCTURES ASSOCIATED WITH TOWING AND MOORING	
Section 1 Definitions and Scope of Application	Section 1 Definitions and Scope of Application	
101. Application <i>(2018)</i> (omitted) 102. Definitions <i>(2018)</i>	101. Application <i>(2018)</i> (same as the present) 102. Definitions <i>(2018)</i>	
1. ~ 6. (omitted)	1. ~ 6. 〈same as the present〉	
	7. Line design break force(LDBF) means the minimum force at which a new, dry, spliced mooring line will break at. This is for all syn- thetic cordage material. This value is declared by the manufacturer on each line's mooring line certificate and is stated on a manu- facturer's line data sheet. LDBF of a line should be 100%-105% of the ship design minimum breaking load(MBL _{SD}).	reflected Rec.10 Rev. 5 (Rec.10 2.1) -Added as required b y MSC.1 Circ.1619.
	Section 2 Towing and Mooring	
 Section 2 Towing and Mooring 201. Towing ~ 202. Mooring (omitted) 203. Towing and mooring arrangements plan (2018) 1. The SWL and TOW for the intended use for each shipboard fitting is to be noted in the towing and mooring arrangements plan available on board for the guidance of the Master. It is to be noted that TOW is the load limit for towing purpose and SWL that for mooring purpose. If not otherwise chosen, for towing bitts it is to be noted that TOW is the load limit for a towing line attached with eye-splice. 2. Information provided on the plan is to include in respect of each shipboard fitting. 	 201. Towing ~ 202. Mooring (omitted) 203. Towing and mooring arrangements plan (2018) 1. The SWL and TOW for the intended use for each shipboard fitting is to be noted in the towing and mooring arrangements plan available on board for the guidance of the Master. It is to be noted that TOW is the load limit for towing purpose and SWL that for mooring purpose. If not otherwise chosen, for towing bitts it is to be noted that TOW is the load limit for a towing line attached with eye-splice. 2. Information provided on the plan is to include in respect of each shipboard fitting. 	
Present	Amendment	Note
--	--	--
 (1) Location on the ship (2) Fitting type (3) SWL/TOW (4) Purpose (mooring / harbour towing / other towing) (5) Method of applying load of towing or mooring line including limiting fleet angle i.e. angle of change in direction of a line at the fitting. Item (3) with respect to items (4) and (5), is subject to approval by the Society. (2022) Furthermore, information provided on the plan is to include: (1) The arrangement of mooring lines showing number of lines (N) (2) The ship design minimum breaking load (MBL_{SD}) (2022) (3) The acceptable environmental conditions refer for minimum conditions to IACS Recommendation No. 10 "Anchoring, Mooring and Towing Equipment" for the recommended ship design minimum breaking load for ships with Equipment Number EN > 2000: (2022) (A) 30 second mean wind speed from any direction.(v_w or v_w* according to IACS Recommendation No. 10) (B) Maximum current speed acting on bow or stern (±10°). 	 Anteriterit (1) Location on the ship (2) Fitting type (3) SWL/TOW (4) Purpose (mooring / harbour towing / other towing) (5) Method of applying load of towing or mooring line including limiting fleet angle i.e. angle of change in direction of a line at the fitting. Item (3) with respect to items (4) and (5), is subject to approval by the Society. (2022) Furthermore, information provided on the plan is to include: (1) The arrangement of mooring lines showing number of lines (N) (2) The ship design minimum breaking load (MBL_{SD}) (2022) (3) The acceptable environmental conditions refer for minimum conditions to IACS Recommendation No. 10 "Anchoring, Mooring and Towing Equipment" for the recommended ship design minimum breaking load for ships with Equipment Number EN > 2000: (2022) (A) 30 second mean wind speed from any direction.(v_w or v_w according to IACS Recommendation No. 10) (B) Maximum current speed acting on bow or stern (±10°). (4) For ships of less than 3,000 gross tonnage engaged in international voyages and contracted for construction on or after 1 January 2024, the following shall be additionally included on the plan and provided on board: (A) Maximum brake holding load: (B) Technical specification document of the mooring lines (including manufacturers' recommended minimum diameter D of each fitting in contact with the mooring lines and the line Design Break Force (LDBF) of the mooring lines and the line Design Break Force (LDBF) of the mooring lines and the line Design Break Force (LDBF) of the mooring lines may be higher for lower diameter(ref. Par. 5.6 of MSC.1/Circ.1620) (5) For ships of 3,000 gross tonnage and above engaged in international voyages and contracted for construction on or after 1 January 2024, the following shall be included in addition to those specific under Par. (4) and provided on board; (A) A document shall be provided by the	reflected MSC.1/Circ. 1362 Rev.2 (par.3) reflected MSC.1/Circ. 1362 Rev.2 (par.4)

Present	Amendment	Note
 The information as given in 2. is to be incorporated into the pilot card in order to provide the pilot proper information on harbour and other towing operations. 	 (B) Deviations shall be recorded, if any, (Par. 6.1 of MSC.1 Circ./ 1619), justification and suitable safety measures shall be provided (Par. 6.2 of MSC.1/Circ.1619) in the supplement to the towing and mooring arrangements plan. A reference to the supplement shall be included in the towing and mooring arrangements plan. A reference to the supplement shall be included in the towing and mooring arrangements plan. A reference to the supplement shall be included in the towing and mooring arrangements plan. A reference to the supplement shall be included in the towing and mooring arrangements plan. A reference to the towing and mooring arrangements plan: and (C) If deviations are not found necessary, and the supplement is not needed, then this shall be mentioned explicitly in the towing and mooring arrangements plan: and (D) The mooring maximum brake holding load shall be less than 100% of the Ship Design Minimum Breaking Load (MBLsp) (Par. 5.2.3.3 and 5.2.4 of MSC.1/Circ.1619). The vinches shall be fitted with brakes that allow for the reliable setting of the brake rendering load. (Notes) (Motes) <l< td=""><td></td></l<>	

(1) Background of Amendment

- reflected in accordance with IACS UR A1 Rev. 8
 - 1) clarify the applicable subject for anchoring equipment
 - 2) addition of applicable alternative methods for selection of anchoring equipment for ships less than 90 m in length
 - 3) clarification for use of wire rope in place of chain cable
 - 4) addition of wire rope condition instead of chain cable(Anchor weight increased by 25% when wire rope is applied)
 - The anchoring force is equal when the wire rope is about 2 to 3 times the length of the anchor chain, but it is difficult to apply. So, instead of increasing the length by 1.5 times, the loss is compensated by increasing the weight of the anchor.

Present	Amendment	Note
CHAPTER 8 EQUIPMENT NUMBER AND EQUIPMENT	CHAPTER 8 EQUIPMENT NUMBER AND EQUIPMENT	
Section 1 General	Section 1 General	
101. General and application [See Guidance]	101. General and application [See Guidance]	
 All ships, according to their equipment number of provisions in Sec are to be provided with anchors, chain cables, ropes, etc. which are not less than given in Table 4.8.1. 	 All ships, according to their equipment number of provisions in Sec are to be provided with anchors, chain cables, ropes, etc. which are not less than given in Table 4.8.1. 	
 The anchors, chain cables and ropes (hereinafter referred to as "e-quipment") which are required to be tested and inspected to be used for ships classed with the Society are to comply with the requirements of this Chapter. The equipment other than those prescribed in this Chapter may be 	2. The anchoring equipment required by Sec. 1 through 6 applies to vessels with unrestricted service. The requirements given in Sec. 1. 101. 5. (1) B, 101. 5. (6), Sec. 2, Sec. 3 apply to vessels with restricted service area. Unrestricted service means a vessel engaged on international voyages, and not bounded by any limitations on operating environment reflected in vessel class notation.	UR A1 Rev.8 (A1.1.9, A1.1.10) - clarify the applicab le subject for anch oring equipment
used where specially approved in connection with the design and use. In such case, the detailed data relating to the process of manufacture of the equipment are to be submitted for approval.4. All ships are to be provided with suitable appliances for handling of anchors as follows.	 The anchors, chain cables and ropes (hereinafter referred to as "e- quipment") which are required to be tested and inspected to be used for ships classed with the Society are to comply with the re- quirements of this Chapter. 	renumbering
<pre></pre>	4. The equipment other than those prescribed in this Chapter may be used where specially approved in connection with the design and use. In such case, the detailed data relating to the process of manufacture of the equipment are to be submitted for approval.	
	5. All ships are to be provided with suitable appliances for handling of anchors as follows.	

 their strength is to be equal to that of tabular chain cable of Grade 1 (Table 4.8.8). (2) A short length of chain cable is to be fitted between the wire rope and anchor having a length of 12.5 m or the distance between anchor in stowed position and winch, whichever is less. (3) All surfaces being in contact with the wire need to be rounded with a radius of not less than 10 times the wire rope diameter (including stem). (4) The length of the wire rope is subject to the following conditions: (1) The length of the wire rope is to be equal to 1.5 times the corresponding tabular length of chain cable of Grade 1 (Table 4.8.8). (2) The anchor weight shall be increased by 25 % compared to anchor associated with chain cable is to be fitted between the wire rope and anchor having a length of 12.5 m or the distance between anchor in stowed position and winch, whichever is less. 	201. Equipment number <i>(2022)</i> [See Guidance] (omitted)		
 204. Tow lines and mooring lines (omitted) ance for maintenance and inspection. 204. Tow lines and mooring lines (omitted) 	 ~ 4. (omitted) Wire rope may be used in place of chain cable on ships with less than 40 m in length and subject to the following conditions: (2022) The length of the wire rope is to be equal to 1.5 times the corresponding tabular length of chain cable (Table 4.8.1) and their strength is to be equal to that of tabular chain cable of Grade 1 (Table 4.8.8). A short length of chain cable is to be fitted between the wire rope and anchor having a length of 12.5 m or the distance between anchor in stowed position and winch, whichever is less. All surfaces being in contact with the wire need to be rounded with a radius of not less than 10 times the wire rope diameter (including stem). 	 ent) 202. Mass of anchors (same as the present) 203. Chain cables and stream lines 1. ~ 4. (same as the present) 5. Wire rope may be used in place of chain cable on ships subject to the following conditions: with less than 90 m in length and which will need an anchor for emergency purposes, i.e., not intended to use their anchor in normal temporary anchoring operation, or with the anchoring equipment used for positioning with a minimum of 4 points anchoring, e.g., for cable or pipe laying. 6. Use of wire rope is subject to the following conditions: The length of the wire rope is to be equal to 1.5 times the corresponding tabular length of chain cable (Table 4.8.1) and their strength is to be equal to that of tabular chain cable of Grade 1 (Table 4.8.8). The anchor weight shall be increased by 25 % compared to anchor associated with chain cable according to Table 4.8.1. A short length of chain cable is to be fitted between the wire rope and anchor having a length of 12.5 m or the distance between anchor in stowed position and winch, whichever is less. All surfaces being in contact with the wire need to be rounded with a radius of not less than 10 times the wire rope diameter (including stem). 	 (A1.5.1.2, A1.5.1.3) clarification for use of wire rope in pla ce of chain cable addition of wire ro pe condition instea

									Pr	ese	nt													A	me	ndn	nen	ıt						Note
Та	ble	4.8	8.1 I	Зол	ver	anc	ho	rs, c	hain	cabl	les a	nd r	opes (2	2018	8)			Та	able	4.8	.1 B	ower	anch	ors, c	hain	cable	es a	nd ro	pes					
		quip		bo	kles wer nors	Ca	abl		k ch or bo hors			Tow	line		Моо	oring l	ine			luip	s l	ockles oower .chors	cab	oles fo	ık cha or bo hors		,	Tow	ine		Mooring line		line	
Equipment letter	nu	ient mb r	e			Tot	ta		iame (mm)		Le ngi — h	de mi bre	Ship esign nimum eaking oad		Le ngt h	min	design imum aking ad	Equipment		ent mbe r		Mass	Tota		iamet (mm)		Le ngt h	de mir bre	hip sign limum aking pad		Le ngt	min bre lo	design imum aking ad	
t letter	ed	No t ex i ce g di g	- e n		per nch or (kg)	len th (m		Grad e 1	Gra de 2	Gra de 3	per lin	(kN)) (kg)	Number	n per lin e (m)	(kN)	(kg)	t letter	Ex Ce- ed	No t ex- i cee dir g	è	per anch or (kg)	leng th (m)	Grad e 1	Gra de 2	Gra de 3	per	(kN)	(kg)	lumber	h per lin e (m)	(kN)	(kg)	
A1	-	70	_	2	180	22	0	14	12.5		180	98	10000	3	80	37	3750	А	1 -	70	2	180	220	14	12.5		180	98	10000	3	80	37	3750	
A2	70	90) 2	2	240	22	0	16	14		180	98	10000	3	100	40	4100	A	2 70	90	2	240	220	16	14		180	98	10000	3	100	40	4100	
A3	90	11	0 2	2	300			17.5	16		180	98	10000	3	110	42	4300		3 90			300	247.5	17.5	16		180	98	10000	3	110	42	4300	
ΑZ	110	3 13	0 2	2 3	360	247	.5	19	17.5		180	98	10000	3	110	48	4900	A	4 11(130	2	360	247.5	19	17.5		180	98	10000	3	110	48	4900	
A٤	130) 15	0 2	2	420	27	5	20.5			180		10000	3	120	53	5400	A	5 130	150	2	420	275	20.5	17.5		180	98	10000	3	120	53	5400	
									⟨omi	tted t	below	\rangle													⟨omit	ted b	elow	\rangle						
1 co 2	Le nne Tc is ca to IA 2.2 Th ar 20	ection ow list argo ac .CS .CS .CS .CS (ne t e t	on line ed cou cou <i>Re</i> <i>(202)</i> noc aker are	in gi nt c.1 2) orir n t	nd r this ven for 0 A ng li his o be	noon tab calo nch nes table in	ring ble the cult ori for e, acc	g lin only e nor atior ing, r shi for s	ne arv for mina n of Moo ips w ships	e no guic l cap equi oring vith l with with	t a d lanco pacit pme anc Equij	condi e. Sic y con nt nu l To pmer Equ	ng sha ition o de proj ndition umber. wing I wing I nt Num ipment idance	f Cl jecto i is (For Equi ber Nu	lassi ed a to l de ipme EN	ficatio trea of tail, re ent 2. \leq 20 er EN	f deck en in- efer to 1 and 000 >	1 cc 2	onne is ca to IA 2. Th ar 20 Ru	engtl ectio w l liste rgo cS (2) (2) me n e ta)00 ules	n ine ed i as cour Rec 2022 noon aken are spe	n this given at for .10 A ?) ring li this to be cified	noori table by th calcu ncho nes f table, in a by t	ng lir e only ie no ilation ring, or shi for s ccord he So	ne are y for minal n of Moo ips w ships lance ociety.	e not guid l cap equip ring 'ith E with with	a c ance acit ome and quip an the	condi e. Sid y cor nt nu l Tov Domen Equi e Gui	tion o e pro dition mber. ving l t Num pment dance	f Ci ject is (For Equi ber ber Nu rel	lassi ed a to l ipm : EN umb latin	ificatic area o be tak etail, re ent 2. $I \leq 20$ er EN g to the) he	
																		_4				ps of in Aı						<u>0m,</u>	<u>altern</u>	ativ	<u>ve</u> :	metho	<u>dology</u>	based on current and wind for ships less han 90 m in length

Amendments of the Guidance relating to the Rules

(External Development Review-External Opinion Inquiry)

Part 4 Hull Equipment

2023.09. Hull Rule Development Team

(1) Background of Amendment

- 1) reflected IACS UR S10 Rev. 7
 - clarify the requirement regarding sealing equipment (considered watertight seals as equivalent to stuffing boxes)
 - clarify the bending forces and moments for spade rudder with trunk extending inside the rudder(added equations for moment calculations of partially submerged spade rudders)

Present	Amendment	Note
CHAPTER 1 RUDDERS	CHAPTER 1 RUDDERS	
Section 1 ~ Section 3 (omitted) Section 4 Rudder Strength Calculation	Section 1 ~ Section 3 (same as present) Section 4 Rudder Strength Calculation	
401. Rudder strength calculation [See Rule]	401. Rudder strength calculation [See Rule]	
1. General	1. General	
The bending moment, shear force, and supporting force acting on the rudder and rudder stock may be evaluated using the basic rudder models as outlined in 3 to 7 .	The bending moment, shear force, and supporting force acting on the rudder and rudder stock may be evaluated using the basic rud- der models as outlined in 3 to 7 .	
2. Moments and forces to be evaluated	2. Moments and forces to be evaluated	
The bending moment M_R and the shear force Q_1 acting on the rudder body, the bending moment M_b acting on the bearing, and the bending moment M_s acting on the coupling between the rudder stock and rudder main piece and the supporting force B_1 , B_2 , B_3 are to be obtained and to be used for analyzing the stresses in accordance with the Pt 4 , Ch 1 of the Rules.	The bending moment M_R and the shear force Q_1 acting on the rudder body, the bending moment M_b acting on the bearing, the bending moment M_c acting on the top of the cone coupling and the bending moment M_s acting on the coupling between the rudder stock and rudder main piece and the supporting force B_1 , B_2 , B_3 are to be obtained and to be used for analyzing the stresses in accordance with the Pt 4 , Ch 1 of the Rules.	IACS UR S10 Rev. 7 Annex S10.2
3. Type C rudders(Spade rudder)	3. Type C rudders(Spade rudder)	
(1) General data The data on the spade rudder models is as follows(See Fig 4.1.2 of the Guidance): $\ell_{10} \sim \ell_{30}$ = Lengths of the individual girders of the system (m) $I_{10} \sim I_{30}$ = Moments of inertia of these girders (cm ⁴) Load of rudder body $P_R = \frac{F_R}{1000 \ell_{10}}$ (kN/m) F_R : as specified in Pt 4, Ch 1, Sec 2 of the Rules (2) The moments and forces may be determined by the following formulae:	(1) General data The data on the spade rudder models is as follows(See Fig 4.1.2 of the Guidance): $\ell_{10} \sim \ell_{30}$ = Lengths of the individual girders of the system (m) $I_{10} \sim I_{30}$ = Moments of inertia of these girders (cm ⁴) Load of rudder body $P_R = \frac{F_R}{1000 \ell_{10}}$ (kN/m) F_R : as specified in Pt 4, Ch 1, Sec 2 of the Rules (2) The moments and forces may be determined by the following formulae:	

Present	Amendment	Note
⟨omitted⟩	$\begin{split} M_{FR1} &= F_{R1} \left(CG_{1Z} - \ell_{10} \right) (\text{N-m}) \\ M_{FR2} &= F_{R2} \left(\ell_{10} - CG_{2Z} \right) (\text{N-m}) \\ F_{R1} &: \text{Rudder force over the rudder blade area } A_1 \\ F_{R2} &: \text{Rudder force over the rudder blade area } A_2 \\ CG_{1Z} : \text{Vertical position of the centre of gravity of the rudder blade area } A_1 \\ \text{form base} \\ CG_{2Z} : \text{Vertical position of the centre of gravity of the rudder blade area } A_2 \\ \text{form base} \\ F_R &= F_{R1} + F_{R2} (\text{N}) \\ B_2 &= F_R + B_3 (\text{N}) \\ B_3 &= (M_{FR2} - M_{FR1}) / (\ell_{20} + \ell_{30}) (\text{N}) \\ \text{(same as present)} \end{split}$	
Section 5 ~ Section 9 (omitted) Section 10 Rudder Accessories	Section 5 ~ Section 9 (same as presnet) Section 10 Rudder Accessories	
 1001. Rudder carriers [See Rule] 1. Materials of rudder carriers and intermediate bearings (omitted) 2. Thrust bearing of rudder carrier (omitted) 	 1001. Rudder carriers [See Rule] 1. Materials of rudder carriers and intermediate bearings (same as present) 	
3. Watertightness of rudder carrier part (1) In rudder trunks which are open to the sea, a seal or stuffing box is to be fitted above the deepest load waterline to prevent water from entering the steering gear compartment and the lubricant from being washed away from the rudder carrier. If the top of the rudder trunk is below the <u>deepest waterline</u> two separate <u>stuffing boxes</u> are to be provided. 〈omitted below〉	 2. Thrust bearing of rudder carrier (same as present) 3. Watertightness of rudder carrier part (1) In rudder trunks which are open to the sea, a seal or stuffing box is to be fitted above the deepest load waterline to prevent water from entering the steering gear compartment and the lubricant from being washed away from the rudder carrier. If the top of the rudder trunk is below the waterline at scantling draught (without trim), two separate watertight seals or stuffing boxes are to be provided. (same as present) 	IACS UR S10 Rev.7 1.2.3 -Improvement of clar ity of requirement S1 0.1.2.3 related to seal ing arrangement (seal s and stuffing boxes as equivalent, clarific ation of waterline de finition)

(1) Background of Amendment

- Reflected IACS UR S21 Rev.6 1) relocate Rule figure 4.2.5 to Guidance figure 4.2.1

Present	Amendment	Note
CHAPTER 2 HATCHWAYS AND OTHER DECK OPENINGS	CHAPTER 2 HATCHWAYS AND OTHER DECK OPENINGS	
Section 5 Hatch cover details - Closing Arrangement, Securing Devices and Stoppers	Section 5 Hatch cover details - Closing Arrangement, Securing Devices and Stoppers	
502. General [See Rule] (omitted)	 502. General [See Rule] (same as the present) 504. Clamping devices 4. Area of securing devices (2) S_{sp}(m) is maximum of the distances, S_i, between two consecutive securing devices, measured along the hatch cover periphery (see Fig. 4.2.1), not to be taken as less than 2.5S_i(m). S_c = max(S_{1,1}, S_{1,2}) (m) S_i=S₁₁+S₁₂ S₁₁ S₂ S₃ S_{i1} S₂ S₃ S_{i2} = max(S_{1,5}); S_{i4} S₁₁ S₂ S₃ S_{i4} S₁₄ S₂ S₃ S₁₄ S₁₂ S₁₄ S₂ S₃ S₁₄ S₁₄ S₁₄	relocation from Rule to Guidance (305.2.(3)→504.4.(2)) -refer to Rec.14 4.2.3

(1) Background of Amendment

- reflected in accordance with IACS UR A1 Rev. 8
 - 1) clarify the applicable subject for anchoring equipment
 - 2) addition of anchoring equipment use
 - 3) changed anchor requirement for tugboat (to take into account that tugboats operate only near ports or coastal area)
- reflected in accordance with IACS Rec. 10 Rev. 5
 - 1) addition of alternative calculation methods for determining anchors and chain cable for ships s less than 90m

Present	Amendment	Note
CHAPTER 8 EQUIPMENT NUMBER AND EQUIPMENT	CHAPTER 8 EQUIPMENT NUMBER AND EQUIPMENT	
Section 1 General	Section 1 General	
101. General and application [See Rule]	101. General and application [See Rule]	
 1. Consideration for restricted navigation area (1) Ships assigned with class notation "Smooth water service" may be provided the equipment in accordance with the equipment letter of equipment number which is one grade lower class of equipment letter. (2) In case of the above (1), the provisions of the used material may not be considered. 2. ~ 3. (omitted) 	 The anchoring equipment required herewith applies to self-propelled vessels over 100GT, except for: inland navigation vessels, military vessels, government ships operated for non-commercial purposes, high speed and light crafts, yachts a the present 	UR A1 Rev.8 (A1.1.8) -clarify the applicabl e subject
4. Design of the anchoring equipment (2018)	4. Design of the anchoring equipment	
 (1) The anchoring equipment required herewith is intended for temporary mooring of a ship within a harbour or sheltered area when the ship is awaiting berth, tide, etc. Annex 4-3 may be referred to for recommendations concerning anchoring equipment for ships in deep and unsheltered water. (2019) (2) The Equipment Number (EN) formulae for anchoring equipment as given in 201. of the Rules are based on an assumed maximum current speed of 2.5 m/s, maximum wind speed of 25 m/s and a minimum scope of chain cable of 6, the scope being the ratio between length of chain paid out and water depth. For ships with an equipment length greater than 135 m, alternatively the required anchoring equipment can be considered applicable to a maximum current speed of 1.5 m/s, a maximum wind speed of 11 m/s and waves with maximum significant height of 2 m. (3) It is assumed that under normal circumstances a ship will uses only one bow anchor and chain cable at a time. 	 (1) The anchoring equipment required herewith is intended for temporary mooring of a ship within a harbour or sheltered area when the ship is awaiting berth, tide, etc. Annex 4-3 may be referred to for recommendations concerning anchoring equipment for ships in deep and unsheltered water. (2019) (2) The Equipment Number (EN) formulae for anchoring equipment as given in 201. of the Rules are based on an assumed maximum current speed of 2.5 m/s, maximum wind speed of 25 m/s and a minimum scope of chain cable of 6, the scope being the ratio between length of chain paid out and water depth. For ships with an equipment length greater than 135 m, alternatively the required anchoring equipment can be considered applicable to a maximum current speed of 1.5 m/s, a maximum wind speed of 11 m/s and waves with maximum significant height of 2 m. (3) It is assumed that under normal circumstances a ship will uses only one bow anchor and chain cable at a time. (4) In addition to planned anchoring for normal operations, anchoring equipment should be ready to use for ship safety in emergency situations such as loss of manoeuvrability, unscheduled repairs and other unexpected situations. 	UR A1 Rev.8 (A1.1.7) -addition of anchorin g equipment use

Section 2 Equipment Number 201. Equipment number [See Rule] 1. The equipment number of tug boat is to be following formula; (2022)	 104. Tests and inspections [See Rule] ⟨same as the present⟩ Section 2 Equipment Number 201. Equipment number [See Rule] 1. Equipment for tugs (1) The equipment number is to be following formula: 	editorial change
2	$\frac{2}{2}$ Δ	
$E = \Delta^{\frac{2}{3}} + 2.0(aB + \sum h_i b_i) + \frac{A}{10}$ $\Delta, a, h_i, A = \text{as specified in 201. of the Rules.}$ $b_i = \text{widest breath of superstructure or deckhouse of each tier}$ having a breadth greater than B/4 (m).	 E = Δ^{2/3} + 2.0(aB + ∑h_ib_i) + A/10 Δ, a, h_i, A = as specified in 201. of the Rules. b_i = widest breath of superstructure or deckhouse of each tier having a breadth greater than B/4 (m). (2) For tugs under 45 m in length intended for towing service only, one anchor may be used onboard provided that the second anchor and its relevant chain cable holds readily available to be installed. In case of loss of anchor, the tug is to remain in port until unclease of loss of anchor, the tug is to remain in port 	UR A1 Rev.8 (A1.3.1) -amended to take int o account that tugbo ats operate only near ports or coastal area
2. ~ 7. 〈omitted〉	until replace anchor equipment is installed onboard. 2. ~ 7. ⟨same as the present⟩	

Present	Amendment	Note
	Annex 4-4 Direct force calculation for anchoring equipment	
	In application of Ch 8, Sec 2, Table 4.8.1 Notes 4 of the Rules, the details are as follows.	IACS Rec.10 Appendix B
	1. Total force F_{EN}	
	The total force (static + dynamic) F_{EN} , in kN, induced by wind and current acting on monohull in anchoring condition as defined in Ch 8, Sec 1, 101 of the Rules may be calculated as follows:	
	$\underline{F_{EN}} = 2(F_{SLPH} + F_{SH} + F_{SS})$	
	F_{SLPH} : Static force on wetted part of the hull due to current, as specified in (1)	
	F_{SH} : Static force on hull due to wind, as specified in (2)	
	F_{SS} : Static force on superstructures due to wind, as specified in (3)	
	(1) Static force on wetted part of hull $F_{SLPH}(kN)$	
	$\underline{F_{SLPH} = \frac{1}{2} \rho C_f S_m V_c^2 10^{-3}}$	
	$ \frac{\rho : \text{Water density, equal to 1025 } kg/m^3}{C_f : \text{Coefficient equal to:}} $	
	$\frac{C_f = (1+k)\frac{0.075}{(\log R_e - 2)^2}}{$	
	With R_e , Reynolds number:	
	$\frac{R_e = \frac{(V_c L_{WL})}{1.054^* 10^{-6}}}{1.054^* 10^{-6}}$	

Present	Amendment	Note
	$\frac{k : \text{Coefficient equal to:}}{k = 0.017 + 20} \frac{C_{bWL}}{L_{WL}^2 T^{-0.5} B_{WL}^{-1.5}}$	
	With C_{bWL} , block coefficient at waterline: $C_{bWL} = \frac{\Delta}{1.025L_{WL}B_{WL}T}$	
	$ \underline{\Delta}: Moulded displacement at waterline T, in m^3 \\ \underline{S_m}: Total wetted surface of the part of the hull under draught, in m^2 \\ \underline{The value of Sm is to be given by the Designer. When this value is not available, S_m may be taken equal to \\ \underline{S_m = 6^* \Delta^{2/3}} \\ \underline{V_C}: Speed of the current, in m/s, as specified in Ch 8, Sec 1, 101.4 of the Guidance \\ $	
	(2) Static force on hull $F_{SH}(kN)$ $\underline{F_{SH} = \frac{1}{2}\rho(C_{hfr}S_{hfr} + 0.02S_{hlat})V_W^2 10^{-3}}$	
	 <u>ρ</u>: Air density, equal to 122 kg/m³ V_W: Speed of the wind, in m/s, as specified in Ch 8, Sec 1, 101.4 of the Guidance S_{hfr}: Front surface of hull and bulwark if any, in m², projected on a vertical plane of the ship situated aft of the aft end of the ship and perpendicular to the longitudinal axis of the ship S_{hilat}: Partial lateral surface of one single side of the hull and bulwark if any, in m², through the overall length of the ship, projected on a vertical plane parallel to the longitudinal axis of the ship and delimited according to Figure 1 C_{hfr} = 0.8*sinα, with α defined in Figure 1. <u>B</u> is the breadth of the hull, in m. 	
	The upper part of the hull is the part extending from side to side to the uppermost continuous deck extending over the ship length.	

Present	Amendment	Note
	(B) When superstructures are located in the front of the hull with front and side walls of superstructures in the con- tinuity of the side shell, the static force induced by wind applied on these superstructures, in <i>kN</i> , is defined as the sum of the forces applied to each superstructure tier according to the following formula:	
	$\frac{F_{SS} = \frac{1}{2}\rho\Sigma\left(C_{hfr_i}S_{hfr_i} + 0.08S_{slat_i}\right)V_W^2 10^{-3}}{F_{SS} = \frac{1}{2}\rho\Sigma\left(C_{hfr_i}S_{hfr_i} + 0.08S_{slat_i}\right)V_W^2 10^{-3}}$	
	ρ, V_{W}, S_{slat_i} : according to (A)	
	S_{hfr_i} : Front surface of tier <i>i</i> of the superstructure, in m^2 , projected on a vertical plane of the ship situated aft of the aft end of the ship and perpendicular to the longitudinal axis of the ship	
	$\frac{C_{hfr_i} = 0.8^* \sin \alpha_s}{\text{front of the hull.}}$	
	The static force is to be added to the static force calculated for the other superstructures and deckhouses accord- ing to (A).	
	2. Anchor weight	
	The individual mass of anchor, in kg, is to be at least equal to: (1) for ordinary anchor: $P = (F_{EN}/7)*10^2$ (2) for high holding power anchor: $P = (F_{EN}/10)*10^2$ (3) for very high holding power: $P = (F_{EN}/15)*10^2$	
	3. Chain cable	
	(1) Stud link chain cable scantling Chain cable diameters are to be selected from Ch 8, Sec 4, Table 4.8.8 of the Rules, based on the minimum breaking load <i>BL</i> and proof load <i>PL</i> of steel grades, in <i>kN</i> , calculated according to the following formulae:	
	$(A) \text{ for steel Grade 1:} \frac{BL = 6^* F_{EN}}{PL = 0.7^* BL} (B) \text{ for steel Grade 2:} BL = 6.8^* F_{EN}$	
	$\underline{PL = 0.7^* BL}$	

Present	Amendment	Note
	$\frac{(C) \text{ for steel Grade 3:}}{BL = 7.5^* F_{EN}}$ $\frac{PL = 0.7^* BL}{PL}$	
	The chain cable scantling is to be consistent with the mass of the associated anchor. In case the anchor on board is heavier by more than 7% from the mass calculated in Par. 2 , the value of $F_{EN}(kN)$ to take into account in the present Par. for the calculation of <i>BL</i> and <i>PL</i> is to be deduced from the actual mass of the anchor according to the formulae in Par. 2 .	
	(2) Length of individual chain cable The length of chain cable L_{CC} , in m, linked to each anchor is to be at least equal to:	
	(A) When $P < 180$ $\frac{L_{CC} = 30 \ln(P) - 42}{(B) \text{ When } P \ge 180}$ $\frac{L_{CC} \text{ to be selected according to Ch 8, Sec 1, Table 4.8.1}}{P : \text{ Anchor weight, in } kg, \text{ defined in Par. 2. for an ordinary anchor according to the considered case.}$	

- (1) Background of Amendment
 - 1) Rudder carrier and bearing materials have been amended to reflect the current state of the industry.
 - 2) The phrases related to jumping stopper spacing have been amended to clarify that these are standard values for reference only.

Present	Amendment	Note
CHAPTER 1 RUDDERS	CHAPTER 1 RUDDERS	
Section 1 ~ Section 9 (omitted) Section 10 Rudder Accessories	Section 1 ~ Section 9 (same as present) Section 10 Rudder Accessories	
1001. Rudder carriers [See Rule]	1001. Rudder carriers [See Rule]	
1. Materials of rudder carriers and intermediate bearings <u>Rudder carriers and intermediate bearings are to be of steel. They</u> are not to be of cast iron.	1. Materials of rudder carriers and intermediate bearings <u>When metallic materials are applied to rudder carrier and inter-</u> <u>mediate bearings, they are not to be of cast iron.</u>	 Rudder carrier and bearing materials h ave been amended to reflect the curre
2. ~ 6. (omitted)	2. ~ 6. (omitted)	nt state of the indu stry.
1002. Jumping stoppers [See Rule] The clearance between the jumping stopper and the rudder carrier is to be 2 mm as a standard.	1002. Jumping stoppers [See Rule] The clearance between the jumping stopper and the rudder carrier is considered to be 2 mm as a standard and the recommended val- ues given by manufacturer may be accepted.	- Amended to clarify that it is a standar d value, and modifi ed to accept the va lue given by the m anufacturer.