Rules for the Classification of Steel Ships Revision

(External Inquiry)

Part 15 Structural Rules for Membrane Type Liquefied Natural Gas Carriers

2023. 9.

Hull Rule Development Team

- Main Amendments -

(1) Enter into force on 1 July 2024 (the contract date for ship construction)

- \odot Add a term definition for stern slamming content (T_{AE}).
- Revision and addition of application formula according to the development of slamming load.
 - Revision for the bottom slamming and bow impact.
 - Add the stern slamming formula.

_

• Revision of standard loading conditions for Direct Strength Analysis.

	Present			Amendment				
Ch	Section 4 Symbols and Definitions	es	Ch	Chapter 1 General Principles Section 4 Symbols and Definitions Table 3: Ship's main data				
	Table 2: Ship's main data							
Symbo Is	Meaning	Units	Symbo Is	Meaning	Units			
L	Rule length	m	L	Rule length	m			
L_{LL}	Freeboard length	m	L_{LL}	Freeboard length	m	- added a definition		
L _{PP}	Length between perpendiculars	m	LPP	Length between perpendiculars	m	(T _{AE})		
В	Moulded breadth of ship	m	В	Moulded breadth of ship	m			
D	Moulded depth of ship	m	D	Moulded depth of ship	m			
Т	Moulded draught	m	Т	Moulded draught	m			
T_{SC}	Scantling draught	m	T_{SC}	Scantling draught	m			
T_{BAL}	Ballast draught (minimum midship)	m	T_{BAL}	Ballast draught (minimum midship)	m			
T_{LC}	Midship draught at considered loading condition	m	T_{LC}	Midship draught at considered loading condition	m			
Т	Minimum draught at forward perpendicular for		T_{AE}	Minimum draught at aft end for stern slamming	m			
T_{F-f} , T_{F-e}	bottom slamming, with respectively all ballast tanks full or with any tank empty in bottom slamming area	m	T_{F-f} ,	Minimum draught at forward perpendicular for bottom slamming, with respectively all ballast tanks full or with any tank ampty in bottom elemming	m			
Δ	Moulded displacement at draught T_{SC}	t	I_{F-e}	area				
C_B	Block coefficient at draught $T_{SC}^{}$	-	Δ	Moulded displacement at draught T_{SC}	t			
V	Maximum service speed	knot	C_B	Block coefficient at draught T_{SC}	-			
х, у, г	X, Y, Z coordinates of the calculation point with respect to the reference coordinate system	m	V	Maximum service speed	knot			
			Х, У, Z	X, Y, Z coordinates of the calculation point with respect to the reference coordinate system	m			

Present	Amendment	Note
Chapter 4 Loads Section 1 ~ 4 (omitted)	Chapter 4 Loads Section 1 ~ 4 (omitted)	
Section 5 External Loads	Section 5 External Loads	
 1. ~ 2. (omitted) 3. External impact pressures for the bow area 3.1 Application 3.1.1 The impact pressures for the bow area are only to be applied for strength assessment. 3.2 Bottom elamming pressure 	 ~ 2. (omitted) 3. External impact pressures for the bow area 3.1 Application 3.1.1 The impact pressures for the bow area are only to be applied for strength assessment. 3.2 Equivalent design pressure 	- developed the
	3.2.1 Entry impact pressure	impact pressure
3.2.1 The bottom slamming pressure P_{SL} , in kN/m ² , for the bottom slamming design load scenario is to be evaluated for the following two cases: Case 1 : An empty ballast tank or a void space in way of the bottom shell. $P_{SL} = 10 g \sqrt{L} f_{SL} c_{SL-et}$ for L < 170 m $P_{SL} = 130 g f_{SL} c_{SL-et} e^{c_1}$ for L \geq 170 m Case 2 : A full ballast tank in way of the bottom shell. $P_{SL} = 10 g \sqrt{L} f_{SL} c_{SL-ft} - 1.25 \rho g (z_{top} - z)$ for L < 170 m $P_{SL} = 130 g f_{SL} c_{SL-ft} e^{c_1} - 1.25 \rho g (z_{top} - z)$ for L \leq 170 m where: c_1 : Coefficient to be taken as: $c_1 = 0$ for L \leq 180 m $c_1 = -0.0125 (L - 180)^{0.705}$ for L $>$ 180 m c_{SL-et} : Slamming coefficient for case with an empty ballast tank or void	3.2.1 Entry impact pressure The entry impact pressure, P_{EI} in kN/m2, as equivalent static pressure is to be taken as: $P_{EI} = CP_EC_E$ where: C : Vertical distribution coefficient, to be taken as: C = 1.0 for bottom slamming $C = 0.18(C_W - 0.5h_0)$ for bow impact $C = 0.18(C_W - 2.0h_0)$ for stern slamming C is not to be less than 0.0 nor greater than 1.0. C_W : Wave coefficient as defined in Ch 4, Sec 4 . h_0 : Vertical distance, in m, from the waterline at the draught T_{SC} to the calculation point, see Figure 2 and Figure 3 , to be taken as: • For bow impact $h_0 = 0$ for calculation point between T_{BAL} and T_{SC} $h_0 = z - T_{SC}$ for calculation point above the draught T_{SC}	

Present	Amendment	Note
space:	• For stern slamming	- developed the
$(T_{F-e})^{0.2}$	$h_0=0$ for calculation point between T_{AE} and T_{SC}	impact pressure
$c_{SL-et} = 5.95 - 10.5 \left(\frac{1}{L} \right)$	$h_0=z-T_{SC}$ for calculation point above the draught T_{SC}	
c_{SL-ft} : Slamming coefficient for case with a full ballast tank:	C_E : Equivalent coefficient, to be taken as:	
$= 5.05 - 10.5 \left(T_{F-f} \right)^{0.2}$	• For $\xi \leq 30$ °	
$\frac{c_{SL-ft}-5.95}{10.5}\left(\frac{L}{L}\right)$	${}^{\prime}C_{\!E}^{}=0.03 {ar arepsilon}+0.1$ ${}^{\prime}$ for bottom slamming	
f_{SL} : Longitudinal slamming distribution factor, to be taken as:	${}^{i}C_{E}=0.03 {ar arepsilon}+0.1$ i for bow impact	
$f_{SL} = 0$ for x/L ≤ 0.5	${}^{i}C_{\!E}^{}=0.032 {ar arepsilon}+0.04$ for stern slamming	
$f_{SL} = 1.0$ for x/L = 0.5 + c_2	• For $\xi > 30$ °	
$f_{SL} = 1.0$ for x/L = 0.65 + c_2	$C_E=1.0$	
$f_{SL} = 0.5$ for x/L ≥ 1.0	ξ : Angle, in deg, to be taken as:	
Intermediate values of f_{SL} are to be obtained by linear intermediation	$\xi=90-lpha>3.85$ for bottom slamming	
interpolation.	$\xi=64-lpha>3.85$ for bow impact	
c_2 . Coefficient to be taken as:	$\xi = 90 - lpha > 0$ for stern slamming	
$c_2 = 0.33 C_B + \frac{L}{2500}$ but not to be taken greater than 0.35.	lpha : Flare angle, in deg, at the calculation point defined as the angle	
T . Design elempting draught at the EP to be provided by the	between a vertical line and the tangent to the side plating,	
Designer. T_{F-e} is not to be greater than the minimum draught	measured in a vertical plane normal to the horizontal tangent to	
at the FP indicated in the loading manual for all seagoing con-	the shell plating, see Figure 2 and Figure 3.	
ming region are empty. (2023)	P_E : Impact pressure, in kN m.	
T_{F-f} : Design slamming draught at the FP to be provided by the	$P_E^{\prime}=rac{1}{2} ho K_E^{\prime}V_E^2$	
draught at the FP indicated in the loading manual for all sea-		
going conditions where all ballast tanks within the bottom	K_E : Pressure factor, to be taken as:	
siamming region are run. (2023)	$K_E = 745 \hat{\xi}^{-1.22}$	
z_{top} . z -coordinate of the highest point of the tank, excluding small hatchways, in m. For strength assessment of double bottom	V_E . Entrance speed, in m/s	
floors and girders, <i>z_{top}</i> is not to be taken greater than the double bettom beight	$V_E = 0.38(22.8 - 0.014L)$ for bottom slamming and bow impact	
	$V_E = 0.6(6.8 \pm 0.01L)$ for stern slamming	
	_ 5 _	
	J —	

	Present		Amendment	Note
3.2.2	Loading manual information		3.2.1 Breaking wave impact pressure	- developed the
The loading guidance information is to clearly state the design slamming draughts and the ballast water exchange method used for each ballast tank, if any.			The breaking wave impact pressure, P_{BI} in kN/m2, is to be taken as: $P_{BI} = C P_B \label{eq:pressure}$	impact pressure
3.3 Bov	v impact pressure		where:	
3.3.1 The bow impact c	Design pressures w impact pressure P_{FB} , in kN/m ² , lesign load scenario is to be taken	, to be considered for the bow as:	C : Vertical distribution coefficient, as given in [3.2.1]. C_W : Wave coefficient, as defined in Ch 4, Sec 4. h_0 : Vertical distance, in m, as given in [3.2.1].	
	$P_{FB} = 1.025 f_{FB} c_{FB} V_{im}^2 \sin \gamma_{wl}$		P_B : Impact pressure, in kN m [*] .	
where: f_{FB}	: Longitudinal bow flare impact pr	ressure distribution factor. To be	* $P_B=rac{1}{2} ho K_E V_B^2 C_arnothing$	
taken as	:		K_B : Coefficient, to be taken as:	
	$f_{FB} = 0.55$	for $x/L \leq 0.9$	$K_B = 4$	
	$f_{FB} = 4 (x/L - 0.9) + 0.55$	for 0.9 < $x/L \le$ 0.9875	V_B : Relative velocity, in m/, to be taken as:	
	$f_{FB} = 8 (x/L - 0.9875) + 0.9$	for 0.9875 < $x/L \le 1$	$V_B = 0.514 V \cdot \sin(\beta + 30) + V_{BW}$	
	$f_{FB} = 1.0$	for $x/L > 1.0$	V_{BW} : Breaking wave velocity, in m/s, to be taken as:	
V_{im}	: Impact speed, in knots, to be ta	aken as:	$V_{BW} = 12 C_{\beta}$	
	$V_{im} = 0.514 \ V_{ref} \sin a_{wl} + \sqrt{L}$		C_{β} : Coefficient, to be taken as:	
V_{ref}	: Forward speed, in knots, to be t	taken as:	$C_eta=0.25+rac{eta}{60}$ for $0\degree$	
	$V_{ref} = 0.75 V$ but not less than	10.	$C_{\beta} = 1$ for $45^{\circ} \leq \beta \leq 90^{\circ}$	
α_{wl}	: Local waterline angle, in deg, at less than 35 deg. See Figure 12	the considered position, but not	C_{\varnothing} : Hull inclination angle influence coefficient, in deg, to be taken as:	
γ_{wl}	γ_{wl} : Local bow impact angle, in deg, measured in a vertical plane containing the normal to the shell, from the horizontal to the		$C_{arnothing} = 1 - rac{lpha}{60} \qquad ext{for} eta < 15\ ^\circ \ eta \ge 15\ ^\circ$	
tangent line at the considered position but not less than 50 deg, as shown in Figure 12 . Where this value is not available, it may be taken as:			α : Flare angle, in deg, as given in [3.2.1] .	
			eta : Angle, in deg, at the calculation point defined as the angle	
	$\int_{-1} \tan \beta_{bl}$		between a longitudinal line and a tangent to the side plating in a	
	$\gamma_{wl} = \tan \left[\frac{1}{\cos \alpha_{wl}} \right]$		horizontal plan, see Figure 2 and Figure 3.	
			- 7 -	

Present	Amendment	Note
β_{pl} : Local body plan angle, in deg, at the considered position from the horizontal to the tangent line, but not less than 35 deg.	3.3 Bottom slamming 3.3.1 Design pressures	- developed the impact pressure
c_{FB} : Coefficient to be taken as: $c_{FB} = 1.0$ for positions between draughts T_{BAL} and T_{SC} .	The bottom slamming pressure, P_{SL} in kN/m ² , at the centre line for the bottom slamming design load scenario is to be taken as:	
$T_{SC}c_{FB} = \sqrt{1.0 + \cos^2[90\frac{(h_{fb} - 2h_0)}{h_{fb}}]} \text{ for positions above draughts}$	$P_{SL} = C_x P_{EI}$ where:	
h_{fb} : Vertical distance, in m, from the waterline at the draught T_{SC} to the highest deck at side. See Figure 12. h_0 : Vertical distance, in m, from the waterline at the draught T_{SC} to the considered position. See Figure 12. $\int \frac{1}{\sqrt{q}} \frac{1}{$	$C_x : \text{Longitudinal distribution factor along the ship length, to be taken as:} C_x = 0.0 \text{for } f_{xL} \leq 0.5 \\ C_x = 1.0 ^* \text{for } f_{xL} = 0.5 + c_2 \\ C_x = 1.0 ^* \text{for } f_{xL} = 0.6 + c_2 \\ C_x = 0.5 ^* \text{for } f_{xL} = 1.0 ^* \\ \text{Intermediate values of } C_x \text{ are obtained by linear interpolation.} \\ c_2 : \text{Coefficient to be taken as:} \\ c_2 = 0.33 C_B + \frac{L}{2500} \text{ but not to be taken greater than } 0.35. \\ P_{EI} : \text{Entry impact pressure, in kN/m}^2, \text{ as defined in } [3.2.1]. \\ a : \text{Flare angle, in deg, at the bottom centerline in the longitudinal direction of the ship, see Figure 2.} \\ \end{bmatrix}$	

Present	Amendment	Note
	3.4 Bow impact	- developed the
	3.4.1 Design pressures	impact pressure
	The bow impact pressure, P_{FB} in kN/m2, to be considered for the bow impact design load scenario is to be taken as:	
	$P_{FB} = \max\left(P_{EI}, P_{BI}\right) \bullet f_{FB}$	
	where:	
	P_{EI} : Entry impact pressure, in kN m ⁱ , as defined in [3.2.1].	
	P_{BI} : Breaking wave impact pressure, in kN m ^{i, as defined in [3.2.2].}	
	f_{FB} : Longitudinal distribution factor along the ship length, to be	
	taken as follow but not to be taken greater than 1.0:	
	$f_{FB} = 0.0$ for $f_{xL} < 0.5$	
	$f_{FB} = 2.5 f_{xL} - 1.25$ for $f_{xL} \ge 0.5$	
	3.5 Stern slamming	
	3.5.1 Design pressures	
	The stern slamming pressure, P_{SS} in kN/m ^{2,i} , to be considered for the stern slamming design load scenario is to be taken as: $P_{SS} = P_{EI}$	
	where: P_{EI} : Entry impact pressure, in kN/m ² , as defined in [3.2.1].	

Present						Amendment	Note		
Chapter 7	7 Dir	rect	Strength	Analysis	5		- changed the heel		
Section 2 C	Cargo H	Hold St	ructural Stren	gth Analysis					
Table 5 : Standard loading conditions applicable to midship cargo hold region									
No Loading Pattern Dr	raught	% of perm. SWBM	% of perm. SWSF	Dynamic load cases	Pressure by IGC (Pt 7, Ch 5, 428)				
Seagoing conditions									
		0% Sagging	≤100%	HSM1	N/A				
LM1 ²⁾	$7T_{SC}^{(1)}$	100% Hogging	≤100%	HSM2, FSM2, BSR-2P, OST-1P, OST-2P	N/A				
		100% Sagging	≤100%	HSM1, BSP-2P, BSR-1P, OST-1P	N/A				
	I SC	30% Hogging	≤100%	HSM2, BSP-1P, BSR-2P, OST-2P	N/A				
		100%	100% Max SFLC (aft-, fwd+)	HSM1	N/A				
LM3 ²⁾	$0.8T_{SC}$	Sagging	≤100%	BSP-1P, BSP-2P	N/A				
		75% Hogging	≤100%	HSM2	N/A				
LM3 -IGC 0.8	8T _{SC} ³⁾	≤100%	≤100%	N/A	α_{β} associated with Max P _{gd} at AP2 ⁴⁾				
		70% Sagging	≤100%	HSM1	N/A				
LM4 ²⁾ 0.	.9 T _{SC}	60%	100% Max SFLC (aft+, fwd-)	HSM2, FSM2	N/A				
		Hogging	≤100%	BSR-1P, BSR-2P	N/A				
<pre>{omitted}</pre>									

Present			Amend	lment			Note					
	Chapter	7 Di	rect	Strength	Analysis	5	- changed the heel					
	Section 2	Cargo	Hold Str	uctural Streng	gth Analysis		condition.					
	Table 5 : Standard loading conditions applicable to midship cargo hold region											
	No Loading Pattern	Draught	% of perm. SWBM	% of perm. SWSF	Dynamic load cases	Pressure by IGC (Pt 7, Ch 5, 428)						
	Seagoing conditions											
			0% Sagging	≤100%	HSM1	N/A						
	LM1 ²⁾	$0.7T_{SC}^{(1)}$	100% Hogging	≤100%	HSM2, FSM2, BSR-2P, OST-1P, OST-2P	N/A						
		T	100% Sagging	≤100%	HSM1, BSP-2P, BSR-1P, OST-1P	N/A						
		1 _{SC}	30% Hogging	≤100%	HSM2, BSP-1P, BSR-2P, OST-2P	N/A						
			100%	100% Max SFLC (aft-, fwd+)	HSM1	N/A						
	LM3 ²⁾	0.8T _{SC}	Sagging	≤100%	BSP-1P, BSP-2P	N/A						
			75% Hogging	≤100%	HSM2	N/A						
	LM3 -IGC I	0.8 T _{SC} ³⁾	≤100%	≤100%	N/A	$\begin{array}{c} \alpha_{\beta} \text{associated} \\ \hline \text{with} \text{Max} P_{gd}^{-} \\ \text{at} AP2^{4 1} \\ \text{Static} 30^{\circ} \\ \text{Heel} \text{angle}^{3} \end{array}$						
			70% Sagging	≤100%	HSM1	N/A						
	LM4 ²⁾	0.9 <i>T_{SC}</i>	60%	100% Max SFLC (aft+, fwd-)	HSM2, FSM2	N/A						
			Hogging	≤100%	BSR-1P, BSR-2P	N/A						
	<pre>(omitted)</pre>											

Present	Amendment	Note
<pre>{omitted}</pre>		- changed the heel condition.
Note : 1) Draught needs not greater than the minimum ballast draught in the loading manual. 2) For the ship with an asymmetrical structures, BSR-1S, BSR-2S, BSP-1S, BSP-2S, OST-1S and OST-2S shall be investigated additionally. For ships with symmetrical about the centerline, results of one side should be considered as same as the other side 3) Hydrostatic external sea pressure with heel angle ϕ_{β} corresponding roll angle of a_{β} is applicable, but heel angle need not greater than 30°. Additional boundary condition is to be applied as shown Figure 9 . 4) When the internal pressure calculated according to Pt7 , Ch 5 , Sec 4 428 is used, P_{IGC} is calculated with $f_{IGC} = 0.8$ considering operational profile. In that case, acceptance criteria is AC-A. If other alternative pressure is used, f_{IGC} is not applicable and acceptance criteria is AC-SD. For $g_{I}(T\cos \phi_{\beta} - \frac{B}{2}\sin \phi_{\beta})$, $\rho_{II}(T\cos \phi_{\beta} + \frac{B}{2}\sin \phi_{\beta})$, $P_{Pressure head at other elements with \alpha_{\beta}.$		

Present	Amendment	Note
	<pre>{omitted}</pre>	- changed the heel condition.
	 Note : 1) Draught needs not greater than the minimum ballast draught in the loading manual. 2) For the ship with an asymmetrical structures, BSR-1S, BSR-2S, BSP-1S, BSP-2S, OST-1S and OST-2S shall be investigated additionally. For ships with symmetrical about the centerline, results of one side should be considered as same as the other side 3) Hydrostatic external sea pressure with 30° heel angle φ_β (φ_β = 30°). corresponding roll angle of α_β is applicable, but heel angle need not greater than 30°. Additional boundary condition is to be applied as shown Figure 9. 4) When the internal pressure calculated according to Pt7, Ch 5, Sec 4 428 is used, P_{IGC} is calculated with f_{IGC} = 0.8 considering operational profile. In that case, acceptance criteria is AC-A. If other alternative pressure is used, f_{IGC} is not applicable and acceptance criteria is AC-SD. 	
	$\rho g \left(T \cos \phi_{\beta} - \frac{B}{2} \sin \phi_{\beta} \right) \qquad \rho g \left(T \cos \phi_{\beta} + \frac{B}{2} \sin \phi_{\beta} \right)$	

Present						Amendment	Note	
	Table 6 : Standard	loading con	ditions app		 changed the heel condition. 			
No	Loading Pattern	Draught	% of perm. SWBM	% of perm. SWSF	Dynamic load cases	Acceleration by IGC(Pt 7, Ch 5, 428)		
Seagoir	ng conditions				·			
L A 1 ²)		$0.7T^{(1)}$	0% Sagging	≤100%	HSM1	N/A		
LAI-		0.71 _{SC}	100% Hogging	≤100%	HSM2, FSM2, OST-1P, OST-2P	N/A		
LA2 ²⁾		T_{SC}	100% Sagging	≤100%	HSM1, FSM1 BSP-1P, BSP-2P BSR-1P, BSR-2P OST-1P, OST-2P	N/A		
			40% Hogging	≤100%	HSM2	N/A		
1 43		0.857	0% Sagging	100% Max SFLC(Aft-)	HSM1	N/A		
		0.00150	60% Hogging	100% Max SFLC(fwd+)	HSM2	N/A		
LA3 -IGC		0.85 T _{SC} ³⁾	≤100%	≤100%	N/A	$lpha_{eta}$ associated with Max P _{gd} at AP2 ⁴⁾		
5)		0.0577	30% Sagging	100% Max SFLC(Fwd-)	HSM1	N/A		
LA4 ³⁷	$A4^{5'}$ 0.85 T_{sc}		70% Hogging	100% Max SFLC(Aft+)	HSM2	N/A		
Comitte	ed∕							

Present	Amendment							Note	
		egion	- changed the heel						
	No	Loading Pattern	Draught	% of perm. SWBM	% of perm. SWSF	Dynamic load cases	Acceleration by IGC(Pt 7, Ch 5, 428)	condition.	
	Seagoir	Seagoing conditions							
			0.700 1)	0% Sagging	≤100%	HSM1	N/A		
	LAT		0.71 _{SC}	100% Hogging	≤100%	HSM2, FSM2, OST-1P, OST-2P	N/A		
	LA2 ²⁾		T_{SC}	100% Sagging	≤100%	HSM1, FSM1 BSP-1P, BSP-2P BSR-1P, BSR-2P OST-1P, OST-2P	N/A		
				40% Hogging	≤100%	HSM2	N/A		
	1 43		$0.85T_{ac}$	0% Sagging	100% Max SFLC(Aft-)	HSM1	N/A		
			0.001 _{SC}	60% Hogging	100% Max SFLC(fwd+)	HSM2	N/A		
	LA3 -IGC I		0.85 T _{SC} ³⁾	≤100%	≤100%	N/A	$\begin{array}{c} \alpha_{\beta} \text{ associated} \\ \hline \text{with Max } P_{gd} \text{ at} \\ \hline AP2^{4)} \\ \text{Static 30^{\circ} Heel} \\ \hline angle^{3)} \end{array}$		
	1 4 45)		0.057	30% Sagging	100% Max SFLC(Fwd-)	HSM1	N/A		
	LA4*/		0.851 _{SC}	70% Hogging	100% Max SFLC(Aft+)	HSM2	N/A		
	⟨omitt	ed〉				·			

Present	Amendment	Note
(omitted) Note : 1) Draught needs not greater than the minimum ballast draught in the loading manual. 2) For the ship with an asymmetrical structures, BSR-1S, BSR-2S, BSP-1S, BSP-2S, OST-1S and OST-2S shall be investigated additionally, For ships with symmetrical about the centerline, results of one side should be considered as same as the other side 3) Hydrostatic external sea pressure with heel angle φ _g corresponding roll angle of a _g is applicable, but heel angle need not greater than 30°. Additional boundary condition is to be applied as shown Figure 9. 4) When the internal pressure calculated according to Pt7, Ch 5, Sec 4 428 is used, P _{ICC} is calculated with f _{ICC} = 0.8 considering operational profile. In that case, acceptance criteria is AC-A. If other alternative pressure is used, f _{ICC} is not applicable and acceptance criteria is AC-SD. 5) 100% filling of tanks in E/R	Amendment	Note - changed the heel condition.
$\rho g \left(T \cos \phi_{\beta} - \frac{B}{2} \sin \phi_{\beta} \right) \qquad \rho g \left(T \cos \phi_{\beta} + \frac{B}{2} \sin \phi_{\beta} \right) \qquad $		

Present	Amendment	Note
	(omitted) Note : 1) Draught needs not greater than the minimum ballast draught in the loading manual. 2) For the ship with an asymmetrical structures, BSR-1S, BSR-2S, BSP-1S, BSP-2S, OST-1S and OST-2S shall be investigated additionally. For ships with symmetrical about the centerline, results of one side should be considered as same as the other side 3) Hydrostatic external sea pressure with 30° heel angle $\phi_{\beta}(\phi_{g} = 30^{\circ})$, -corresponding-roll-angle-of- $\frac{1}{\sigma_{g}}$ is applicable, but heel angle need not greater than 30°. Additional boundary condition is to be applied as shown Figure 9. 4) When the internal pressure calculated according to Pt7. Ch 5. Sec 4-428 is used, P_{RGC} is calculated with f_{RGC} =0.8-considering operational-profile. In that case, acceptance criteria is AC-A: -If other alternative pressure is used, f_{RGC} is not applicable and acceptance criteria is AC-SD: 5)4) 100% filling of tanks in E/R $\rho_g(T\cos\phi_g - \frac{B}{2}\sin\phi_g)^{1}$ $\rho_g(T\cos\phi_g + \frac{B}{2}\sin\phi_g)$	- changed the heel condition.

Present					Amendment	Note		
Table 7 : Standard loading conditions applicable to foremost cargo hold region						 changed the heel condition. 		
No	Loading Pattern	Draught	% of perm. SWBM	% of perm. SWSF	Dynamic load cases	Acceleration by IGC(Pt 7, Ch 5, 428)		
Seagoin	g conditions		1					
			0% Sagging	≤100%	HSM1, BSR-2P, OSA-2P	N/A		
LF1 ²⁾		0.7T _{SC} ¹⁾	100% Hogging	≤100%	HSM2, FSM2, BSR-1P, OST-1P, OST-2P, OSA-1P	N/A		
LF2 ²⁾		T_{SC}	100% Sagging	≤100%	HSM1, FSM1 BSP-1P, BSP-2P, BSR-1P, BSR-2P OST-1P, OST-2P	N/A		
			30% Hogging	≤100%	HSM2	N/A		
L F3		$0.85T_{cc}$	60% Sagging	≤100%	HSM1	N/A		
	0.00150	100% Hogging	100% Max SFLC(Aft-)	HSM2	N/A			
LF3 -IGC		0.85 T _{SC} ³⁾	≤100%	≤100%	N/A	$lpha_eta$ associated with Max P_{gd} at AP1 ⁴⁾		
I E 1 ⁵⁾		$0.9T_{1}$	100% Sagging	100% Max SFLC(Aft+)	HSM1	N/A		
		0.0 1 SC	50% Hogging	100% Max SFLC(Aft-)	HSM2	N/A		
Comitte	ed>							

Present	Amendment					Note		
	Table 7 : Standard loading conditions applicable to foremost cargo hold region							- changed the heel condition.
	No	Loading Pattern	Draught	% of perm. SWBM	% of perm. SWSF	Dynamic load cases	Acceleration by IGC(Pt 7, Ch 5, 428)	
	Seagoing	conditions						
				0% Sagging	≤100%	HSM1, BSR-2P, OSA-2P	N/A	
	LF1 ²⁾		$0.7T_{SC}^{1}$	100% Hogging	≤100%	HSM2, FSM2, BSR-1P, OST-1P, OST-2P, OSA-1P	N/A	
	LF2 ²⁾		T_{SC}	100% Sagging	≤100%	HSM1, FSM1 BSP-1P, BSP-2P, BSR-1P, BSR-2P OST-1P, OST-2P	N/A	
				30% Hogging	≤100%	HSM2	N/A	
	LE3		0.85T	60% Sagging	≤100%	HSM1	N/A	
				100% Hogging	100% Max SFLC(Aft-)	HSM2	N/A	
	LF3 - IGC I		► 0.85 T _{SC} ³⁾	≤100%	≤100%	N/A	$\begin{array}{c} \alpha_{\beta} \text{associated} \\ \hline \\ \text{with} \text{Max} P_{\text{gd}} \text{at} \\ \hline \\ AP1^{4 \gamma} \\ \text{Static} 30^{\circ} \text{Heel} \\ \hline \\ \text{angle}^{3 \gamma} \end{array}$	
	ι ελ 5)4)		097	100% Sagging	100% Max SFLC(Aft+)	HSM1	N/A	
			0.01 sc	50% Hogging	100% Max SFLC(Aft-)	HSM2	N/A	
	<pre>{omittee</pre>							

Present	Amendment	Note
(omitted) Note : 1) Draught needs not greater than the minimum ballast draught in the loading manual. (2) For the ship with an asymmetrical structures, BSR-15, BSR-25, BSP-15, BSP-25, OST-15 and OST-25 shall be investigated additionally. For ships with symmetrical about the centerline, results of one side should be considered as same as the other side (3) Hydrostatic external sea pressure with heel angle ϕ_g corresponding roll angle of a_g is applicable, but heel angle need not greater than 30°. Additional boundary condition is to be applied as shown Figure 9. (4) When the internal pressure calculated according to Pt7. Ch 5, Sec 4 428 is used. P_{RCC} is calculated with $f_{ICC} = 0.8$ considering operational profile. In that case, acceptance criteria is AC-A. If other alternative pressure is used. f_{RCC} is not applicable and acceptance criteria is AC-SD. (5) 100% filling of tanks in fore end structure outside of cargo hold region $\rho_g\left(T\cos\phi_g - \frac{B}{2}\sin\phi_g\right)$ $\rho_g\left(T\cos\phi_g + \frac{B}{2}\sin\phi_g\right)$ $\rho_g\left(T\cos\phi_g - \frac{B}{2}\sin\phi_g\right)$ $\rho_g\left(T\cos\phi_g + \frac{B}{2}\sin\phi_g\right)$		- changed the heel condition.

Present	Amendment	Note
	Komitted) Note : 1) Draught needs not greater than the minimum ballast draught in the loading manual. 2) For the ship with an asymmetrical structures, BSR-15, BSR-25, BSP-15, BSP-25, OST-15 and OST-25 shall be investigated additionally. For ships with symmetrical about the centerline, results of one side should be considered as same as the other side. 3) Hydrostatic external sea pressure with 30° heel angle $\phi_{\theta}(\phi_{\theta} = 30^{\circ})$. corresponding-roll-angle-of- π_{g} is applicable, but heel angle need not greater than 30°. Additional boundary condition is to be applied as shown Figure 9. 4) When the internal pressure calculated according to Pt7, Ch 5, Sec 4 428 is used, P_{IGC} is calculated with $f_{IGC} = 0.8$ considering operational profile. In that case, acceptance criteria is AC-A. If other alternative pressure is used, f_{IGC} is not applicable and acceptance criteria is AC-SD: 5(4) 100% filling of tanks in fore end structure outside of cargo hold region Output: fore $\phi_{\theta} - \frac{B}{2} \sin \phi_{\theta}$ $\rho_{g}(T \cos \phi_{g} - \frac{B}{2} \sin \phi_{g})$ $\rho_{g}(T \cos \phi_{g} + \frac{B}{2} \sin \phi_{g})$	- changed the heel condition.

Chapter 10 Other Structures	- novyly added
Section 3 Aft Part	newly added
. 〈same as the present〉	
icture subjected to impact loads	
neral polication equirements of this sub-section cover the strengthening nents for local impact loads that may occur in the stern bottom a of the ships with length $L \ge 150$ m. The stern slamming loads, to be applied in [5.2] are described in Ch 4, Sec 5, [3]. The nents of [5.2] are to be applied in addition to applicable scantling nents in Ch 6. Prin slamming polication rn bottom structure is to be strengthened against stern slamming es. Stent of strengthening ral the strengthening is to extend aft of 0.1 <i>L</i> forward of AE and <i>y</i> above the minimum design ballast draught, T_{AE} , defined in Ch 4, Table 2. Outside the strengthening area the scantlings are to be to maintain continuity of longitudinal and / or transverse strength.	
י ח קי או הייר די הייר קי הייר	(same as the present) cture subjected to impact loads teral plication quirements of this sub-section cover the strengthening ents for local impact loads that may occur in the stern bottom of the ships with length $L \ge 150$ m. The stern slamming loads, to be applied in [5.2] are described in Ch 4, Sec 5, [3]. The ents of [5.2] are to be applied in addition to applicable scantling ents in Ch 6. The slamming plication In bottom structure is to be strengthened against stern slamming s. tent of strengthening al the strengthening is to extend aft of 0.1 <i>L</i> forward of AE and above the minimum design ballast draught, T_{AE} , defined in Ch , Table 2. Outside the strengthening area the scantlings are to be to maintain continuity of longitudinal and / or transverse strength.

Present	Amendment	Note
	5.2.3 Side shell plating	
	The net thickness of the side shell plating, t in mm, is not to be less	
	than:	
	P_{SS}	
	$t = 0.0158\alpha_p \delta \sqrt{R_{eH}}$	
	where:	
	P _{SS} : Stern slamming pressure defined in Ch 4, Sec 5, [3.5.1], in	
	kN/m^2 .	
	5.2.4 Side shell stiffeners	
	The side shell stiffeners within the strengthening area defined in [5.2.2]	
	are to comply with the following criteria:	
	a) The net web thickness, t_w in mm, is not to be less than:	
	$t_w = \frac{f_{shr} P_{SS} s \ell_{shr}}{d_{shr} \tau_{eH}}$	
	where:	
	f_{shr} : Shear force distribution factor:	
	$f_{shr} = 0.7$	
	b) The net plastic section modulus, Z_{pl} in cm ³ , is not to be less than:	
	$1.2 P_{SS} s \ell_{bdg}^2$	
	$Z_{pl} = \overline{-f_{bdg}R_{eH}}$	

Present	Amendment	Note
	5.2.5 Primary supporting members	
	The size and number of openings in web plating of the floors and girders	
	is to be minimised considering the required shear area as given:	
	a) Section modulus	
	The section modulus of each primary supporting member, Z in ${ m cm}^3$,	
	is not to be less than:	
	$Z = 1000 rac{P_{SS} S \ell_{bdg}^2}{f_{bdg} R_{eH}}$ with f_{bdg} is not to be taken less than 10	
	b) Shear area	
	The shear area, A_{shr} in ${ m cm}^2$, of each primary supporting member	
	web at any position along its span is not to be less than:	
	$A_{shr} = 10 \frac{f_{shr} P_{SS} S \ell_{shr}}{\tau_{eH}}$	
	where:	
	f_{shr} : Shear force distribution factor, as defined in Ch 6, Sec 6, Table	
	2.	
	c) Web thickness of primary supporting member	
	The net thickness of primary supporting members in way of stern	
	impact strengthening area defined in [5.2.2], t_w in mm, is not to be	
	less than:	
	$t_w = \frac{s_W}{75} \sqrt{\frac{R_{eH}}{235}}$	
	where:	
	s_W : Plate breadth, in mm, taken as the spacing between the web	
	stiffening. \oplus	